Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = decorative features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5206 KiB  
Article
Self-Powered Photodetectors with Ultra-Broad Spectral Response and Thermal Stability for Broadband, Energy Efficient Wearable Sensing and Optoelectronics
by Peter X. Feng, Elluz Pacheco Cabrera, Jin Chu, Badi Zhou, Soraya Y. Flores, Xiaoyan Peng, Yiming Li, Liz M. Diaz-Vazquez and Andrew F. Zhou
Molecules 2025, 30(14), 2897; https://doi.org/10.3390/molecules30142897 - 8 Jul 2025
Viewed by 369
Abstract
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), [...] Read more.
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO2 laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device’s self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications. Full article
(This article belongs to the Special Issue Novel Nanomaterials: Sensing Development and Applications)
Show Figures

Figure 1

25 pages, 11288 KiB  
Article
Evaluation of Urban Street Historical Appearance Integrity Based on Street View Images and Transfer Learning
by Jiarui Xu, Yunxuan Dai, Jiatong Cai, Haoliang Qian, Zimu Peng and Teng Zhong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 266; https://doi.org/10.3390/ijgi14070266 - 7 Jul 2025
Viewed by 335
Abstract
The challenges of globalization and urbanization increasingly impact the Historic Urban Landscape (HUL), yet fine-grained and quantitative methods for evaluating HUL remain limited. Adopting a human-centered perspective, this study introduces a novel framework to quantitatively evaluate HUL through the lens of Historical Appearance [...] Read more.
The challenges of globalization and urbanization increasingly impact the Historic Urban Landscape (HUL), yet fine-grained and quantitative methods for evaluating HUL remain limited. Adopting a human-centered perspective, this study introduces a novel framework to quantitatively evaluate HUL through the lens of Historical Appearance Integrity (HAI). An evaluation system comprising four key dimensions (building materials, building colors, decorative details, and streetscape morphology) was constructed using the Analytic Hierarchy Process (AHP). An Elo rating system was subsequently applied to quantify the scores of the indicators. A prediction model was developed based on transfer learning and feature fusion to estimate the scores of the indicators. The model achieved accuracies above 93% and loss values below 0.2 for all four indicators. The framework was applied to the Inner Qinhuai Historical Character Area in Nanjing for validation. Results show that the spatial distribution of HAI in the area exhibits significant spatial heterogeneity. On a 0–100 scale, the average HAI scores were 23.17 for primary roads, 27.73 for secondary roads, and 46.93 for branch roads. This study offers a fine-grained, automated approach to evaluate HAI along urban streets and provides a quantitative reference for heritage conservation and urban renewal strategies. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 386
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

26 pages, 9909 KiB  
Article
Three-Tiered Defensive System and Ethnic Fusion: A Study of Architectural Art in Guomari Fortress, Eastern Qinghai
by Liyue Wu, Qinchuan Zhan and Yanjun Li
Buildings 2025, 15(13), 2218; https://doi.org/10.3390/buildings15132218 - 24 Jun 2025
Viewed by 439
Abstract
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive [...] Read more.
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive system: (1) strategic use of terrain and rammed-earth walls; (2) labyrinthine alleys with L-, T-, and cross-shaped intersections; and (3) interconnected rooftops forming elevated circulation routes. Courtyards are categorized into single-line, L-shaped, U-shaped, and fully enclosed layouts, reflecting adaptations to terrain, ritual functions, and thermal needs. Architectural features such as thick loam-coated walls and flat roofs demonstrate climatic adaptation, while the integration of Han timber frameworks, Tibetan prayer halls, and Tu decorative elements reveals cultural convergence. Traditional craftsmanship, including carved wooden scripture blocks and tsampa-based murals, is embedded within domestic and ritual spaces. The fortress’s circulation patterns mirror Tibetan Buddhist cosmology, with mandala-like alleys and rooftop circumambulation routes. These findings offer insights into vernacular resilience and inform conservation strategies for multiethnic fortified settlements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 1444 KiB  
Article
Cycloadditions as a Sweet Route to ‘Double C-Glycosylation’
by Kevin P. P. Mahoney, Rosemary Lynch, Rhea T. Bown, Sunil V. Sharma, Piyasiri Chueakwon, G. Richard Stephenson, David B. Cordes, Alexandra M. Z. Slawin and Rebecca J. M. Goss
Biomolecules 2025, 15(6), 905; https://doi.org/10.3390/biom15060905 - 19 Jun 2025
Viewed by 542
Abstract
Pharmaceuticals, such as the antibiotic erythromycin, and sodium-dependent glucose transporter (SGLT1 & SGTL2) inhibitors such as Bexagliflozin (diabetes) and Sotagliflozin (heart disease), are often sugar-decorated (glycosylated). Glycosylation is a key component of the binding motif in SGLT inhibitors and, in natural products, glycosylation [...] Read more.
Pharmaceuticals, such as the antibiotic erythromycin, and sodium-dependent glucose transporter (SGLT1 & SGTL2) inhibitors such as Bexagliflozin (diabetes) and Sotagliflozin (heart disease), are often sugar-decorated (glycosylated). Glycosylation is a key component of the binding motif in SGLT inhibitors and, in natural products, glycosylation often confers improved bioactivity and bioavailability. Whilst a single C-glycoside link between a sugar moiety and its aglycone core is a common feature in natural products isolated to date, only a small number, including the antibiotics granaticin and sarubicin, are covalently bonded twice to a single sugar moiety. The way in which this “double C-glycosylation” is naturally mediated is not yet known, yet has been speculated on. Here, we report the exploration and development of a potentially biomimetic procedure that utilises intermolecular cycloaddition chemistry to access new “double C-glycosylated” products and enables the creation of bridged polycyclic ethers from a common maltol-derived oxidopyrylium salt precursor. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

19 pages, 3834 KiB  
Article
A Sensitive and Selective Sensor Based on Orthorhombic Copper Molybdate Decorated on Reduced Graphene Oxide for the Detection of Promethazine Hydrochloride
by Venkatachalam Vinothkumar, Yellatur Chandra Sekhar, Shen-Ming Chen, Natesan Manjula and Tae Hyun Kim
Sensors 2025, 25(11), 3569; https://doi.org/10.3390/s25113569 - 5 Jun 2025
Viewed by 497
Abstract
Promethazine hydrochloride (PMH) is a first-generation antipsychotic drug created from phenothiazine derivatives that is widely employed to treat psychiatric disorders in human healthcare systems. However, an overdose or long-term intake of PMH can lead to severe health issues in humans. Hence, establishing a [...] Read more.
Promethazine hydrochloride (PMH) is a first-generation antipsychotic drug created from phenothiazine derivatives that is widely employed to treat psychiatric disorders in human healthcare systems. However, an overdose or long-term intake of PMH can lead to severe health issues in humans. Hence, establishing a sensitive, accurate, and efficient detection approach to detect PMH in human samples is imperative. In this study, we designed orthorhombic copper molybdate microspheres decorated on reduced graphene oxide (Cu3Mo2O9/RGO) composite via the effective one-pot hydrothermal method. The structural and morphological features of the designed hybrid were studied using various spectroscopic methods. Subsequently, the electrochemical activity of the composite-modified screen-printed carbon electrode (Cu3Mo2O9/RGO/SPCE) was assessed by employing voltammetric methods for PMH sensing. Owing to the uniform composition and structural benefits, the combination of Cu3Mo2O9 and RGO has not only improved electrochemical properties but also enhanced the electron transport between PMH and Cu3Mo2O9/RGO. As a result, the Cu3Mo2O9/RGO/SPCE exhibited a broad linear range of 0.4–420.8 µM with a low limit of detection (LoD) of 0.015 µM, highlighting excellent electrocatalytic performance to PMH. It also demonstrated good cyclic stability, reproducibility, and selectivity in the presence of chlorpromazine and biological and metal compounds. Furthermore, the Cu3Mo2O9/RGO/SPCE sensor displayed satisfactory recoveries for real-time monitoring of PMH in human urine and serum samples. This study delivers a promising electrochemical sensor for the efficient analysis of antipsychotic drug molecules. Full article
Show Figures

Graphical abstract

17 pages, 3607 KiB  
Article
An Archaeological Challenge: The Conservation and Restoration of Luxury Roman Glass from Troia, Portugal
by Inês Coutinho, Beatriz Borges and Stephen Koob
Heritage 2025, 8(6), 209; https://doi.org/10.3390/heritage8060209 - 4 Jun 2025
Viewed by 516
Abstract
A set of eleven luxury glass archaeological objects dated to the 3rd century (Roman period) and excavated in Troia, Portugal, were treated in order to restore their shapes and decorative features. In this paper, the different stages of the treatment are presented and [...] Read more.
A set of eleven luxury glass archaeological objects dated to the 3rd century (Roman period) and excavated in Troia, Portugal, were treated in order to restore their shapes and decorative features. In this paper, the different stages of the treatment are presented and discussed. The treatment phases—cleaning, fragments’ assembly, and development of support structures for the objects in need—had to be adapted and the treatment outline had to be revised along the process because of the heavily weathered glass that showed extreme fragility. The treatment highlights the internal support structures—consisting of thin and light structures built with thin canes of glass—that were developed in borosilicate glass for three of the archaeological objects, ensuring their physical stability for handling and future exhibition. The structures were then attached to the archaeological glass with Paraloid B72 adhesive. The treatment of these outstanding artefacts and, in particular, the development of these structures heavily depended on interdisciplinary and teamwork that resulted in the completion of the treatment for all objects ensuring their future exhibition. Full article
(This article belongs to the Special Issue The Conservation of Glass in Heritage Science)
Show Figures

Figure 1

19 pages, 1798 KiB  
Article
Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern
by Marin Popović, Suresh Kumar Pandey, Josipa Papac Zjačić, Vladimir Dananić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Andraž Šuligoj, Urška Lavrenčič Štangar and Ana Lončarić Božić
Molecules 2025, 30(11), 2454; https://doi.org/10.3390/molecules30112454 - 3 Jun 2025
Viewed by 483
Abstract
Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better performance. [...] Read more.
Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better performance. Herein, we report the preparation of surface-decorated BiVO4 with both a noble metal (Ag) and transition metal (Fe). The structural, morphological, and semiconducting features of the material were examined employing various techniques (XRD, SEM, UV-DRS, PL, and photoelectrochemical tests). The band gap of surface-modified BiVO4 is slightly narrower compared to pristine material, which is further validated by HOMO-LUMO gaps obtained through theoretical modeling approaches. The recombination of photogenerated charges was successfully reduced in the case of Ag–Fe–BiVO4, as proven by lower PL intensity and increased current density. The comparative photocatalytic degradation of the CECs ciprofloxacin (CIP) and perfluorooctanoic acid (PFOA) was conducted employing pristine BiVO4 and its two surface-modified analogues (Ag–BiVO4, and Ag–Fe–BiVO4) under solar light. Ag–Fe–BiVO4 was shown to be the most efficient; however, its effectiveness differed depending on CEC type. Under the same process conditions, degradation of CIP reached 93.9%, while PFOA was degraded only partially (22.9%). Full article
Show Figures

Figure 1

15 pages, 2213 KiB  
Article
VirtualPainting: Addressing Sparsity with Virtual Points and Distance-Aware Data Augmentation for 3D Object Detection
by Sudip Dhakal, Deyuan Qu, Dominic Carrillo, Mohammad Dehghani Tezerjani and Qing Yang
Sensors 2025, 25(11), 3367; https://doi.org/10.3390/s25113367 - 27 May 2025
Viewed by 399
Abstract
In recent times, there has been a notable surge in multimodal approaches that decorate raw LiDAR point clouds with camera-derived features to improve object detection performance. However, we found that these methods still grapple with the inherent sparsity of LiDAR point cloud data, [...] Read more.
In recent times, there has been a notable surge in multimodal approaches that decorate raw LiDAR point clouds with camera-derived features to improve object detection performance. However, we found that these methods still grapple with the inherent sparsity of LiDAR point cloud data, primarily because fewer points are enriched with camera-derived features for sparsely distributed objects. We present an innovative approach that involves the generation of virtual LiDAR points using camera images and enhancing these virtual points with semantic labels obtained from image-based segmentation networks to tackle this issue and facilitate the detection of sparsely distributed objects, particularly those that are occluded or distant. Furthermore, we integrate a distance-aware data augmentation (DADA) technique to enhance the model’s capability to recognize these sparsely distributed objects by generating specialized training samples. Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods, resulting in significantly improved overall detection accuracy. Evaluation on the KITTI and nuScenes datasets demonstrates substantial enhancements in both 3D and bird’s eye view (BEV) detection benchmarks. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 8747 KiB  
Article
Zinc-Decorated and Nitrogen-Functionalized Hierarchical Porous Carbons for Carbon Dioxide Capture
by Yu-Chun Chiang, Wei-Ting Chin and I-Chang Chu
Appl. Sci. 2025, 15(10), 5743; https://doi.org/10.3390/app15105743 - 21 May 2025
Viewed by 353
Abstract
This study developed a highly facile method to synthesize Zn-decorated and nitrogen-doped hierarchical porous carbons for carbon dioxide (CO2) adsorption. Zeolitic imidazolate framework-8 (ZIF-8) was used as the raw material, which was subjected to a thermal treatment to obtain ZIF-8-derived carbons [...] Read more.
This study developed a highly facile method to synthesize Zn-decorated and nitrogen-doped hierarchical porous carbons for carbon dioxide (CO2) adsorption. Zeolitic imidazolate framework-8 (ZIF-8) was used as the raw material, which was subjected to a thermal treatment to obtain ZIF-8-derived carbons (ZDCs) in order to develop nanocarbons with a stable framework structure, a high CO2 adsorption capacity, and high selectivity under normal pressure. The crystallinity evolution of the samples changed from the typical ZIF-8 structure to having features of graphite carbons upon heating. The average particle sizes of the products were between 34 and 105 nm, and the specific surface areas ranged from 618 to 1862 m2/g. The nitrogen and zinc contents gradually decreased with increasing carbonization temperatures, but the changes in the distributions of the functional groups were different. The interactions between CO2 and the ZDCs were significantly enhanced, resulting in a higher isosteric heat of adsorption. The ZIF-8 carbonized at 1123 K exhibited the highest CO2 uptake, i.e., 3.57 mmol/g at 298 K and 101.3 kPa, while higher CO2 uptakes at 15 kPa occurred on the ZIF-8 carbonized at 923 and 1023 K due to their high isosteric heat of adsorption of CO2. The higher adsorption selectivity of Z8-650 for CO2 over N2 may be due to its higher V<0.7nm/Vmi ratio and nitrogen and zinc contents. Consequently, the micropore area ratio and surface functional groups primarily determined the CO2 adsorption capacity at 15 kPa. In addition, an appropriate metal Zn to Zn2+ ratio may have a positive effect on CO2 adsorption. On the other hand, the ultramicropore volume ratio, micropore volume ratio, micropore area, and SSA played more significant roles at 101.3 kPa of pressure. Full article
Show Figures

Figure 1

23 pages, 38314 KiB  
Article
Multi-Analytical Characterization of Serpentinite Rocks Employed as Stone Material: An Example from Andalusia (Southern Spain), Basilicata, and Calabria (Southern Italy)
by Roberto Visalli, Rafael Navarro, Roberto Buccione, Valeria Indelicato, Giovanna Rizzo, Rosolino Cirrincione and Rosalda Punturo
Minerals 2025, 15(5), 522; https://doi.org/10.3390/min15050522 - 14 May 2025
Viewed by 626
Abstract
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and [...] Read more.
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and the intricate vein and mesh-like texture, as well as their role in CO2 sequestration when carbonated, have hugely increased interest in studying these rocks over recent decades. Moreover, since antiquity, serpentinites have long been exploited, traded, and exported worldwide as daily tools, as well as in buildings and decorative stones in both internal and external architectural elements, because of their aesthetic appeal, attractiveness, and durability. In this work, we analyzed and compared petrographic features, geochemical signatures, and physical–mechanical properties of serpentinites from historical quarries from Andalusia (southern Spain), Basilicata, and Calabria (southern Italy) where they have been used as dimension stones in religious and civil buildings and as construction materials. We aim to evaluate and assess differences in petrographic, carbonation, uniaxial compressive strength, and seismic behavior, that could affect the efficiency when these serpentinites are used as either building and construction materials or for preservation/renovation purposes in cultural heritage. Results obtained from petrophysical investigations of serpentinites from these regions highlight that these materials are suitable for use in construction to various extents and are considered a valuable georesource, behind a detailed characterization carried out before their implementation in construction or conservation/restoration of architectural heritage. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

11 pages, 2760 KiB  
Article
Self-Supported Ir-FeOOH on Iron Foam for Efficient Oxygen Evolution Reaction
by Qinglin Ren, Jinshan Xia, Chengcheng Yang, Yinghao Tao, Jiawei Xie, Hui Wang, Hong Li and Jinchen Fan
Catalysts 2025, 15(5), 464; https://doi.org/10.3390/catal15050464 - 8 May 2025
Viewed by 545
Abstract
Developing high-performance oxygen evolution reaction (OER) electrocatalysts remains a critical challenge for sustainable hydrogen production via water electrolysis. Herein, we present a self-supported atomic iridium-decorated FeOOH nanostructure on iron foam (Ir-FeOOH/IF) by a facile impregnation reduction method. The self-supported Ir-FeOOH/IF electrode integrates the [...] Read more.
Developing high-performance oxygen evolution reaction (OER) electrocatalysts remains a critical challenge for sustainable hydrogen production via water electrolysis. Herein, we present a self-supported atomic iridium-decorated FeOOH nanostructure on iron foam (Ir-FeOOH/IF) by a facile impregnation reduction method. The self-supported Ir-FeOOH/IF electrode integrates the high electrical conductivity and outstanding mass transfer performance of IF. The FeOOH features abundant active sites, while the Ir modification regulated the electronic structure of FeOOH. As a result, the as-prepared Ir-FeOOH/IF catalyst (with the optimized synthesis time) achieves a low overpotential of 145 and 284 mV at current densities of 0.1 and 1 A cm−2, respectively, and exhibits excellent long-term catalytic stability for 135 h at 0.1 A cm−2 in a 1 M KOH solution. This work provides a new strategy for the design of low-cost and highly stable OER electrocatalysts. Full article
Show Figures

Figure 1

13 pages, 2679 KiB  
Article
Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate
by Frédéric Fauquet, Francesca Galluzzi, Rémy Chapoulie, Aurélie Mounier, Ayed Ben Amara and Patrick Mounaix
Sensors 2025, 25(9), 2928; https://doi.org/10.3390/s25092928 - 6 May 2025
Viewed by 559
Abstract
This study investigates the application of terahertz frequency-modulated continuous-wave (FMCW) imaging for the non-destructive inspection of a historical enamel plate, using both reflection and transmission modes. A 300 GHz FMCW radar system was employed to capture high-resolution images of the plate’s internal and [...] Read more.
This study investigates the application of terahertz frequency-modulated continuous-wave (FMCW) imaging for the non-destructive inspection of a historical enamel plate, using both reflection and transmission modes. A 300 GHz FMCW radar system was employed to capture high-resolution images of the plate’s internal and surface structures. Through optimized data acquisition and processing, the system successfully revealed subsurface features such as fractures, as well as surface-level textural variations linked to the decorative glazes. Although pigment differentiation remains a challenge, contrast variations observed in THz images suggest correlations with material composition. The results highlight the potential of FMCW terahertz imaging as a compact, rapid, and non-contact diagnostic tool for cultural heritage analysis. Its practicality and adaptability make it particularly suitable for in situ inspections in museums or restoration contexts. Full article
(This article belongs to the Special Issue Recent Advances in THz Sensing and Imaging)
Show Figures

Figure 1

15 pages, 26486 KiB  
Article
Decorating Tibetan Buddhist Manuscripts: A Preliminary Analysis of Ornamental Writing Frames
by Michela Clemente
Religions 2025, 16(5), 582; https://doi.org/10.3390/rel16050582 - 1 May 2025
Viewed by 927
Abstract
Buddhist books have always played a central role in the lives of Tibetan people. This is evident by looking at the hundreds of thousands of manuscripts and xylographs produced by Tibetans, and then copied, multiplied, worshipped, spread, and transmitted uninterruptedly from religious masters [...] Read more.
Buddhist books have always played a central role in the lives of Tibetan people. This is evident by looking at the hundreds of thousands of manuscripts and xylographs produced by Tibetans, and then copied, multiplied, worshipped, spread, and transmitted uninterruptedly from religious masters to disciples over the centuries. Tibetan manuscripts and xylographs have started to be studied in their entirety only recently, and the interest for their visual aspect, material features, and social life has exponentially grown, becoming crucial to progress in different fields of study, to deeply understand the way in which Tibetan Buddhist people interact with such artefacts but also to preserve a disappearing cultural heritage. This essay will focus on a so far neglected element of Tibetan Buddhist manuscripts, namely, decorations of writing frames. Any element found in a Tibetan scripture is essential from care and conservation viewpoints since it contributes to preservation for as long as possible. This is fundamental to spread Buddha’s word and to accumulate spiritual merits to progress on the path towards Enlightenment. The numerous elements exhibited in manuscripts may help locating their provenance and/or narrowing down their dating. This will also lead to a better understanding of the spread of certain scriptures within the various Tibetan areas. This essay attempts to provide a preliminary analysis of decorated writing frames found in Buddhist manuscripts produced in different periods with the twofold aim of tracing their use and codicological aspects and investigating the type of texts that were mostly chosen to be decorated as such. Full article
(This article belongs to the Special Issue Old Texts, New Insights: Exploring Buddhist Manuscripts)
Show Figures

Figure 1

7 pages, 2607 KiB  
Proceeding Paper
Perspective on the Biomimetic Approaches for the Design of Hydrophobic and Antimicrobial Paper Coatings with Hierarchical Surface Structures
by Pieter Samyn
Mater. Proc. 2025, 20(1), 8; https://doi.org/10.3390/materproc2025020008 - 17 Apr 2025
Viewed by 699
Abstract
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should [...] Read more.
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should be incorporated through a combination of selected bio-based materials and the creation of appropriate surface textures enhancing coating performance. The bio-inspired approaches through the replication of hierarchical surface structures with multi-scale dimensional features in combination with selection of appropriate bio-based functional groups offer new concepts for coating design. In this short perspective paper, concepts in the field are illustrated with a focus on the combination of hydrophobic and anti-microbial properties. Based on long-term work with the available toolbox of bio-based building blocks and nanoscale architectures, they can be processed into applicable aqueous suspensions for sprayable paper coatings. The macroscopic roughness profile of paper substrates can be complemented through the decoration of nanoscale bio-based polymer particles of polyhydroxybutyrate or vegetable oil capsules with dimensions in the range of 20–50 nm or 100–500 nm depending on the synthesis conditions. The anti-microbial properties can be provided by the surface modification of nanocellulose with biologically active molecules sourced from nature. Besides the more fundamental issues in design and synthesis, the industrial application of the bio-inspired coatings through spray-coating becomes relevant. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

Back to TopTop