Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = deformed steel fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3044 KiB  
Article
Tribotechnical and Physical Characteristics of a Friction Composite Made of a Polymer Matrix Reinforced with a Complex of Fiber-Dispersed Particles
by Ievgen Byba, Anatolii Minitskyi, Yuriy Sydorenko, Andrii Shysholin, Oleksiy Myronyuk and Maksym Barabash
Materials 2025, 18(16), 3847; https://doi.org/10.3390/ma18163847 - 16 Aug 2025
Viewed by 279
Abstract
A friction composite material which contains cellulose fiber, carbon fiber, wollastonite, graphite, and resin for use in oil-cooled friction units, hydromechanical boxes, and couplings was developed. The fabrication technique includes the formation of a paper layer based on the mixture of stated fibers [...] Read more.
A friction composite material which contains cellulose fiber, carbon fiber, wollastonite, graphite, and resin for use in oil-cooled friction units, hydromechanical boxes, and couplings was developed. The fabrication technique includes the formation of a paper layer based on the mixture of stated fibers via a wet-laid process, impregnation of the layer with phenolic resin, and hot pressing onto a steel carrier. The infrared spectra of the polymeric base (phenolic resin) were studied by solvent extraction. The structural-phase analysis of the obtained material was carried out by the SEM method, and the particle size distribution parameters of the composite components were estimated based on the images of the sample surface. The surface roughness parameters of the samples are as follows: Ra = 5.7 μm Rz = 31.4 μm. The tribotechnical characteristics of the material were tested in an oil medium at a load of 5.0 MPa and a rotation mode of 2000 rpm for 180 min in a pair with a steel 45 counterbody. The coefficient of friction of the developed material was 0.11–0.12; the degree of wear was 6.17 × 10−6 μm/mm. The degree of compression deformation of the composite is 0.36%, and the compressive strength is 7.8 MPa. The calculated kinetic energy absorbed and power level are 205 J/cm2 and 110 W/cm2, respectively. The main tribotechnical characteristics of the developed friction material correspond to industrial analogues. Full article
Show Figures

Figure 1

27 pages, 28656 KiB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Viewed by 510
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 - 31 Jul 2025
Viewed by 232
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 313
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

13 pages, 3688 KiB  
Article
Influence Mechanisms of Trace Rare-Earth Ce on Texture Development of Non-Oriented Silicon Steel
by Feihu Guo, Yuhao Niu, Bing Fu, Jialong Qiao and Shengtao Qiu
Materials 2025, 18(15), 3493; https://doi.org/10.3390/ma18153493 - 25 Jul 2025
Viewed by 296
Abstract
The effects of trace Ce on the microstructure and texture of non-oriented silicon steel during recrystallization and grain growth were examined using X-ray diffraction and electron backscatter diffraction. Additionally, this study focused on investigating the mechanisms by which trace Ce influences the evolution [...] Read more.
The effects of trace Ce on the microstructure and texture of non-oriented silicon steel during recrystallization and grain growth were examined using X-ray diffraction and electron backscatter diffraction. Additionally, this study focused on investigating the mechanisms by which trace Ce influences the evolution of the {114} <481> and γ-fiber textures. During the recrystallization process, as the recrystallization fraction of annealed sheets increased, the intensity of α-fiber texture decreased, while the intensities of α*-fiber and γ-fiber textures increased. The {111} <112> grains preferentially nucleated in the deformed γ-grains and their grain-boundary regions and tended to form a colony structure with a large amount of nucleation. In addition, the {100} <012> and {114} <481> grains mainly nucleated near the deformed α-grains, which were evenly distributed but found in relatively small quantities. The hindering effect of trace Ce on dislocation motion in cold-rolled sheets results in a 2–7% lower recrystallization ratio for the annealed sheets, compared to conventional annealed sheets. Trace Ce suppresses the nucleation and growth of γ-grains while creating opportunities for α*-grain nucleation. During grain growth, trace Ce reduces γ-grain-boundary migration rate in annealed sheets, providing growth space for {114} <418> grains. Consequently, the content of the corresponding {114} <481> texture increased by 6.4%, while the γ-fiber texture content decreased by 3.6%. Full article
Show Figures

Figure 1

20 pages, 5397 KiB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 772
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 357
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

21 pages, 6773 KiB  
Article
Mechanical Properties of Steel Fiber-Reinforced Concrete Tunnel Secondary Lining Structure and Optimization of Support Parameters
by Zijian Wang, Yunchuan Wang, Xiaorong Wang, Baosheng Rong, Bin Zhang, Liming Wu, Chaolin Jia and Zihang Huang
Buildings 2025, 15(14), 2390; https://doi.org/10.3390/buildings15142390 - 8 Jul 2025
Viewed by 411
Abstract
To enhance the economic and safety aspects of tunnel structural design, this study optimizes the mix proportion of steel fiber-reinforced concrete (SFRC). It investigates the stress characteristics and support parameters of SFRC secondary lining structures via small-scale model tests and finite element analysis. [...] Read more.
To enhance the economic and safety aspects of tunnel structural design, this study optimizes the mix proportion of steel fiber-reinforced concrete (SFRC). It investigates the stress characteristics and support parameters of SFRC secondary lining structures via small-scale model tests and finite element analysis. The research focuses on the cracking process, deformation, and stress characteristics of SFRC linings under various loads. Compared with conventional reinforced concrete tunnels, SFRC tunnels show a significant increase in lining stiffness and load capacity, with a 20% reduction in reinforcement yielding load. When the damage factor is 0.43, the addition of steel fibers increases compressive stress by 22.18%. Using ABAQUS, simulations of SFRC linings with thicknesses ranging from 400 mm to 600 mm and reinforcement ratios of 0% to 0.28% were conducted. The results indicate that a 450 mm thick SFRC lining matches the mechanical performance of a 600 mm thick conventional reinforced concrete lining. Notably, an SFRC lining with a 0.20% circumferential reinforcement ratio equals a conventional lining with a 0.28% reinforcement ratio in overall mechanical performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 323
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

24 pages, 12029 KiB  
Article
The Influence of Fillers on the Reinforcement Capabilities of Polypropylene Based Mono-Material and Core-Shell Fibers in Concrete, a Comparison
by Jonas Herz, Dirk Muscat and Nicole Strübbe
Polymers 2025, 17(13), 1781; https://doi.org/10.3390/polym17131781 - 27 Jun 2025
Viewed by 430
Abstract
Noncorrosive concrete reinforcement, such as polymer fibers, is needed to overcome the current issues caused by corroded steel reinforcements. Fibers made of polypropylene show a low bonding behavior in concrete. Fillers can help to overcome this issue but often lead to reduced mechanical [...] Read more.
Noncorrosive concrete reinforcement, such as polymer fibers, is needed to overcome the current issues caused by corroded steel reinforcements. Fibers made of polypropylene show a low bonding behavior in concrete. Fillers can help to overcome this issue but often lead to reduced mechanical properties. Core-shell fibers, which split the mechanical properties and the bonding behavior between the core and the shell component, could be a solution. This study investigates mono-material and core-shell fibers produced with calcium carbonate and bentonite fillers and compares their behavior in tensile tests, density measurements, contact angle measurements, topography measurements, single fiber pull-out tests, reflected light microscopy, and thermogravimetric analysis. The fillers caused an increased drawability, resulting in higher mechanical properties. Further, in the core-shell fibers, the calcium carbonate increased the surface roughness, which led to a better anchoring of the fiber in concrete, which was also visible in the deformation during pull-out observed in reflected light microscopy pictures. The thermogravimetric analysis showed a delay in onset of degradation for fibers containing bentonite. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 384
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 7892 KiB  
Article
Analytical Model of Crack Opening in Reinforced Concrete Structures Based on DCE
by Vladimir I. Kolchunov, Natalia V. Fedorova, Sergei Y. Savin and Violetta S. Moskovtseva
Buildings 2025, 15(12), 2096; https://doi.org/10.3390/buildings15122096 - 17 Jun 2025
Viewed by 342
Abstract
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is [...] Read more.
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is a key parameter of reinforced concrete structures that frequently determines the reinforcement area, the design models and theory of calculation of this parameter are still not sufficiently perfect. The recent studies performed worldwide with the use of more advanced instrumentation have shown that the accuracy of theoretical prediction of crack opening in structures experiencing a complex stress–strain state, and especially structures made of high-strength concrete, fiber-reinforced concrete, lightweight concrete, and etc., remains unsatisfactory. This study analyzed and summarizes experimental studies of crack resistance of reinforced concrete structures and reveals new physical regularities in the deformation of concrete and steel reinforcement in zones adjacent to the crack. It introduces hypotheses that account for these regularities and proposes a general block model for calculating the width of irregular and single cracks in reinforced concrete structures under different stress states. In this model, crack opening is modeled by the double-cantilever element (DCE), which allows incorporation of the corresponding experimentally revealed effects and at the same time combines deformation parameters of both the theory of reinforced concrete and fracture mechanics. The DCE is two conventionally separated rigid cantilevers that include the crack surfaces, and are embedded on one side in the concrete at the neutral axis. On the other side, they are connected with reinforced steel bars crossing the crack. Using this model, a method for calculating the crack opening width in reinforced concrete structures with different types of cracks is proposed. The paper demonstrates the results of experimental investigations of crack resistance of simply supported and cantilever beams made of ordinary, light, and high-strength concrete. These results confirm the effects considered in the calculation model and the hypotheses accepted in the theory. The study also provides a physical explanation of the phenomena under consideration and shows acceptable agreement between theoretical and experimental values of crack opening calculated according to the proposed theory. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3104 KiB  
Article
Investigating the Bond Performance of FRP Bars and Concrete Under Dynamic Loading Conditions
by Wenhui Bao, Yini Tan, Hao Li, Chenglong Liang, Hui Chen and Chuanqing Fu
Coatings 2025, 15(6), 716; https://doi.org/10.3390/coatings15060716 - 13 Jun 2025
Viewed by 640
Abstract
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of [...] Read more.
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of different strength grades under dynamic loading conditions. To analyze the microscopic properties of FRP bar surfaces, the study employs a variety of techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and non-contact surface profilometry. In addition, X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and energy dispersive spectrometry (EDS) are used to further investigate surface characteristics. The results reveal a direct correlation between the resin surface roughness of FRP bars and their wettability characteristics, which in turn influence the cement hydration process. Pull-out tests under different loading rates and concrete strength grades have been conducted to evaluate the bond–slip behavior and failure modes. The results indicate that bond strength increases with increasing concrete strength. Dynamic pull-out tests further reveal that higher loading rates generate heterogeneous stress fields, which limit the deformation of FRP bars and consequently diminish the contribution of mechanical interlock to interfacial bonding. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

19 pages, 9538 KiB  
Article
Research on the Impact Resistance of Sandwich-Structured Battery Pack Protective Plates
by Jun Zhou, Changjie Luo, Ruilin Shen, Fengqiang Zhang, Wenze Yu, Mingming Zhang and Weiliang Liao
Processes 2025, 13(6), 1639; https://doi.org/10.3390/pr13061639 - 23 May 2025
Viewed by 643
Abstract
With the continuous development of the new energy vehicle industry, in order to further improve the safety and range of electric vehicles, vehicle lightweighting has been a key focus of major car companies. However, research on lightweighting and the impact protection effect of [...] Read more.
With the continuous development of the new energy vehicle industry, in order to further improve the safety and range of electric vehicles, vehicle lightweighting has been a key focus of major car companies. However, research on lightweighting and the impact protection effect of battery pack protective plates is lacking. The bottom protective plate of the battery pack in this study has a sandwich-type multi-layer structure, which is mainly composed of upper and lower glass-fiber-reinforced resin protective layers, steel plate impact resistant layers, and honeycomb buffer layers. In order to study the relationship between the impact damage response and material characteristics of the multi-material battery pack protective plate, a matrix experimental design was adopted in this study to obtain the energy absorption ratio of different material properties when the protective plate is subjected to impact damage. This work innovatively used a low-cost equivalent model method. During the drop hammer impact test, a 6061-T6 aluminum plate in direct contact with the lower part of the bottom guard plate test piece was used to simulate the deformation of the water-cooled plate in practical applications. High-strength aluminum honeycomb was arranged below the aluminum plate to simulate the deformation of the battery cell. This method provides a scientific quantitative standard for evaluating the impact resistance performance of the protective plate. The most preferred specimen in this work had a surface depression deformation of only 8.44 mm after being subjected to a 400 J high-energy impact, while the simulated water-cooled plate had a depression deformation of 4.07 mm. Among them, the high-strength steel plate played the main role in absorbing energy during the impact process, absorbing energy. It can account for about 34.3%, providing reference for further characterizing the impact resistance performance of the protective plate under different working conditions. At the same time, an equivalence analysis of the damage mode between the quasi-static indentation test and the dynamic drop hammer impact test was also conducted. Under the same conditions, the protective effect of the protective plate on impact damage was better than that of static pressure marks. From the perspective of energy absorption, the ratio coefficient of the two was about 1.2~1.3. Full article
Show Figures

Figure 1

20 pages, 4245 KiB  
Article
Effect of Steel Fiber on First-Cracking Behavior of Ultra-High-Performance Concrete: New Insights from Digital Image Correlation Analysis
by Xing Lu, Lei Tu, Chengjun Tan and Hua Zhao
Buildings 2025, 15(10), 1727; https://doi.org/10.3390/buildings15101727 - 20 May 2025
Viewed by 789
Abstract
The first-cracking behavior of ultra-high-performance concrete (UHPC) is critical for the functionality and durability of its structures. However, determining the first-cracking strength by the linear limit point is challenging due to the nonlinear behavior before the initial crack. This study utilizes an improved [...] Read more.
The first-cracking behavior of ultra-high-performance concrete (UHPC) is critical for the functionality and durability of its structures. However, determining the first-cracking strength by the linear limit point is challenging due to the nonlinear behavior before the initial crack. This study utilizes an improved Digital Image Correlation (DIC) technique to detect cracks and directly determine the first-cracking strength. The effect of steel fiber length, volume fraction, diameter, and shape on the first-cracking behavior was evaluated through direct tensile testing. Results indicate that incorporating steel fibers can enhance the first-cracking strength of UHPC to varying extents, ranging from 26.07% to 121.31%. Specifically, the length and volume fraction of steel fibers significantly affect the first-cracking strength, whereas the diameter and shape have minimal impact. The shape of steel fibers can influence the initial crack pattern due to stress concentration in deformed fibers. On the other hand, the inclusion of steel fibers can also negatively impact the first-cracking strength due to the introduction of air voids. Finally, considering both the positive and adverse effects of steel fibers, an updated predictive model for the first-cracking strength is proposed based on regression analysis of the experimental data. The proposed model can accurately predict the first-cracking strength of UHPC, fitting well with the existing data. Full article
Show Figures

Figure 1

Back to TopTop