Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener
Abstract
1. Introduction
2. Materials and Methods
2.1. Threitol Preparation
2.2. Cell Culture
2.3. Cell Viability Assay
2.4. Animal Ethics Statement
2.5. Single Dose Acute Toxicity
2.6. Repeated Dose Toxicity
2.7. Biochemical and Hematological Analysis
2.8. Histopathological Analysis
2.9. Genotoxicity
2.9.1. Bacterial Reverse Mutation (Ames) Test
2.9.2. In Vivo Mammalian Erythrocyte Micronucleus Test
2.9.3. In Vitro Mammalian Chromosome Aberration Test
2.10. In Vivo Metabolism Assay
2.11. Gut Microbiome Analysis
2.12. Sensory Evaluation for Sweetness
2.13. Statistical Analysis
3. Results
3.1. Threitol Preparation and Characterization
3.2. Effect of Threitol on Cell Viability
3.3. Single Toxicity Test
3.4. Repeated-Dose Toxicity Assay
3.5. In Vivo Pharmacokinetic Study
3.6. Bacterial Reverse Mutation Test
3.7. Mammalian Erythrocyte Micronucleus Test
3.8. Mammalian Chromosomal Aberration Test
3.9. Sweetness Evaluation
3.10. Effects of Threitol on the Gut Microbiota in Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mooradian, A.D.; Smith, M.; Tokuda, M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin. Nutr. ESPEN 2017, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.R.; Chan, C.B.; Yu Louie, J.C. Current WHO recommendation to reduce free sugar intake from all sources to below 10% of daily energy intake for supporting overall health is not well supported by available evidence. Am. J. Clin. Nutr. 2022, 116, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.P.; Williams, K.; Resendez, R.G.; Hunt, K.J.; Hazuda, H.P.; Sterns, M.P. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity 2008, 16, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.-P.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Stellman, S.D.; Garfinkel, L. Patterns of artificial sweetener use and weight change in an American cancer society prospective study. Appetite 1988, 11, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Pepino, M.Y. Metabolic effects of non-nutritive sweeteners. Physiol. Behav. 2015, 152, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Grembecka, M. Sugar alcohols-their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Shiyong, D.; Jun, Y. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products-a review. Trends Food Sci. Technol. 2021, 111, 670–679. [Google Scholar] [CrossRef]
- Witkowski, M.; Nemet, I.; Alamri, H.; Wilcox, J.; Gupta, N.; Nimer, N.; Haghikia, A.; Li, X.S.; Wu, Y.; Saha, P.P.; et al. The artificial sweetener erythritol and cardiovascular event risk. Nat. Med. 2023, 29, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Wilcox, J.; Province, V.; Wang, Z.; Nemet, I.; Tang, W.H.W.; Hazen, S.L. Ingestion of the non-nutritive sweetener erythritol, but not glucose, enhances platelet reactivity and thrombosis potential in healthy volunteers-brief report. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Nemet, I.; Li, X.S.; Wilcox, J.; Ferrell, M.; Alamri, H.; Gupta, N.; Wang, Z.; Tang, W.H.W.; Hazen, S.L. Xylitol is prothrombotic and associated with cardiovascular risk. Eur. Heart J. 2024, 45, 2439–2452. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.K.; Smith, J.S. Production of threitol and sorbitol by an adult insect—Association with freezing tolerance. Nature 1975, 258, 519–520. [Google Scholar] [CrossRef] [PubMed]
- Pitkanen, E. Conversion of D-xylose into D-threitol in patients without liver disease and in patients with portal liver cirrhosis. Clin. Chim. Acta 1977, 80, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gras, J.L.; Pellissier, H.; Nouguier, R. Synthesis of new chiral auxiliaries derived from L-threitol. J. Org. Chem. 1989, 54, 5675–5677. [Google Scholar] [CrossRef]
- Mills, A.; Lawrie, K.; Bardin, J.; Apedaile, A.; Skinner, G.A.; O’Rourke, C. An O2 smart plastic film for packaging. Analyst 2012, 137, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Kopfmaier, P.; Sass, G. Antitumor activity of treosulfan against human breast carcinomas. Cancer Chemother. Pharmacol. 1992, 31, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Wiendl, H.; Kieseier, B.C.; Weissert, R.; Mylius, H.A.; Pichlmeier, U.; Hartung, H.P.; Melms, A.; Kuker, W.; Weller, M. Treatment of active secondary progressive multiple sclerosis with treosulfan. J. Neurol. 2007, 254, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Chen, J.; Dawoodji, A.; Cerundolo, V.; Garcia-Diaz, Y.R.; Wojno, J.; Cox, L.R.; Besra, G.S.; Moghaddam, B.; Perrie, Y. Preparation, characterisation and entrapment of a non-glycosidic threitol ceramide into liposomes for presentation to invariant natural killer T cells. J. Pharm. Sci. 2011, 100, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Sommerdijk, N.; Feiters, M.C.; Nolte, R.J.M.; Zwanenburg, B. Aggregation behaviour of a phospholipid based on D-(-)-threitol. Recl. Trav. Chim. Pays-Bas-J. Roy. Neth. Chem. Soc. 1994, 113, 194–200. [Google Scholar]
- Chi, P.; Wang, S.; Ge, X.; Bilal, M.; Fickers, P.; Cheng, H. Efficient D-threitol production by an engineered strain of Yarrowia lipolytica overexpressing xylitol dehydrogenase gene from Scheffersomyces stipitis. Biochem. Eng. J. 2019, 149, 107259. [Google Scholar] [CrossRef]
- Yusof, Y.A.; Hasan, Z.A.A.; Abd Maurad, Z. Mutagenicity assessment of homologous series of methyl ester sulphonates (MES) using the bacterial reverse mutation (Ames) test. Int. J. Toxicol. 2024, 43, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, D.; Uno, Y.; Luijten, M.; Beevers, C.; van Benthem, J.; Burlinson, B.; Dertinger, S.; Douglas, G.R.; Hamada, S.; Horibata, K.; et al. In vivo genotoxicity testing strategies: Report from the 7th International workshop on genotoxicity testing (IWGT). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 847, 403035. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, D.; Vishwaraman, M.; Dilip, I.; Jyoti, M.; Mukul, P.; Prasad, T. Preclinical safety assessment of furostanol glycoside-based standardized fenugreek seed extract in laboratory rats. J. Diet. Suppl. 2017, 14, 521–541. [Google Scholar] [CrossRef] [PubMed]
- Low, J.Y.Q.; McBride, R.L.; Lacy, K.E.; Keast, R.S.J. Psychophysical evaluation of sweetness functions across multiple sweeteners. Chem. Senses 2017, 42, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Oliver, S.M. Measurement of the relative sweetness of selected sweeteners and sweetener mixtures. J. Food Sci. 1969, 34, 215–222. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Pastor-Villaescusa, B.; Rueda-Robles, A.; Abadia-Molina, F.; Ruiz-Ojeda, F.J. Plausible biological interactions of low-and non-calorie sweeteners with the intestinal microbiota: An update of recent studies. Nutrients 2020, 12, 1153. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [PubMed]
- Msomi, N.Z.; Erukainure, O.L.; Islam, M.S. Suitability of sugar alcohols as antidiabetic supplements: A review. J. Food Drug Anal. 2021, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S. Bioavailability of cellobiose and other non-digestible and/or non-absorbable sugar substitutes and related topics. Nutrition 2005, 21, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
- Gibson-Moore, H. Low calorie sweeteners: Consumer perceptions of safety and use in weight control. New Food 2013, 16, 48–50. [Google Scholar]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. Compr. Rev. Food. Sci. Food Saf. 2006, 5, 35–47. [Google Scholar] [CrossRef]
- Nigatu, T.A.; Afework, M.; Urga, K.; Ergete, W.; Makonnen, E. Toxicological investigation of acute and chronic treatment with Gnidia stenophylla Gilg root extract on some blood parameters and histopathology of spleen, liver and kidney in mice. BMC Res. Notes 2017, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.J.; Hogenkamp, P.S.; de Graaf, C.; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int. J. Obes. 2016, 40, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C.; Beck, J.; Cardel, M.; Wyatt, H.R.; Foster, G.D.; Pan, Z.X.; Wojtanowski, A.C.; Vander Veur, S.S.; Herring, S.J.; Brill, C.; et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity 2016, 24, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Natesan, V.; Kim, S.J. Lipid metabolism, disorders and therapeutic drugs-review. Biomol. Ther. 2021, 29, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Maersk, M.; Belza, A.; Stodkilde-Jorgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Havel, P.J. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am. J. Clin. Nutr. 2008, 88, 1733S–1737S. [Google Scholar] [CrossRef] [PubMed]
- McCann, J.; Choi, E.; Yamasaki, E.; Ames, B.N. Detection of carcinogens as mutagens in the Salmonella/microsome test-assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 1975, 72, 5135–5139. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.; Buraczewska, I.; Kruszewski, M. Micronucleus assay: The state of art, and future directions. Int. J. Mol. Sci. 2020, 21, 1534. [Google Scholar] [CrossRef] [PubMed]
- Bender, M.A.; Griggs, H.G.; Bedford, J.S. Mechanisms of chromosomal aberration production III. Chemicals and ionizing radiation. Mutat. Res. 1974, 23, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.W.; Wang, J.H.; Xu, Y.L.; Yang, H.C.; Wang, J.F.; Xue, C.H.; Yan, X.J.; Su, L.J. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 2019, 10, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a coincidence? Curr. Diabetes Rep. 2018, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ma, Y.; Yang, S.; Zhang, S.; Liu, S.; Xiao, J.; Wang, Y.; Wang, W.; Yang, H.; Li, S.; et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome 2022, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiaojia, L.; Wei, Z.; Jian, Z.; Aiting, W.; Jing, W.; Lin, Y.; Bangwei, C.; Dan, Y. Baicalin circumvents anti-PD-1 resistance by regulating the gut microbiota metabolite short-chain fatty acids. Pharmacol. Res. 2024, 199, 107033. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.H.; Huang, S.M.; Li, T.T.; Li, N.; Han, D.D.; Zhang, B.; Xu, Z.J.Z.; Zhang, S.Y.; Pang, J.M.; Wang, S.L.; et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Ballongue, J.; Schumann, C.; Quignon, P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand. J. Gastroenterol. 1997, 32, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Gostner, A.; Blaut, M.; Schäffer, V.; Kozianowski, G.; Theis, S.; Klingeberg, M.; Dombrowski, Y.; Martin, D.; Ehrhardt, S.; Taras, D.; et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br. J. Nutr. 2006, 95, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, J.; Cummings, J.H.; Delzenne, N.; Englyst, H.; Franck, A.; Hopkins, M.; Kok, N.; Macfarlane, G.T.; Newton, D.; Quigley, M.; et al. Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 1999, 81, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Bernt, W.O.; Borzelleca, J.F.; Flamm, G.; Munro, I.C. Erythritol: A review of biological and toxicological studies. Regul. Toxicol. Pharmacol. 1996, 24, S191–S197. [Google Scholar] [CrossRef] [PubMed]
- Mahalak, K.K.; Firrman, J.; Tomasula, P.M.; Nunez, A.; Lee, J.-J.; Bittinger, K.; Rinaldi, W.; Liu, L.S. Impact of steviol glycosides and erythritol on the human and Cebus apella gut microbiome. J. Agric. Food Chem. 2020, 68, 13093–13101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xu, S.; Li, T.; Ji, L.; Cheng, H. Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener. Foods 2025, 14, 2539. https://doi.org/10.3390/foods14142539
Li Q, Xu S, Li T, Ji L, Cheng H. Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener. Foods. 2025; 14(14):2539. https://doi.org/10.3390/foods14142539
Chicago/Turabian StyleLi, Qing, Shuo Xu, Tong Li, Liyun Ji, and Hairong Cheng. 2025. "Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener" Foods 14, no. 14: 2539. https://doi.org/10.3390/foods14142539
APA StyleLi, Q., Xu, S., Li, T., Ji, L., & Cheng, H. (2025). Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener. Foods, 14(14), 2539. https://doi.org/10.3390/foods14142539