Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (199)

Search Parameters:
Keywords = deep burial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 (registering DOI) - 1 Aug 2025
Viewed by 113
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

27 pages, 18566 KiB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 179
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

31 pages, 14609 KiB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Viewed by 229
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 124
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Viewed by 264
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Remote Sensing Archaeology of the Xixia Imperial Tombs: Analyzing Burial Landscapes and Geomantic Layouts
by Wei Ji, Li Li, Jia Yang, Yuqi Hao and Lei Luo
Remote Sens. 2025, 17(14), 2395; https://doi.org/10.3390/rs17142395 - 11 Jul 2025
Viewed by 532
Abstract
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing [...] Read more.
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing multi-resolution and multi-temporal satellite remote sensing data, including Gaofen-2 (GF-2), Landsat-8 OLI, declassified GAMBIT imagery, and Google Earth, combined with deep learning techniques, to conduct a comprehensive archaeological investigation of the XITs’ burial landscape. We performed geomorphological analysis of the surrounding environment and automated identification and mapping of burial mounds and mausoleum features using YOLOv5, complemented by manual interpretation of very-high-resolution (VHR) satellite imagery. Spectral indices and image fusion techniques were applied to enhance the detection of archaeological features. Our findings demonstrated the efficacy of this combined methodology for archaeology prospect, providing valuable insights into the spatial layout, geomantic considerations, and preservation status of the XITs. Notably, the analysis of declassified GAMBIT imagery facilitated the identification of a suspected true location for the ninth imperial tomb (M9), a significant contribution to understanding Xixia history through remote sensing archaeology. This research provides a replicable framework for the detection and preservation of archaeological sites using readily available satellite data, underscoring the power of advanced remote sensing and machine learning in heritage studies. Full article
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence
by Xiaofeng Zhou, Jun Zhao, Baonian Yan, Zeyu Zhu, Nan Yang, Pingping Liang and Wei Guo
Minerals 2025, 15(7), 723; https://doi.org/10.3390/min15070723 - 10 Jul 2025
Viewed by 187
Abstract
Despite the shale revolution triggering global shale oil and gas exploration, our understanding of the sedimentary environments of deep-water organic-matter-rich shale remains unclear. The sedimentary environment and facies of some siliceous shales at the bottom of the Longmaxi Formation in the Weiyuan area [...] Read more.
Despite the shale revolution triggering global shale oil and gas exploration, our understanding of the sedimentary environments of deep-water organic-matter-rich shale remains unclear. The sedimentary environment and facies of some siliceous shales at the bottom of the Longmaxi Formation in the Weiyuan area of the Sichuan Basin, China, were therefore analyzed. Nano-resolution petrological characterization and genesis analysis of the siliceous shales studied were conducted using nano-resolution petrologic image datasets. We identified these siliceous shales as microbial mats formed by deep-water traction current sedimentation. The microbial mats’ formation and burial diagenesis processes were divided into seven stages. The silt-grade bioclastic carpet deposits initially, colonizing mud-grade siliceous microbes and forming the siliceous microbial mat. Subsequently, carbohydrate-rich microbes thrive in sediment voids, forming the carbohydrate-rich microbial mat. Additionally, SOM undergoes four stages of burial diagenesis process, progressing from kerogens to pre-oil bitumen generation and ultimately transforming into porous pyrobitumen and nonporous pyrobitumen. This study will improve the understanding of deep-water traction current sedimentation and has implications for guiding shale gas exploration and development. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Graphical abstract

18 pages, 4609 KiB  
Article
Optimizing Solvent-Assisted SAGD in Deep Extra-Heavy Oil Reservoirs: Mechanistic Insights and a Case Study in Liaohe
by Ying Zhou, Siyuan Huang, Simin Yang, Qi Jiang, Zhongyuan Wang, Hongyuan Wang, Lifan Yue and Tengfei Ma
Energies 2025, 18(14), 3599; https://doi.org/10.3390/en18143599 - 8 Jul 2025
Viewed by 291
Abstract
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing [...] Read more.
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing reservoir depth was applied to evaluate SAGD performance. The results demonstrate that declining steam quality at greater burial depths significantly reduces thermal efficiency, the oil–steam ratio (OSR), and overall recovery in conventional SAGD operations. To overcome these challenges, numerical simulations were conducted to evaluate the effect of hexane co-injection in ES-SAGD. A 3 vol% hexane concentration was found to improve oil recovery by 17.3%, increase the peak oil production rate by 36.5%, and raise the cumulative oil–steam ratio from 0.137 to 0.218 compared to conventional SAGD. Sensitivity analyses further revealed that optimal performance is achieved with cyclic injection during the horizontal expansion stage and chamber pressures maintained above 3 MPa. Field-scale forecasting based on five SAGD well pairs showed that the proposed ES-SAGD configuration could enhance the cumulative recovery factor from 28.7% to 63.3% over seven years. These findings clarify the fundamental constraints imposed by steam quality in deep reservoirs and provide practical strategies for optimizing solvent-assisted SAGD operations under such conditions. Full article
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Pressure-Amplified Structural Superiority in Silty Clays: Dynamic Divergence Between Undisturbed and Remolded States
by Jinhu Hu, Banglong Zhou, Penggang Li, Jing Wang and Yayuan Yang
Buildings 2025, 15(13), 2319; https://doi.org/10.3390/buildings15132319 - 2 Jul 2025
Viewed by 262
Abstract
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining [...] Read more.
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining pressures) to pioneer the quantification of pressure-amplified structural superiority. The experimental results reveal that: (1) Undisturbed soils exhibit 20–30% higher maximum shear stress (τdmax) and shear modulus (Gdmax) than remolded counterparts at 300 kPa, far exceeding the <5% deviation at 50 kPa due to enhanced particle-cementation synergy under pressure. (2) The normalized shear modulus ratio (Gd/Gdmax) exhibits low sensitivity to confining pressure, with Gd/Gdmaxγd relationship curves predominantly confined within a narrow band range. A triphasic evolutionary characteristic is manifested in the progressive reduction of Gd/Gdmax with increasing shear strain (γd), and quasi-linear attenuation is observed within the shear strain range of 1 × 10−4γd ≤ 1 × 10−2. (3) Remolded and undisturbed specimens demonstrate close correspondence in damping ratio (λd) across consolidation pressures. Under identical γd conditions, undisturbed specimens consistently exhibit lower λd values than remolded counterparts, attributable to enhanced energy dissipation resulting from structural homogenization in remolded soils, with λdmax magnitudes ranging between 0.2 and 0.3. The research provides mechanistic insights for seismic design of underground structures in silty clay terrains, particularly regarding disturbance sensitivity under deep burial conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 5474 KiB  
Article
Structure and Fractal Characteristics of Organic Matter Pores in Wufeng–Lower Longmaxi Formations in Southern Sichuan Basin, China
by Quanzhong Guan, Dazhong Dong, Bin Deng, Cheng Chen, Chongda Li, Kun Jiao, Yuehao Ye, Haoran Liang and Huiwen Yue
Fractal Fract. 2025, 9(7), 410; https://doi.org/10.3390/fractalfract9070410 - 25 Jun 2025
Viewed by 603
Abstract
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively [...] Read more.
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively characterize the structure and complexity of organic matter pores in the Wufeng–lower Longmaxi Formations (WLLFs). The WLLFs exhibit a high organic matter content, averaging 3.20%. Organic matter pores are typically well-developed, predominantly observed within organic matter clusters, organic matter–clay mineral complexes, and the internal organic matter of pyrite framboid. The morphology of these pores is generally elliptical and spindle-shaped, with the primary pore diameter displaying a bimodal distribution at 10~40 nm and 100~160 nm, potentially influenced by the observational limit of scanning electron microscopy. Shales from greater burial depths within the same gas well contain more organic matter pores; however, the development of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. Fractal dimension values can be utilized to characterize the complexity of organic matter pores, with organic matter macropores (D>50) being more complex than organic matter mesopores (D2–50), which in turn are more complex than organic matter micropores (D<2). The development of macropores and mesopores is a key factor in the heterogeneity of organic matter pores. The complexity of organic matter pores in the same well increases gradually with the burial depth of the shale, and the complexity of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. The structure and fractal characteristics of organic matter pores in shale are primarily controlled by components, diagenesis, tectonism, etc. The lower Longmaxi shale exhibit a high biogenic quartz content and robust hydrocarbon generation from organic matter. This composition effectively shields organic matter pores from multi-directional extrusion, leading to the formation of macropores and mesopores without specific orientation. High-quality shale sections (one and two sublayers) have relatively high fractal dimension D2–50 and D>50 values of organic matter pores and gas content. Consequently, the quality parameters of shale and fractal dimension characteristics can be comprehensively evaluated to identify high-quality shale sections. Full article
Show Figures

Figure 1

17 pages, 23135 KiB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 249
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

21 pages, 4887 KiB  
Article
The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects
by Yukai Qi, Zongquan Hu, Jingyi Wang, Fushun Zhang, Xinnan Wang, Hanwen Hu, Qichao Wang and Hanzhou Wang
Appl. Sci. 2025, 15(13), 6984; https://doi.org/10.3390/app15136984 - 20 Jun 2025
Viewed by 447
Abstract
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated [...] Read more.
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated topic in petroleum geology. Recent advances in exploration techniques and geological understanding have challenged conventional views, confirming the presence of viable clastic reservoirs at such depths. Findings reveal that reservoir quality in ultra-deep strata is preserved and enhanced through the interplay of sedimentary, diagenetic, and tectonic processes. Key controlling factors include (1) high-energy depositional environments promoting primary porosity development, (2) proximity to hydrocarbon source rocks enabling multi-phase hydrocarbon charging, (3) overpressure and low geothermal gradients reducing cementation and compaction, and (4) late-stage tectonic fracturing that significantly improves permeability. Additionally, dissolution porosity and fracture networks formed during diagenetic and tectonic evolution collectively enhance reservoir potential. The identification of favorable reservoir zones under the sedimentation–diagenesis-tectonics model provides critical insights for future hydrocarbon exploration in ultra-deep clastic sequences. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

18 pages, 4627 KiB  
Article
Study of the Brittle–Ductile Characteristics and Fracture Propagation Laws of Ultra-Deep Tight Sandy Conglomerate Reservoirs
by Xianbo Meng, Zixi Jiao, Haiyan Zhu, Peng Zhao, Shijie Chen, Jun Zhou, Hongyu Xian and Yong Wang
Processes 2025, 13(6), 1880; https://doi.org/10.3390/pr13061880 - 13 Jun 2025
Viewed by 355
Abstract
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior [...] Read more.
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior and ductile hydraulic fracture propagation mechanisms under in situ conditions remain inadequately understood. In this study, ultra-deep core samples were subjected to triaxial compression tests under varying confining pressures and temperatures to simulate different burial depths and evaluate their brittleness. A three-dimensional hydraulic fracture propagation model was developed in ABAQUS 2023 finite element software, incorporating a cohesive zone ductile constitutive model. Numerical simulations were conducted, considering interlayer horizontal stress differences, injection rate, and fracturing fluid viscosity, to systematically analyze the influence of geological and engineering factors on ductile fracture propagation. A fracture length–height competition diagram was constructed to illustrate the propagation mechanisms. The results reveal that high temperatures significantly accelerate the brittle–ductile transition, which occurs at confining pressures between 55 and 65 MPa. Following this transition, failure modes shift from single-shear failure to a multi-localized fracture with bulging deformation. Interlayer horizontal stress differences were found to strongly influence fracture penetration, with larger stress differences hindering vertical growth. Increasing injection rates promoted the uniform distribution of lateral fractures and fracture tip development, while medium- to high-viscosity fracturing fluids enhanced fracture width and vertical stimulation uniformity. These findings provide important insights for optimizing fracturing strategies and expanding the effective stimulation volume in the ultra-deep tight sandy conglomerate reservoirs of the Junggar Basin. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

15 pages, 2030 KiB  
Article
Transcriptomic Responses of Blue Bat Star Patiria pectinifera to Sediment Burial
by Han Dong, Linli Wan, Chunsheng Wang, Cong Sun, Xiaogu Wang and Lin Xu
Int. J. Mol. Sci. 2025, 26(11), 5208; https://doi.org/10.3390/ijms26115208 - 28 May 2025
Viewed by 418
Abstract
Sediment burial generated by deep-sea mining is usually lethal to echinoderms, which are ecologically important in marine environments. However, their molecular mechanisms responding to sediment burial are still rarely investigated. In this study, Patiria pectinifera was investigated for sediment burial research to analyze [...] Read more.
Sediment burial generated by deep-sea mining is usually lethal to echinoderms, which are ecologically important in marine environments. However, their molecular mechanisms responding to sediment burial are still rarely investigated. In this study, Patiria pectinifera was investigated for sediment burial research to analyze its gene expression variations by using comparative transcriptomes and to probe into shared molecular mechanisms of echinoderms under sediment burial. During sediment burial experiments, dissolved oxygen continuously decreased, which had a significant impact on Patiria pectinifera, which suffered from hypoxic stress. Based on functional annotations of differentially expressed genes (DEGs), its metabolic patterns altered with the upregulated DEGs related to glycolysis and fatty acid degradation and the downregulated ones in the citrate cycle, and its immune responses also varied with the upregulated DEGs of apoptosis and the downregulated ones defending against pathogens. Meanwhile, the peroxisome proliferator-activated receptor signaling pathway and retinoic acid-inducible gene I-like receptor signaling pathway were also upregulated, indicating metabolic and immune changes. Furthermore, combined with functional annotations of twelve echinoderm reference genomes, those DEGs related to lipid metabolism and the immune response were also universally present in the echinoderm genomes. Our study probes into shared molecular mechanisms of echinoderms under sediment burial, which advances our understanding of echinoderms affected by deep-sea mining. Full article
Show Figures

Figure 1

24 pages, 8643 KiB  
Article
Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area
by An Liu, Shuo Qin, Kai Wei, Qilin Xiao, Quansheng Cai, Huilan Huang, Xiongwei Zeng and Peijun Li
Sustainability 2025, 17(11), 4875; https://doi.org/10.3390/su17114875 - 26 May 2025
Viewed by 374
Abstract
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for [...] Read more.
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for preservation conditions of shale gas remains unclear, posing challenges for shale gas exploration and development. In this study, through systematic analysis of fluid inclusions in fractrue-filling vein of the entire core section of this well, combined with carbon and oxygen isotope tests of veins and host rocks, a paleo-fluid profile was established to explore the formation environment of Cambrian paleo-fluids and their implications for the preservation conditions of the Shuijingtuo Formation (SJT Fm.) shale gas. The results suggest that fractures in the SJT Fm. shale at the base of Cambrian Series 2 mainly formed during the deep burial hydrocarbon generation stage, trapping a large number of liquid hydrocarbon inclusions. Subsequently, numerous high-density methane inclusions and a few of gas-liquid two-phase inclusions were trapped. The SO42−, Ca2+ and Mg2+ content of fluid inclusion groups in the veins decreased from the Qinjiamiao Formation (QJM Fm.) at the bottom of Cambrian Series 3 upward and downward respectively, and the rNa+/rCl ratio was the lowest in the SJT Fm. and increased overall upward. The δ13C values of calcite veins in Tianheban Formation (THB Fm.)-Shipai Formation (SP Fm.) of the middle Cambrian Series 2 and the Loushanguan Formation (LSG Fm.) of the Cambrian Series 3 were lighter compared to the host rocks. Results indicate the later tectonic activities in this area were relatively weak, and the shale interval remained in a state of high gas saturation for a long time. The QJM Fm. was the main source of high-salinity brine, and the SJT Fm. had strong self-sealing properties and was relatively less affected by external fluids. However, the pressure evolution of high-density methane inclusions in the SJT Fm. indicated that the pressure coefficient of the shale section significantly decreased during the Indosinian uplift and erosion stage. The veins in the THB-SP and LSG Fms. were closely related to the oxidation of hydrocarbon gases by TSR (thermochemical sulfate reduction) and the infiltration of atmospheric water, respectively. Therefore, the paleo-fluid in the fractures of Well Yidi2 have integrally recorded the whole geological process including the evolution from oil to gas, the backflow of high-salinity formation water, the upward escape of shale gas, and the process of shale gas reservoirs evolving from overpressure to normal pressure. Considering that Well Yidi2 area is located in a relatively stable tectonic setting, widely distributed fracture veins probably enhance the self-sealing ability, inhibiting the rapid escape of SJT Fm. shale gas. And the rapid deposition of Cretaceous also delayed the loss of shale gas to some extent. The combination of these two factors creates favorable preservation conditions of shale gas, establishing the SJT Fm. as the primary exploration target in this area. Full article
(This article belongs to the Special Issue Sustainable Exploitation and Utilization of Hydrocarbon Resources)
Show Figures

Figure 1

Back to TopTop