Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Storage Tank Description
2.3. Data Collection
2.4. Catchment Model Based on the SWMM
2.4.1. Basic Parameters of SWMM
2.4.2. Model Pollutant Parameters Options, Calibration and Validation
2.4.3. Storage Tank Options
- RULE R1A
- IF CONDUIT 1 FLOW > 2.78
- AND NODE STORAGEUNIT DEPTH < 9.7
- THEN ORIFICE 1 SETTING = 1
- RULE R1B
- IF CONDUIT 1 FLOW < 2.78
- OR NODE STORAGEUNIT DEPTH > 9.7
- THEN ORIFICE 1 SETTING = 0
3. Results and Discussion
3.1. Storage Tank Design Issues
3.2. Storage Tank Operation Issues
3.3. Effect of CSO Pollution Control in the Current
3.4. Runoff Control Effect of the Storage Tank
3.5. Effect of Decentralized Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Zhang, W.; Feng, C.; Shen, J. Performance assessment of separate and combined sewer systems in metropolitan areas in southern China. Water. Sci. Technol. 2014, 69, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Sitzenfrei, R.; Rauch, W.; Liang, S.; Liu, Y. Effects of urban forms on separate drainage systems: A virtual city perspective. Water 2019, 11, 758. [Google Scholar] [CrossRef]
- Huang, D.; Liu, X.; Jiang, S.; Wang, H.; Wang, J.; Zhang, Y. Current state and future perspectives of sewer networks in urban China. Front. Environ. Sci. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Ning, Y.-F.; Dong, W.-Y.; Lin, L.-S.; Zhang, Q. Current research trend on urban sewerage system in China. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012048. [Google Scholar] [CrossRef]
- Fu, X.; Goddard, H.; Wang, X.; Hopton, M. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs). J. Environ. Manag. 2019, 236, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lindholm, G.; Ratnaweera, H. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring. J. Hydrol. (Amst.) 2018, 556, 409–418. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Y.; Yu, L.; Li, J.; Pan, X.; Shen, Z.; Xu, X.; Qiu, Q. Effectiveness analysis of systematic combined sewer overflow control schemes in the sponge city pilot area of Beijing. Int. J. Environ. Res. Public Health 2019, 16, 1503. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, F.; Gharabaghi, B.; Perera, N.; McBean, E. Evaluation of the thermal impact of stormwater management ponds. J. Water Manag. Model. 2013, 12, 221–233. [Google Scholar] [CrossRef]
- Romei, M.; Lucertini, M.; Esposito Renzoni, E.; Baldrighi, E.; Grilli, F.; Manini, E.; Marini, M.; Iagnemma, L. A detention reservoir reduced combined sewer overflows and bathing water contamination due to intense rainfall. Water 2021, 13, 3425. [Google Scholar] [CrossRef]
- Ferrario, C.; Tesauro, M.; Consonni, M.; Tanzi, E.; Galli, A.; Peruzzi, C.; Beltrame, L.; Maglionico, M.; Lavrnić, S.; Gandolfi, C. Impact of Combined Sewer Overflows on Water Quality of Rural Canals in Agro-Urban Environments. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society, Singapore, 1–6 August 2021. [Google Scholar]
- Soriano, L.; Rubió, J. Impacts of combined sewer overflows on surface water bodies. The case study of the Ebro River in Zaragoza city. J. Clean. Prod. 2019, 226, 1–5. [Google Scholar] [CrossRef]
- Stirrup, M.; Bonin, R.; Hudoba, J.; Parisotto, J.; Jacob, S. Planning, Design, Construction and Performance of the Royal Avenue CSO Storage Tank in Hamilton, Ontario. Proc. Water Environ. Fed. 2011, 2011, 45–70. [Google Scholar] [CrossRef]
- Fu, G.; Khu, S.-T.; Butler, D. Optimal distribution and control of storage tank to mitigate the impact of new developments on receiving water quality. J. Environ. Eng. 2010, 136, 335–342. [Google Scholar] [CrossRef]
- Field, R.; O’Connor, T. Optimization of CSO storage and treatment systems. J. Environ. Eng. 1997, 123, 269–274. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Wang, J. A simulation-based real-time control system for reducing urban runoff pollution through a stormwater storage tank. J. Clean. Prod. 2018, 183, 641–652. [Google Scholar] [CrossRef]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. J. Environ. Manag. 2012, 101, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; De Paola, F.; Fontana, N.; Marini, G.; Ranucci, A. Pollution reduction in receivers: Storm-water tanks. J. Urban Plan. Dev. 2011, 137, 29–38. [Google Scholar] [CrossRef]
- Cheng, X.; Ling, Y.; Li, D.; You, X. Research on application of InfoWorksICM model in the design of combined overflow storage tank. Water Wastewater. Eng. 2019, 55, 64–67. [Google Scholar]
- Mantegazza, S.A.; Gallina, A.; Mambretti, S.; Lewis, C. Designing CSO storage tanks in Italy: A comparison between normative criteria and dynamic modelling methods. Urban Water J. 2010, 7, 211–216. [Google Scholar] [CrossRef]
- Stirrup, M.; Marchant, D. Simulation of a combined sewer overflow storage tank. J. Water Manag. Model. 2002, 208, 271–280. [Google Scholar] [CrossRef]
- Li, J.; Meng, G.; Che, W. On regulation, reservation and practical calculation in urban rainwater utilization. Water Wastewater. Eng. 2007, 33, 42–46. [Google Scholar]
- Han, D.; Bray, M. Automated Thiessen polygon generation. Water Res. 2006, 42, 28. [Google Scholar] [CrossRef]
- Croley, T.E., II; Hartmann, H.C. Resolving thiessen polygons. J. Hydrol. (Amst.) 1985, 76, 363–379. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Hamid, R. Runoff quality prediction from small urban catchments using SWMM. Hydrol. Process 1998, 12, 311–329. [Google Scholar] [CrossRef]
- Stovin, V.R.; Saul, A. Sedimentation in storage tank structures. Water Sci. Technol. 1994, 29, 363–372. [Google Scholar] [CrossRef]
- Llopart-Mascaró, A.; Farreny, R.; Gabarrell, X.; Rieradevall, J.; Gil, A.; Martínez, M.; Puertas, J.; Suárez, J.; del Río, H.; Paraira, M. Storm tank against combined sewer overflow: Operation strategies to minimise discharges impact to receiving waters. Urban Water J. 2015, 12, 219–228. [Google Scholar] [CrossRef]
- Barco, J.; Papiri, S.; Stenstrom, M.K. First flush in a combined sewer system. Chemosphere 2008, 71, 827–833. [Google Scholar] [CrossRef]
- Lee, J.; Bang, K.; Ketchum, L., Jr.; Choe, J.; Yu, M. First flush analysis of urban storm runoff. Sci. Total Environ. 2002, 293, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, J.; Tucker, R.; Spooner, J.; Hunt, W. A traditional analysis of the first flush effect for nutrients in stormwater runoff from two small urban catchments. Water Air Soil Poll. 2012, 223, 5903–5915. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; Garofalo, G. Distributed vs. concentrated storage options for controlling CSO volumes and pollutant loads. Water Pract. Technol. 2010, 5, wpt2010071. [Google Scholar] [CrossRef]
- Adeyinka, M.; Araoye, O.; Akpan, V.; Omole, D.; Elemile, O.O. Design of A Water Transmission and Storage System for Sustainable Reuse of Wastewater Within A University Community. IOP Conf. Ser. Mater. Sci. Eng. 2021, 107, 012146. [Google Scholar] [CrossRef]
Rainfall Date | Antecedent Dry Days (d) | Total Rainfall Depth (mm) | Rainfall Duration (min) |
---|---|---|---|
13 June | 10 | 24.0 | 155 |
22 June | 6 | 23.8 | 205 |
26 June | 3 | 54.2 | 260 |
5 July | 3 | 5.2 | 50 |
11 July | 4 | 4.2 | 35 |
12 July | 0 | 27.4 | 160 |
19 July | 6 | 8.2 | 90 |
20 July | 0 | 4.8 | 65 |
28 July | 5 | 7.6 | 80 |
9 August | 7 | 82.8 | 420 |
19 August | 5 | 28.2 | 185 |
14 September | 15 | 12.4 | 145 |
Land Use Type | Pollutant Parameters | Value | ||
---|---|---|---|---|
COD | SS | TN | ||
Road | Maximum buildup (kg/ha) | 180 | 220 | 6 |
Rate constant (/d) | 0.5 | 0.5 | 0.4 | |
Wash-off coefficient (-) | 0.007 | 0.008 | 0.003 | |
Wash-off exponent (-) | 1.7 | 1.8 | 1.7 | |
Roof | Maximum buildup (kg/ha) | 80 | 130 | 4 |
Rate constant (/d) | 0.3 | 0.3 | 0.2 | |
Wash-off coefficient (-) | 0.005 | 0.005 | 0.005 | |
Wash-off exponent (-) | 1.6 | 1.6 | 1.6 | |
Green | Maximum buildup (kg/ha) | 40 | 50 | 10 |
Rate constant (/d) | 0.5 | 0.5 | 0.2 | |
Wash-off coefficient (-) | 0.003 | 0.004 | 0.002 | |
Wash-off exponent (-) | 1.2 | 1.2 | 1.2 |
Name of WWTP | Designed Capacity (104 m3/d) | Time of Construction | Operation Capacity (104 m3/d) | Average Operation Capacity (104 m3/d) |
---|---|---|---|---|
A | 20 | November 2015 | 14~22 | 18 |
B | 4 | January 2012 | 3.5~5 | 4.25 |
C | 10 | April 2010 | 9.6~11.4 | 10 |
D | 5 | December 2006 | 3.7~5.5 | 4.6 |
E | 3 | September 2005 | 2~2.9 | 2.45 |
F | 2 | July 2005 | 1.8~2.9 | 2.35 |
Date | Practical Storage Volume (104 m3) | Practical Reduction of COD (kg) | Practical Reduction of SS (kg) | Practical Reduction of TN (kg) | Designed Storage Volume (104 m3) | Designed Reduction of COD (kg) | Designed Reduction of SS (kg) | Designed Reduction of TN (kg) |
---|---|---|---|---|---|---|---|---|
13 June | 18.68 | 58,670 | 85,060 | 2065 | 22.00 | 67,440 | 97,120 | 2358 |
22 June | 9.52 | 23,570 | 35,780 | 909 | 22.00 | 49,530 | 73,330 | 1862 |
26 June | 6.64 | 12,090 | 18,980 | 474 | 22.00 | 35,610 | 53,240 | 1203 |
5 July | 11.02 | 21,100 | 25,740 | 753 | 14.22 | 27,180 | 32,710 | 957 |
11 July | 4.76 | 11,040 | 13,720 | 391 | 14.53 | 29,380 | 35,320 | 1006 |
12 July | 5.56 | 6795 | 8840 | 239 | 15.27 | 14,340 | 19,970 | 539 |
19 July | 8.14 | 17,440 | 23,100 | 641 | 20.90 | 35,710 | 46,640 | 1294 |
20 July | 3.20 | 6345 | 7400 | 212 | 8.90 | 12,550 | 14,820 | 426 |
28 July | 12.76 | 17,000 | 23,520 | 637 | 20.44 | 29,500 | 38,110 | 1031 |
9 August | 16.40 | 53,000 | 75,440 | 1779 | 22.00 | 66,710 | 96,400 | 2272 |
19 August | 7.78 | 19,210 | 28,450 | 646 | 22.00 | 46,950 | 72,550 | 1647 |
14 September | 15.92 | 28,230 | 36,070 | 945 | 22.00 | 35,120 | 45,890 | 1203 |
Total | 120.38 | 274,490 | 382,100 | 9691 | 226.26 | 450,020 | 626,100 | 15,798 |
Date | Runoff Discharge Volume (104 m3) | Runoff Storage Volume (104 m3) | COD Reduction (kg) | SS Reduction (kg) | TN Reduction (kg) |
---|---|---|---|---|---|
13 June | 33.46 | 22.00 | 44,310 | 72,950 | 1116 |
22 June | 28.46 | 22.00 | 33,410 | 55,260 | 754 |
26 June | 115.18 | 22.00 | 41,750 | 70,070 | 877 |
5 July | 0 | 9.00 | 3629 | 5513 | 87 |
11 July | 0 | 6.70 | 2077 | 3065 | 54 |
12 July | 46.41 | 21.80 | 28,270 | 19,040 | 193 |
19 July | 0 | 14.46 | 10,250 | 15,840 | 255 |
20 July | 0 | 8.18 | 1243 | 1968 | 24 |
28 July | 0 | 13.35 | 8385 | 12,960 | 202 |
9 August | 214.76 | 22.00 | 57,940 | 94,180 | 1393 |
19 August | 51.43 | 22.00 | 38,890 | 64,530 | 868 |
14 September | 2.38 | 22.00 | 18,110 | 27,640 | 509 |
Total | 492.08 | 205.49 | 288,264 | 443,016 | 6332 |
Date | The Intensity of Rainfall in the First Hour (mm/h) | COD | SS | ||
---|---|---|---|---|---|
Increased Reduction (kg) | Percentage of Centralized Storage (%) | Increased Reduction (kg) | Percentage of Centralized Storage (%) | ||
13 June | 12.2 | 1876 | 104.2 | 3385 | 104.6 |
22 June | 10.2 | 396 | 101.2 | 670 | 101.2 |
26 June | 14.4 | 4059 | 109.7 | 8554 | 112.2 |
9 August | 14.2 | 5429 | 109.4 | 10,943 | 111.6 |
19 August | 9.6 | 465 | 101.2 | 1087 | 101.7 |
14 September | 2.4 | 160 | 100.9 | 223 | 100.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, C. Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank. Water 2024, 16, 1097. https://doi.org/10.3390/w16081097
Li J, Yang C. Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank. Water. 2024; 16(8):1097. https://doi.org/10.3390/w16081097
Chicago/Turabian StyleLi, Junqi, and Chengyuan Yang. 2024. "Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank" Water 16, no. 8: 1097. https://doi.org/10.3390/w16081097
APA StyleLi, J., & Yang, C. (2024). Design Issue Analysis and Operation Effect Evaluation of Large-Scale Storage Tank. Water, 16(8), 1097. https://doi.org/10.3390/w16081097