Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = decentralized wastewater treatment plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 232 KB  
Proceeding Paper
Sustainable Municipal Sewerage System Solution: A Case Study of Ropice
by Vojtěch Václavík, Lech Kocyan and Tomáš Dvorský
Eng. Proc. 2025, 116(1), 14; https://doi.org/10.3390/engproc2025116014 - 28 Nov 2025
Viewed by 369
Abstract
This article deals with the design of a technically, legislatively, and economically balanced sewerage system for the municipality of Ropice, which has long lacked a central sanitary sewer system. On the basis of the analysis of the territorial conditions, hydro-technical calculations, and legislative [...] Read more.
This article deals with the design of a technically, legislatively, and economically balanced sewerage system for the municipality of Ropice, which has long lacked a central sanitary sewer system. On the basis of the analysis of the territorial conditions, hydro-technical calculations, and legislative requirements, two potential solutions are compared—a decentralized domestic WWTP and a central separate sewerage system with a treatment plant. The final concept favors the central solution in order to ensure operational reliability, sustainability, and the possibility of using grants. This study provides a model example of an applicable solution for rural settlements with similar wastewater management problems. Full article
7 pages, 224 KB  
Proceeding Paper
Technology for Septage Treatment
by Kateřina Petrušková and Petr Hluštík
Eng. Proc. 2025, 116(1), 2; https://doi.org/10.3390/engproc2025116002 - 26 Nov 2025
Viewed by 353
Abstract
Septic wastewater, or septage, represents a specific type of wastewater with a high concentration of organic matter and significant variability in composition, which places increased demand on its treatment. With the increasing pressure for decentralized solutions for small areas with no established sewage [...] Read more.
Septic wastewater, or septage, represents a specific type of wastewater with a high concentration of organic matter and significant variability in composition, which places increased demand on its treatment. With the increasing pressure for decentralized solutions for small areas with no established sewage infrastructure, technologies that can ensure stable operation of the treatment plant are coming to the fore. This paper compares the technologies used for septic wastewater treatment, i.e., sequencing batch reactor (SBR), membrane bioreactor (MBR), and aerobic granular sludge reactor (AGS). For the AGS technology, a trial run of a selected wastewater collection plant is carried out. Full article
21 pages, 4209 KB  
Article
High-Resolution Wastewater-Based Surveillance of Three Influenza Seasons (2022–2025) Reveals Distinct Seasonal Patterns of Viral Activity in Munich, Germany
by Jessica Neusser, Astrid Zierer, Anna Riedl, Jasmin Javanmardi, Raquel Rubio-Acero, Elisabeth Waldeck, Thomas Kletke, Annemarie Bschorer, Stefanie Huber, Patrick Dudler, Martin Hoch, Merle M. Böhmer, Caroline Herr, Ute Eberle, Andreas Sing, Nikolaus Ackermann, Michael Hoelscher, Katharina Springer and Andreas Wieser
Microorganisms 2025, 13(11), 2630; https://doi.org/10.3390/microorganisms13112630 - 20 Nov 2025
Viewed by 1689
Abstract
In the Northern Hemisphere, annual waves of influenza disease with varying degrees of spread and severity are observed each winter. With wastewater-based surveillance (WBS), including both centralized (one wastewater treatment plant, WWTP) and decentralized (three sewers) sampling, we aimed to detect differences in [...] Read more.
In the Northern Hemisphere, annual waves of influenza disease with varying degrees of spread and severity are observed each winter. With wastewater-based surveillance (WBS), including both centralized (one wastewater treatment plant, WWTP) and decentralized (three sewers) sampling, we aimed to detect differences in influenza viral copy numbers in wastewater over time, to investigate (sub)-community transmission within a city. A total of 313 grab/spot and composite samples were collected in Munich, Germany, during three consecutive influenza seasons (2022/23, 2023/24, and 2024/25) and were analyzed for influenza A virus (IAV) and influenza B virus (IBV) nucleic acids using digital droplet PCR (ddPCR). IAV and IBV wastewater copy numbers and citywide reported influenza cases showed strong correlations in both sampling approaches, suggesting the decentralized approach to be a reliable indicator of infection trends across the city. The three influenza seasons analyzed differed significantly in terms of their seasonal distribution, for example, exhibiting a strong co-circulation of IAV and IBV only in the 2024/25 season. Only with wastewater analysis, we reveal a reporting delay of influenza A cases at the beginning of the 2023/24 season. Higher influenza copy numbers were detected in sewer samples compared to the WWTP influent, likely due to viral decay. The study underscores the potential of influenza WBS to enable detection of seasonal onset early, identify local transmission patterns, and reveal underreporting in routine surveillance systems. Full article
(This article belongs to the Special Issue Surveillance of Health-Relevant Pathogens Employing Wastewater)
Show Figures

Figure 1

22 pages, 3329 KB  
Article
Performance of Textile-Based Water-Storage Mats in Treating Municipal Wastewater on Urban Rooftops for Climate-Resilient Cities
by Khaja Zillur Rahman, Jens Mählmann, Michael Blumberg, Katy Bernhard, Roland A. Müller and Lucie Moeller
Clean Technol. 2025, 7(3), 75; https://doi.org/10.3390/cleantechnol7030075 - 1 Sep 2025
Viewed by 1134
Abstract
The aim of this study was to evaluate the treatment efficiency and applicability of using textile-based mats as roof biofilters on urban buildings for purifying preliminary treated wastewater (PTW) collected from a three-chamber septic tank. Therefore, a pilot plant with a 15° pitched [...] Read more.
The aim of this study was to evaluate the treatment efficiency and applicability of using textile-based mats as roof biofilters on urban buildings for purifying preliminary treated wastewater (PTW) collected from a three-chamber septic tank. Therefore, a pilot plant with a 15° pitched wooden roof and two tracks for laying two mats made of different materials—polypropylene (PP), designated as Mat 1, and polyethylene terephthalate (PET), designated as Mat 2—was constructed at ground level under outdoor conditions. The plant was operated in parallel for a period of 455 days. Significant differences (p < 0.05) were observed in the results of the mass removal efficiencies between the two mats, with Mat 1 achieving mean removals of five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammonium-nitrogen (NH4-N), and total nitrogen (TN) of 85%, 73%, 75%, and 38%, respectively, and Mat 2 achieving comparatively higher removals of 97%, 84%, 90%, and 57%, respectively. The mean concentrations of BOD5 and COD at the outflow of both mats met the minimum water quality requirements for discharge and successfully met the minimum water quality class B for agricultural reuse. However, the comparatively low mean E. coli removal efficiencies of 2.0 and 2.4 log-units in Mat 1 and Mat 2, respectively, demonstrate the need for an effluent disinfection system. Highly efficient mass removal efficiencies were observed in the presence of dense vegetation on the mats, which may lead to a potential improvement in the urban climate through high daily evapotranspiration. Overall, this study demonstrates the potential for using lightweight, textile-based mats on rooftops to efficiently treat PTW from urban buildings, offering a promising decentralized wastewater management approach for climate-resilient cities. Full article
Show Figures

Graphical abstract

21 pages, 2629 KB  
Article
SDG 6 in Practice: Demonstrating a Scalable Nature-Based Wastewater Treatment System for Pakistan’s Textile Industry
by Kamran Siddique, Aansa Rukya Saleem, Muhammad Arslan and Muhammad Afzal
Sustainability 2025, 17(13), 6226; https://doi.org/10.3390/su17136226 - 7 Jul 2025
Cited by 2 | Viewed by 1582
Abstract
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents [...] Read more.
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents routinely discharged into rivers and agricultural lands despite stringent National Environmental Quality Standards (NEQS). This study presents a pilot-scale case from Faisalabad’s Khurrianwala industrial zone, where a decentralized, nature-based bioreactor was piloted to bridge the gap between policy and practice. The system integrates four treatment stages—anaerobic digestion (AD), floating treatment wetland (FTW), constructed wetland (CW), and sand filtration (SF)—and was further intensified via nutrient amendment, aeration, and bioaugmentation with three locally isolated bacterial strains (Acinetobacter junii NT-15, Pseudomonas indoloxydans NT-38, and Rhodococcus sp. NT-39). The fully intensified configuration achieved substantial reductions in total dissolved solids (TDS) (46%), total suspended solids (TSS) (51%), chemical oxygen demand (COD) (91%), biochemical oxygen demand (BOD) (94%), nutrients, nitrogen (N), and phosphorus (P) (86%), sulfate (26%), and chloride (41%). It also removed 95% iron (Fe), 87% cadmium (Cd), 57% lead (Pb), and 50% copper (Cu) from the effluent. The bacterial inoculants persist in the system and colonize the plant roots, contributing to stable bioremediation. The treated effluent met the national environmental quality standards (NEQS) discharge limits, confirming the system’s regulatory and ecological viability. This case study demonstrates how nature-based systems, when scientifically intensified, can deliver high-performance wastewater treatment in industrial zones with limited infrastructure—offering a replicable model for sustainable, SDG-aligned pollution control in the Global South. Full article
Show Figures

Figure 1

25 pages, 1144 KB  
Article
The Fate of Contaminants of Emerging Concern in an Upflow Anaerobic Sludge Blanket Reactor Coupled with Constructed Wetlands for Decentralized Domestic Wastewater Treatment
by Evridiki Barka, Asimina Koukoura, Evangelos Statiris, Taxiarchis Seintos, Athanasios S. Stasinakis, Daniel Mamais, Simos Malamis and Constantinos Noutsopoulos
Molecules 2025, 30(13), 2671; https://doi.org/10.3390/molecules30132671 - 20 Jun 2025
Cited by 3 | Viewed by 1226
Abstract
Removal of micropollutants using biological treatment systems remains a challenge, since conventional bioprocess systems require adaptations to provide more advanced treatment. An ambient temperature upflow anaerobic sludge blanket (UASB) reactor was employed, followed by a two-stage (saturated and unsaturated) vertical subsurface flow (VSSF) [...] Read more.
Removal of micropollutants using biological treatment systems remains a challenge, since conventional bioprocess systems require adaptations to provide more advanced treatment. An ambient temperature upflow anaerobic sludge blanket (UASB) reactor was employed, followed by a two-stage (saturated and unsaturated) vertical subsurface flow (VSSF) constructed wetland (CW) system, to treat domestic wastewater from a nearby settlement and investigate the occurrence and fate of 10 contaminants of emerging concern (CECs) in decentralized, non-conventional treatment systems. The integrated UASB—two-stage CW system achieved high performance regarding abatement of target CECs across all periods. Removal efficiencies ranged from 78% ± 21% (ketoprofen) to practically 100% (2-hydroxybenzothiazole). The pilot system was found to be robust performance-wise and provided enhanced treatment in comparison to a conventional wastewater treatment plant operating in parallel. Most of the target CECs were successfully treated by UASB, saturated and unsaturated CWs, while ibuprofen, bisphenol A and diclofenac were mostly removed in the unsaturated CW. Environmental risk assessment revealed that triclosan poses a significant ecological risk to algae during treated wastewater disposal into the aquatic environment. Additionally, cumulative risk quotient indicated that the potential for mixture toxicity should be carefully considered across all trophic levels. Full article
Show Figures

Graphical abstract

29 pages, 3595 KB  
Article
Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites
by Rubén Jerves-Cobo, Edwin Maldonado, Juan Fernando Hidalgo-Cordero, Hernán García-Herazo and Diego Mora-Serrano
Water 2025, 17(12), 1800; https://doi.org/10.3390/w17121800 - 16 Jun 2025
Cited by 1 | Viewed by 2669
Abstract
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned [...] Read more.
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned to using vertical-subsurface-flow constructed wetlands (VSSF-CWs). In contrast, Churuguzo employs surface-flow constructed wetlands (SF-CWs). These systems were assessed based on parameters such as the five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total phosphorus, organic nitrogen, ammonia nitrogen, total solids, fecal coliforms (TTCs), and total coliforms (TCs). The data were divided into two subperiods to account for the change in technology in Acchayacu. Statistical analysis was conducted to determine whether significant differences existed between the treatment efficiencies of these technologies, and the SF-CW was found to consistently outperform both the UAF and VSSF-CW in removing organic matter and microbial pollutants. This difference is likely attributed to the longer hydraulic retention time, lower hydraulic loading rate, and vegetation type. The findings highlight the environmental implications of treatment technology selection in WWTPs, particularly regarding the quality of receiving water bodies and their potential applications for public health, proper water resource management, and the design of decentralized systems in high-altitude regions, especially in developing countries. Full article
Show Figures

Figure 1

20 pages, 6194 KB  
Article
Modular Constructed Wetlands for Treatment of Rural Domestic Wastewater: Laboratory Performance and Field Application
by Xiaolin Zhao, Jing Yang, Rubin Han, Hui Luo, Limin Chen, Meng Liu and Baojie He
Sustainability 2025, 17(10), 4427; https://doi.org/10.3390/su17104427 - 13 May 2025
Cited by 6 | Viewed by 1652
Abstract
As the discharge points of domestic sewage in rural areas are scattered with large fluctuations, constructed wetlands (CWs) are of great effectiveness in treating rural domestic wastewater. In this paper, horizontal subsurface flow modular constructed wetlands (HSSF-MCWs) with different filler combinations and plant [...] Read more.
As the discharge points of domestic sewage in rural areas are scattered with large fluctuations, constructed wetlands (CWs) are of great effectiveness in treating rural domestic wastewater. In this paper, horizontal subsurface flow modular constructed wetlands (HSSF-MCWs) with different filler combinations and plant species were constructed to analyze the pollutant removal effect on rural domestic wastewater. According to the fuzzy comprehensive evaluation method, the purification effect of the systems on rural domestic wastewater was evaluated for the selection of the best system. The decentralized rural domestic sewage treatment PPP project (Phase III) in Changshu was also monitored for field application. The results indicated that the red brick–volcanic rock (RB-VR) combination showed the best comprehensive removal effect on rural domestic wastewater, with the highest average removal rate of ammonia nitrogen (NH4+-N 81.0 ± 2.5%) and total nitrogen (TN 64.5 ± 3.4%). The fuzzy comprehensive index (FCI) of the RB-VR systems with four rural plants ranged from 2.60 to 3.74, in which Myriophyllum elatinoides Gaudich. showed the optimum long-term purification effect. The water quality and economic analysis results of the pilot project in Changshu indicated that the overall influent concentration was low with large fluctuations, and the qualified effluent rate was relatively low. Moreover, the equipment investment accounted for 51.24% of the overall construction investment of the project, so more economical equipment (1 m3/day and 20 m3/day) should be adopted in rural domestic wastewater treatment. Full article
Show Figures

Figure 1

18 pages, 730 KB  
Article
Using Treated Wastewater for Non-Potable Household Uses in Peri-Urban India: Is It Affordable for the Users?
by Norbert Brunner, Sukanya Das, Anju Singh and Markus Starkl
Water 2024, 16(19), 2838; https://doi.org/10.3390/w16192838 - 6 Oct 2024
Viewed by 2253
Abstract
Reuse of wastewater is a promising response to water scarcity. For peri-urban areas served by decentralized wastewater treatment plants, the delivery of treated wastewater to the households may be a viable option to promote reuse on a larger scale. Based on a case [...] Read more.
Reuse of wastewater is a promising response to water scarcity. For peri-urban areas served by decentralized wastewater treatment plants, the delivery of treated wastewater to the households may be a viable option to promote reuse on a larger scale. Based on a case study in Eastern India, this paper explores if households would accept recycled water for non-potable purposes and if they would pay for it. While the respondents to household surveys had very positive views about recycling, they were not willing to pay much, even if they were from a middle-income class and could afford more. A closer analysis of the attitudes towards recycling indicated knowledge gaps about the risks and advantages of using recycled water. Full article
(This article belongs to the Special Issue Water Quality, Wastewater Treatment and Water Recycling)
Show Figures

Figure 1

15 pages, 3620 KB  
Article
Performance Assessment of Rural Decentralized Domestic Wastewater Treatment Facilities in Foshan, China
by Minru Liu, Zhenrong Lin, Jiajie Li, Mingtian Zhu, Zhihua Tang and Kai Li
Water 2024, 16(13), 1901; https://doi.org/10.3390/w16131901 - 3 Jul 2024
Cited by 5 | Viewed by 2780
Abstract
Rural decentralized domestic wastewater treatment (DDWT) facilities, as an alternative to centralized sewage treatment plants, have been rapidly developed in rural areas worldwide. However, the lack of performance evaluations and operational status assessments of these facilities poses a significant obstacle to advancements in [...] Read more.
Rural decentralized domestic wastewater treatment (DDWT) facilities, as an alternative to centralized sewage treatment plants, have been rapidly developed in rural areas worldwide. However, the lack of performance evaluations and operational status assessments of these facilities poses a significant obstacle to advancements in rural domestic wastewater treatment strategies. In the present study, 30 rural DDWT facilities with AO (anoxic/oxic) and AAO (anaerobic/anoxic/oxic) processes were investigated. The results revealed that only two facilities reached the first A-grade discharge standards of China, and twelve facilities met the first B-grade discharge standards for all ten wastewater quality indicators. Low standard-achieving ratios for biochemical oxygen demand (BOD5) (63.3%), total nitrogen (TN) (60.0%), ammonia nitrogen (NH3-N) (63.3%), total phosphorus (TP) (30.0%), suspended solids (SS) (46.7%), and fecal coliforms (FC) (26.7%) were calculated. Thus, it is essential to improve the treatment efficiency for BOD5, TN, NH3-N, TP, SS, and FC for rural wastewater treatment facilities. In addition, the AAO process had a median weighted average removal efficiency of 82.02%, which was better than that of the AO process (72.48%). Minor equipment failure rates, i.e., less than 20%, did not affect the operation of the rural DDWT facilities, since most equipment in the DDWT facilities was backed up. Notably, problems in several areas, e.g., process design, equipment selection, construction, and especially operations, influencing treatment performance should be investigated and proactively addressed. These findings provide specific suggestions for improvements that could benefit the long-term operation and management of rural DDWT facilities. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 16339 KB  
Article
Modelling Current-State N- and P-Fluxes into Surface Waters in Germany
by Björn Tetzlaff, Ralf Kunkel, Max Eysholdt, Hong Hanh Nguyen, Markus Venohr, Tim Wolters, Maximilian Zinnbauer and Frank Wendland
Water 2024, 16(13), 1872; https://doi.org/10.3390/w16131872 - 29 Jun 2024
Cited by 5 | Viewed by 2046
Abstract
For the first time, the AGRUM model consortium—consisting of the agro-economic model RAUMIS, the water balance model mGROWA, the hydrological nutrient transport models DENUZ, WeKu and MEPhos, and the urban emission model MONERIS—was jointly set up throughout Germany (357,000 km2). This [...] Read more.
For the first time, the AGRUM model consortium—consisting of the agro-economic model RAUMIS, the water balance model mGROWA, the hydrological nutrient transport models DENUZ, WeKu and MEPhos, and the urban emission model MONERIS—was jointly set up throughout Germany (357,000 km2). This provided a nationwide consistent nutrient model to capture the current status of N and P inputs to surface waters from diffuse sources and urban areas. Diffuse nutrient emissions were quantified in high spatial resolution for the input pathways’ groundwater, drainage runoff, and natural interflow (100 m × 100 m), as well as for water erosion and wash-off (25 m × 25 m). The sum of diffuse nutrient inputs to surface waters is about 385,000 metric tons N/yr and ca. 11,530 metric tons P/yr. Urban emissions were quantified either as point source inputs (wastewater treatment plants, industrial direct dischargers) or at municipality scale for different collection and treatment systems, e.g., rainwater sewers or decentralized treatment plants, and sum up to ca. 95,000 t N/yr and 7500 t P/yr. As modelled, total N and P inputs into surface waters correspond well with observed N and P loads in rivers. The model results represent valuable information for water managers, being responsible for the preparation of management plans for the third management cycle of the EC Water Framework Directive spanning from 2021 to 2027. Full article
Show Figures

Figure 1

18 pages, 3403 KB  
Article
Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank
by Junqi Li and Chengyuan Yang
Water 2024, 16(8), 1097; https://doi.org/10.3390/w16081097 - 11 Apr 2024
Cited by 2 | Viewed by 1857
Abstract
In order to address the issue of combined sewer overflows (CSOs), W city has constructed a large-scale storage tank with a volume of 220,000 m3. The storage tank is planned for CSO control in the near term and stormwater runoff pollution [...] Read more.
In order to address the issue of combined sewer overflows (CSOs), W city has constructed a large-scale storage tank with a volume of 220,000 m3. The storage tank is planned for CSO control in the near term and stormwater runoff pollution control in the long term. However, the actual operation of the storage tank is unsatisfactory. This paper elucidates the design scheme and operation mode of the tank and analyzes the challenges encountered during its design and operation. A storm water management model (SWMM) model was constructed to simulate the effect of the storage tank working in a combined sewer system (CSS), a separate sewer system (SSS) and a decentralized storage situation. This study determined that during the 2022 rainy season, the actual reduction in pollutants by the storage tank was only about 60% of the designed value. As a result, the inadequate treatment capacity of the downstream wastewater treatment plant (WWTP) resulted in the water being retained in the tank for a long time, leading to unsatisfactory operation outcomes. If the storage tank works in SSS and the problem of water retention can be solved, it could reduce the total runoff volume by 30% and the total amount of pollutants by 40% during the same rainy season. At the same time, under the premise of constant total storage volume, if decentralized storage tanks were used to control runoff pollution, the reduction effect can be increased by up to 11.6% compared with that of the centralized storage. Full article
(This article belongs to the Special Issue Urban Flood Mitigation and Sustainable Stormwater Management)
Show Figures

Figure 1

13 pages, 1534 KB  
Article
Responses of Freshwater Invertebrates to Imhoff Tank Sewage Effluents: A Preliminary Study in Four Watercourses with Different Ecological Status (Abruzzo, Central Italy)
by Antonio Di Sabatino, Giovanni Damiani, Giada Ercolino, Floriana Rossi and Lino Ruggieri
Sustainability 2024, 16(6), 2452; https://doi.org/10.3390/su16062452 - 15 Mar 2024
Viewed by 1613
Abstract
In many EU countries, a large proportion of domestic effluents is treated in small, decentralized wastewater treatment plants (WWTPs) which often lack appropriate treatment technologies. The low efficiency of these systems and their incorrect maintenance often contribute to environmental deterioration, with a large [...] Read more.
In many EU countries, a large proportion of domestic effluents is treated in small, decentralized wastewater treatment plants (WWTPs) which often lack appropriate treatment technologies. The low efficiency of these systems and their incorrect maintenance often contribute to environmental deterioration, with a large quantity of inadequately treated sewage dispersed in the soil or discharged into superficial watercourses. In the Abruzzo region (Central Italy), almost all rivers and streams receive wastewater from Imhoff tanks with only primary treatments. The ecological impacts of these effluents have rarely been investigated. This paper aimed to evaluate the response of freshwater invertebrates to Imhoff effluents in receiving watercourses with different ecological status. Our results showed that wastewater from Imhoff plants negatively affected the structure and composition of freshwater communities, with a reduction in the richness and abundance of more sensitive taxa and an increase in the most tolerant ones. These negative effects were more accentuated during low flow periods and in streams with moderate ecological status. To improve the ecological status of rivers and streams and to limit the diffusion of pathogens and micropollutants in freshwater, a more efficient (secondary treatments, possibly with nature-based solutions) and sustainable (water reuse or sewage sludge recycling) approach to wastewater treatment in decentralized WWTPs is urgently needed. Full article
(This article belongs to the Special Issue Sustainable Development of Hydrogeology)
Show Figures

Figure 1

16 pages, 5677 KB  
Article
Preliminary Planning and Optimization Approach for Wastewater Infrastructure for Regions with Low Data Availability
by Ganbaatar Khurelbaatar, Sara Paola Ramos Rodriguez, Thomas Aubron, Khaja Zillur Rahman, Nadeem Khalil, Manfred van Afferden, Marc Breulmann, Jan Friesen and Roland Arno Müller
Water 2024, 16(5), 694; https://doi.org/10.3390/w16050694 - 27 Feb 2024
Viewed by 2242
Abstract
For decades, there has been ongoing discussion about whether centralized or decentralized wastewater management systems are better. Decision-makers need to define the best option but do not always have the necessary tools to develop, compare, and identify the most appropriate solution. To address [...] Read more.
For decades, there has been ongoing discussion about whether centralized or decentralized wastewater management systems are better. Decision-makers need to define the best option but do not always have the necessary tools to develop, compare, and identify the most appropriate solution. To address this, studies have been conducted on a settlement level. In this study, the main focus was to develop and optimize wastewater management scenarios for a region containing rural areas, where data scarcity was an issue, by extracting scenario-relevant information from the region using a satellite image and its calibration using locally available data. We selected a study region in India containing 184 villages with a total population of around 210,000 and covering an area of around 400 km2. The study considered three different scenarios for the study area: centralized, decentralized, and an optimized scenario, which consists of a hybrid system involving partly decentralized and partly semi-centralized (clustered) infrastructure. The study developed a systematic approach for defining an optimized cluster of villages by considering the cost trade-off between the wastewater treatment plant (WWTP) capacity and sewer network layout. The results showed that the clustered and decentralized scenarios were nearly equal in terms of cost (around EUR 118 million), while the centralized scenario showed a relatively high cost of EUR 168 million. Potential applications and further development of the method were also considered. The proposed methodology may aid global wastewater management by estimating and optimizing infrastructure costs needed to fulfill Sustainable Development Goal 6 (SDG#6) in rural regions. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 3343 KB  
Article
Investigation of Decentralized Wastewater Treatment System in Urban Wastewater Management: Case Study in Yangon, Myanmar
by Kaung Htet Swan, Nawatch Surinkul and Chettiyappan Visvanathan
Sustainability 2023, 15(24), 16756; https://doi.org/10.3390/su152416756 - 12 Dec 2023
Cited by 8 | Viewed by 6073
Abstract
Urban wastewater management in rapidly growing cities presents a significant challenge. Traditional centralized systems are unable to keep pace with increasing urbanization and wastewater generation. This manuscript presents a case study conducted in Yangon, aimed at investigating the feasibility and potential benefits of [...] Read more.
Urban wastewater management in rapidly growing cities presents a significant challenge. Traditional centralized systems are unable to keep pace with increasing urbanization and wastewater generation. This manuscript presents a case study conducted in Yangon, aimed at investigating the feasibility and potential benefits of approaching the decentralized wastewater treatment system (DEWATS) as an alternative solution. DEWATS and centralized wastewater treatment system (CWTS) cases were observed for performance, operational efficiency, and environmental benefits. Field studies, interviews with municipal personnel, and discussions with residents were also conducted. Residents using DEWATS in Yangon value its environmental advantages and are willing to invest in sustainability. Those who use centralized systems are concerned about high costs and unreliability. Results from sustainability assessments showed that DEWATS obtained higher total scores than CWTS. Based on Weighted Sum Methods in three sustainability scenarios, DEWATS ranked first and has been shown to be a sustainable solution for Yangon across environmental, social, economic, and technical aspects. This study provides an alternative strategy for urban planners and decision-makers to use DEWATS as an option for urban wastewater management. The evidence could support accelerating provision of wastewater treatment plants and encourage willingness to pay. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

Back to TopTop