Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,344)

Search Parameters:
Keywords = demand responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1557 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
17 pages, 533 KiB  
Article
Collaborative Practices in Mental Health Care: A Concept Analysis
by Eslia Pinheiro, Carlos Laranjeira, Camila Harmuch, José Mateus Bezerra Graça, Amira Mohammed Ali, Feten Fekih-Romdhane, Murat Yıldırım, Ana Kalliny Severo and Elisângela Franco
Healthcare 2025, 13(15), 1891; https://doi.org/10.3390/healthcare13151891 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Collaboration in mental health care is essential for implementing a model oriented towards the psychosocial rehabilitation of people based on multifaceted interventions involving different actors and sectors of society to respond to demands. Despite the benefits presented by the scientific evidence, there [...] Read more.
Background/Objectives: Collaboration in mental health care is essential for implementing a model oriented towards the psychosocial rehabilitation of people based on multifaceted interventions involving different actors and sectors of society to respond to demands. Despite the benefits presented by the scientific evidence, there are still many barriers to collaborative care, and professionals continue to struggle in reorienting their conduct. The current situation demands organization and the framing of well-founded action plans to overcome challenges, which in turn requires a detailed understanding of collaborative practices in mental health care and their conceptual boundaries. A concept analysis was undertaken to propose a working definition of collaborative practices in mental health care (CPMHC). Methods: This paper used the Walker and Avant concept analysis method. This includes identifying the defining concept attributes, antecedents, consequences, and empirical referents. A literature search was carried out from November 2024 to February 2025 in three databases (Medline, CINAHL, and LILACS), considering studies published between 2010 and 2024. Results: The final sample of literature investigated consisted of 30 studies. The key attributes were effective communication, building bonds, co-responsibility for care, hierarchical flexibility, articulation between services, providers and community, monitoring and evaluating of care processes, and attention to the plurality of sociocultural contexts. Conclusions: This comprehensive analysis contributes to guiding future research and policy development of collaborative practices in mental health, considering the individual, relational, institutional, and social levels. Further research is possible to deepen the understanding of the production of collaborative practices in mental health in the face of the complexity of social relations and structural inequities. Full article
25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 (registering DOI) - 2 Aug 2025
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

14 pages, 765 KiB  
Article
Reverse-Demand-Response-Based Power Stabilization in Isolated Microgrid
by Seungchan Jeon, Jangkyum Kim and Seong Gon Choi
Energies 2025, 18(15), 4081; https://doi.org/10.3390/en18154081 (registering DOI) - 1 Aug 2025
Abstract
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy [...] Read more.
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy production, while electric vehicles seek to charge energy at a lower price. In our system model, the operator determines the incentive to encourage more charging facilities and electric vehicles to participate in the reverse demand response program. Charging facilities, acting as brokers, use a portion of these incentives to further encourage electric vehicle engagement. Electric vehicles follow the decisions made by the broker and system operator to determine their charging strategy within the system. Consequently, charging energy and incentives are allocated to the electric vehicles in proportion to their decisions. The paper investigates the economic benefits of individual participants and the contribution of power stabilization by implementing a hierarchical decision-making heterogeneous multi-leaders multi-followers Stackelberg game. By demonstrating the existence of a unique Nash Equilibrium, we show the effectiveness of the proposed model in an isolated microgrid environment. Full article
Show Figures

Figure 1

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

26 pages, 89199 KiB  
Article
Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency
by Mishal Pokharel, Abid Neron, Amit Kumar Dey, Aishwarya Raksha Siddharthan, Menaka Konara, Md Mainuddin Sagar, Tracie Ferreira and Kihan Park
Pharmaceutics 2025, 17(8), 1007; https://doi.org/10.3390/pharmaceutics17081007 - 1 Aug 2025
Abstract
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) [...] Read more.
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) designed for the sustained release of vancomycin hydrochloride. Methods: The MPs were co-loaded with indocyanine green (ICG), a near-infrared (NIR) responsive agent, and fabricated via the double emulsion method.They were characterized for stability, surface modification, biocompatibility, and antibacterial efficacy. Results: Dynamic light scattering and zeta potential analyses confirmed significant increases in particle size and surface charge reversal following chitosan coating. Scanning electron microscopy revealed uniform morphology in uncoated MPs (1–10 μm) and irregular surfaces post-coating. Stability tests demonstrated drug retention for up to 180 days. Among formulations, PVI1 exhibited the highest yield (76.67 ± 1.3%) and encapsulation efficiency (56.2 ± 1.95%). NIR irradiation (808 nm) enhanced drug release kinetics, with formulation PVI4 achieving over 48.9% release, resulting in improved antibacterial activity. Chitosan-coated MPs (e.g., PVI4-C) effectively suppressed drug release without NIR light for up to 8 h, with cumulative release reaching only 10.89%. Without NIR light, bacterial colonies exceeded 1000 CFU; NIR-triggered release reduced them below 120 CFU. Drug release data fitted best with the zero-order and Korsmeyer–Peppas models, suggesting a combination of diffusion-controlled and constant-rate release behavior. Conclusions: These results demonstrate the promise of chitosan-coated NIR-responsive PLGA MPs for precise, on-demand antibiotic delivery and improved antibacterial performance. Full article
(This article belongs to the Special Issue Nano-Based Delivery Systems for Topical Applications)
Show Figures

Figure 1

20 pages, 2054 KiB  
Article
Change Management in Aviation Organizations: A Multi-Method Theoretical Framework for External Environmental Uncertainty
by Ilona Skačkauskienė and Virginija Leonavičiūtė
Sustainability 2025, 17(15), 6994; https://doi.org/10.3390/su17156994 (registering DOI) - 1 Aug 2025
Abstract
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid [...] Read more.
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid technological advancements, environmental pressures and regulatory changes—this research proposes a theoretical change management model for aviation service providers, such as airports. Integrating three analytical approaches, the model offers a robust, multi-method approach for supporting sustainable transformation under uncertainty. Normative analysis using Bayesian decision theory identifies influential external environmental factors, capturing probabilistic relationships, and revealing causal links under uncertainty. Prescriptive planning through scenario theory explores alternative future pathways and helps to identify possible predictions, offer descriptive evaluation employing fuzzy comprehensive evaluation, and assess decision quality under vagueness and complexity. The proposed four-stage model—observation, analysis, evaluation, and response—offers a methodology for continuous external environment monitoring, scenario development, and data-driven, proactive change management decision-making, including the impact assessment of change and development. The proposed model contributes to the theoretical advancement of the change management research area under uncertainty and offers practical guidance for aviation organizations (airports) facing a volatile external environment. This framework strengthens aviation organizations’ ability to anticipate, evaluate, and adapt to multifaceted external changes, supporting operational flexibility and adaptability and contributing to the sustainable development of aviation services. Supporting aviation organizations with tools to proactively manage systemic uncertainty, this research directly supports the integration of sustainability principles, such as resilience and adaptability, for long-term value creation through change management decision-making. Full article
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 78
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

19 pages, 4009 KiB  
Article
Cost Analysis and Optimization of Modern Power System Operations
by Ahto Pärl, Praveen Prakash Singh, Ivo Palu and Sulabh Sachan
Appl. Sci. 2025, 15(15), 8481; https://doi.org/10.3390/app15158481 (registering DOI) - 30 Jul 2025
Viewed by 146
Abstract
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses [...] Read more.
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses the economic scheduling of generation units using a Mixed Integer Programming (MIP) optimization model. Key constraints considered include reserve requirements, ramp rate limits, and minimum up/down time. Simulations are performed across multiple scenarios, including systems with spinning reserves, responsive demand, renewable energy integration, and energy storage systems. For each scenario, the optimal mix of generation resources is determined to meet a 24 h load forecast while minimizing operating costs. The results show that incorporating demand responsiveness and renewable resources enhances the economic efficiency, reliability, and flexibility of the power system. Full article
(This article belongs to the Special Issue New Insights into Power Systems)
Show Figures

Figure 1

26 pages, 62045 KiB  
Article
CML-RTDETR: A Lightweight Wheat Head Detection and Counting Algorithm Based on the Improved RT-DETR
by Yue Fang, Chenbo Yang, Chengyong Zhu, Hao Jiang, Jingmin Tu and Jie Li
Electronics 2025, 14(15), 3051; https://doi.org/10.3390/electronics14153051 - 30 Jul 2025
Viewed by 108
Abstract
Wheat is one of the important grain crops, and spike counting is crucial for predicting spike yield. However, in complex farmland environments, the wheat body scale has huge differences, its color is highly similar to the background, and wheat ears often overlap with [...] Read more.
Wheat is one of the important grain crops, and spike counting is crucial for predicting spike yield. However, in complex farmland environments, the wheat body scale has huge differences, its color is highly similar to the background, and wheat ears often overlap with each other, which makes wheat ear detection work face a lot of challenges. At the same time, the increasing demand for high accuracy and fast response in wheat spike detection has led to the need for models to be lightweight function with reduced the hardware costs. Therefore, this study proposes a lightweight wheat ear detection model, CML-RTDETR, for efficient and accurate detection of wheat ears in real complex farmland environments. In the model construction, the lightweight network CSPDarknet is firstly introduced as the backbone network of CML-RTDETR to enhance the feature extraction efficiency. In addition, the FM module is cleverly introduced to modify the bottleneck layer in the C2f component, and hybrid feature extraction is realized by spatial and frequency domain splicing to enhance the feature extraction capability of wheat to be tested in complex scenes. Secondly, to improve the model’s detection capability for targets of different scales, a multi-scale feature enhancement pyramid (MFEP) is designed, consisting of GHSDConv, for efficiently obtaining low-level detail information and CSPDWOK for constructing a multi-scale semantic fusion structure. Finally, channel pruning based on Layer-Adaptive Magnitude Pruning (LAMP) scoring is performed to reduce model parameters and runtime memory. The experimental results on the GWHD2021 dataset show that the AP50 of CML-RTDETR reaches 90.5%, which is an improvement of 1.2% compared to the baseline RTDETR-R18 model. Meanwhile, the parameters and GFLOPs have been decreased to 11.03 M and 37.8 G, respectively, resulting in a reduction of 42% and 34%, respectively. Finally, the real-time frame rate reaches 73 fps, significantly achieving parameter simplification and speed improvement. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 86
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

17 pages, 5557 KiB  
Article
Optimal Spatial Configuration for Energy and Solar Use in Alpine-Frigid Resettlement Communities
by Bo Liu, Wei Song, Yu Liu, Chuanming Wang and Jie Song
Buildings 2025, 15(15), 2691; https://doi.org/10.3390/buildings15152691 - 30 Jul 2025
Viewed by 157
Abstract
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates [...] Read more.
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates solar-optimized spatial configurations that enhance passive energy performance while addressing functional settlement needs. Through parametric modeling and climate-responsive simulations, four key spatial parameters are examined: building spacing, courtyard depth, density, and volumetric ratio. The findings highlight the dominant role of front–rear spacing in solar access, with optimal values at 3–4 m for single-story and 5–10 m for two-story buildings, balancing radiation gain and land use efficiency. Courtyard depths under 2.7 m significantly limit south façade exposure due to shading from the opposite courtyard wall under low-angle winter sun. This reduction results in the south façade attaining only 55.7–79.6% of the solar radiation acquisition by an unobstructed south façade (the baseline). Meanwhile, clustered orientations reduce inter-building shading losses by 38–42% compared to dispersed layouts. A three-tiered design framework is proposed: (1) macro-scale solar orientation zoning, (2) meso-scale spacing tailored to building height, and (3) micro-scale courtyard modulation for low-angle winter radiation. Together, these strategies provide practical, scalable guidelines for energy-efficient, climate-responsive settlement design in the alpine regions of Qinghai. Full article
Show Figures

Figure 1

24 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Viewed by 67
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 190
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

Back to TopTop