Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = deashing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1478 KB  
Article
The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions
by Anna Derylo-Marczewska, Andrzej Swiatkowski, Grzegorz Trykowski and Stanislaw Biniak
Molecules 2025, 30(18), 3810; https://doi.org/10.3390/molecules30183810 - 19 Sep 2025
Cited by 1 | Viewed by 1073
Abstract
Activated carbon F-400 was modified by using different oxidation agents: nitric acid, sulfuric acid, and ozone. The influence of the type of carbon surface groups on adsorption effectiveness towards selected aromatic compounds was analyzed. The commercial carbon F-400 was deashed and modified, and [...] Read more.
Activated carbon F-400 was modified by using different oxidation agents: nitric acid, sulfuric acid, and ozone. The influence of the type of carbon surface groups on adsorption effectiveness towards selected aromatic compounds was analyzed. The commercial carbon F-400 was deashed and modified, and the obtained materials were characterized by using different techniques to determine their textural, thermal, morphological, and surface properties: low-temperature adsorption/desorption isotherms of nitrogen, scanning electron microscopy (SEM), Boehm titration, and Fourier transform infrared spectroscopy (FTIR). The adsorption properties towards four aromatic compounds, i.e., toluene, 4-nitrotoluene, nitrobenzene, and 4-nitrobenzoic acid, were evaluated based on isotherm measurements. Adsorption equilibrium data were analyzed by applying the generalized Langmuir isotherm. The influence of carbon surface groups and adsorbate functional groups in interaction mechanisms was discussed. It was found there was a strong effect of oxidation on adsorption efficiency. The adsorption capacity of modified activated carbon F-400 strongly depends on the type of oxidant used, e.g., in the case of toluene, the use of ozone as an oxidant gives a sorption capacity of 5.51 mmol/g, and of nitric acid—4.20 mmol/g. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

13 pages, 2036 KB  
Article
Aluminum Extractions by the Alkali Method Directly from Alkali-Acid (NaOH-HCl) Chemical Deashing of Coals
by Lijun Zhao
Materials 2025, 18(15), 3661; https://doi.org/10.3390/ma18153661 - 4 Aug 2025
Viewed by 711
Abstract
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both [...] Read more.
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both alkali solutions and acid solutions. The deashing alkali solutions with dissolved coal ashes were regenerated by adding CaO, and the resulting precipitates were added with sodium bicarbonate for aluminum extraction. High temperatures increased aluminum extraction, and excessive sodium bicarbonate addition decreased aluminum extraction. The deashing acid solutions were concentrated by evaporation, and silica gels formed during the process. The obtained mixtures were calcinated at 350 °C for the decomposition of aluminum chlorides, and soaked with water at 60 °C to remove the soluble chlorides. For the insoluble oxides after soaking, diluted alkali solutions were used to extract the aluminum at 90 °C, and aluminum extraction failed due to the formation of albite in the presence of sodium, aluminum and silicon elements as proved by XRD and SEM/EDS. When silica gels were separated by pressure filtering, aluminum extraction greatly increased. Aluminum extractions were accordingly made in the form of sodium aluminate from the deashing solutions of coals, which could be advantageous for sandy alumina production. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 1658 KB  
Article
Environmentally Friendly Chelation for Enhanced Algal Biomass Deashing
by Agyare Asante, George Daramola, Ryan W. Davis and Sandeep Kumar
Phycology 2025, 5(3), 32; https://doi.org/10.3390/phycology5030032 - 23 Jul 2025
Cited by 1 | Viewed by 1129
Abstract
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its [...] Read more.
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its high ash removal potential. The optimized sequential treatment (DI, NTA chelation, and DI+NTA treatment at 90–130 °C) achieved up to 83.07% ash removal, reducing ash content from 15.2% to 3.8%. Elevated temperatures enhanced the removal of calcium, magnesium, and potassium, while heavy metals like lead and copper were reduced below detection limits. CHN analysis confirmed minimal loss of organic content, preserving biochemical integrity. Unlike traditional acid leaching, this method is eco-friendly after three cycles. The approach offers a scalable, sustainable solution to improve algal biomass quality for thermochemical conversion and supports circular bioeconomy goals. Full article
Show Figures

Graphical abstract

18 pages, 4726 KB  
Article
Study on Dry Deashing and Desulfurization of Pulverized Coal via Pulsating Circulating Airflow Technology
by Xinjian Yue, Shanshi Chen and Yongmin Zhou
Materials 2025, 18(11), 2625; https://doi.org/10.3390/ma18112625 - 4 Jun 2025
Viewed by 719
Abstract
In practical coal preparation processes, influenced by mining methods and mechanization levels, the proportion of fine and even ultrafine pulverized coal continues to increase. However, due to the small particle size, significant inter-particle interactions, and the low efficiency of conventional physical separation techniques, [...] Read more.
In practical coal preparation processes, influenced by mining methods and mechanization levels, the proportion of fine and even ultrafine pulverized coal continues to increase. However, due to the small particle size, significant inter-particle interactions, and the low efficiency of conventional physical separation techniques, the efficient deashing of fine coal remains a significant technical challenge. Consequently, in the face of growing demand for fine coal processing, efficient and mature dry separation technologies are still lacking. To address this issue, a pulsating circulating airflow separation device was designed and developed in this study to deash and desulfurize pulverized coal with a particle size of less than 1 mm. The effects of gas velocity and pulsating airflow frequency on the deashing performance were investigated. Using Design-Expert software (version 13), an optimized formula for deashing efficiency was established, and the optimal operating parameters were evaluated. The separation results demonstrated that under the optimal conditions of fluidization, the number N = 1.2 and pulsating airflow frequency f = 2.375 Hz, the standard deviation of ash segregation (σash) reached 25%, and the ash content in the cleaned coal was reduced from 37.28% to 22.32% in the cleaned sample. Furthermore, the sulfur content decreased significantly from 0.971% in the raw coal to 0.617% in the cleaned coal, indicating effective desulfurization. In addition, the concentrations of other harmful elements in the raw coal were also reduced to varying degrees. These findings demonstrate that the application of pulsating airflow can effectively enhance ash and sulfur removal from pulverized coal particles smaller than 1 mm. This approach offers a novel and promising method for the dry beneficiation of fine coal particles. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

15 pages, 3938 KB  
Article
Optimized Furfural Production Using the Acid Catalytic Conversion of Xylan Liquor from Organosolv-Fractionated Rice Husk
by Hyeong Gyun Ahn, Ja Eun Lee, Hyunjoon Kim, Hyun Jin Jung, Kyeong Keun Oh, Su Hak Heo and Jun Seok Kim
Polysaccharides 2024, 5(4), 552-566; https://doi.org/10.3390/polysaccharides5040035 - 2 Oct 2024
Cited by 5 | Viewed by 2856
Abstract
This study determined the optimal production of furfural (FuR) from liquid hydrolysate xylan liquor obtained through a two-stage pretreatment process using NaOH for de-ashing and EtOH for the delignification of raw rice husk (RH). The de-ashing pretreatment was conducted at 150 °C, with [...] Read more.
This study determined the optimal production of furfural (FuR) from liquid hydrolysate xylan liquor obtained through a two-stage pretreatment process using NaOH for de-ashing and EtOH for the delignification of raw rice husk (RH). The de-ashing pretreatment was conducted at 150 °C, with 6.0% (w/v) NaOH and a reaction time of 40 min. The optimal conditions for delignification pretreatment, performed using an organosolv fractionation method with EtOH, were a reaction temperature of 150 °C, 60% (v/v) EtOH, 0.25% (w/v) H2SO4, and a reaction time of 90 min. Through a two-stage pretreatment process, a liquid hydrolysate in the form of xylan liquor was obtained, which was subjected to an acid catalytic conversion process to produce FuR. The process conditions were varied, with reaction temperatures of 130–170 °C, H2SO4 catalyst concentrations of 1.0–3.0 wt.%, and reaction times of 0–90 min. The Response Surface Methodology tool was used to identify the optimal FuR yield from xylan liquor. Ultimately, the optimal process conditions for the acid catalytic conversion were found to be a substrate-to-catalyst ratio of 2:8, a reaction temperature of 168.9 °C, a catalyst concentration of 1.9 wt.%, and a reaction time of 41.24 min, achieving an FuR yield of 67.31%. Full article
Show Figures

Figure 1

17 pages, 6882 KB  
Article
Experimental Study on Combined Microwave–Magnetic Separation–Flotation Coal Desulfurization
by Guangming Wang, Zhijun Ma, Zhijing Zhou, Yunsheng Zheng and Liang Cheng
Molecules 2024, 29(16), 3729; https://doi.org/10.3390/molecules29163729 - 6 Aug 2024
Cited by 4 | Viewed by 1695
Abstract
In order to reduce the content of sulfur and ash in coal, improve the desulfurization and deashing rates, a combined experiment method of microwave magnetic separation-flotation was proposed for raw coal. The desulfurization and deashing rates of three experiment methods, namely, single magnetic [...] Read more.
In order to reduce the content of sulfur and ash in coal, improve the desulfurization and deashing rates, a combined experiment method of microwave magnetic separation-flotation was proposed for raw coal. The desulfurization and deashing rates of three experiment methods, namely, single magnetic separation, microwave magnetic separation, and microwave magnetic separation–flotation, were compared. Taking the microwave magnetic separation–flotation experiment method as the main line, the effects of the microwave irradiation time, microwave power, grinding time, magnetic field intensity, plate seam width, foaming agent dosage, collector dosage, and inhibitor dosage on desulfurization and deashing were discussed, and the mechanism of microwave irradiation on magnetic separation and flotation was revealed. The results show that under the conditions of a microwave irradiation time of 60 s, a microwave power of 80% of the rated power (800 W), a grinding time of 8 min, a plate seam width (the plate seam width of a magnetic separator sorting box) of 1 mm, a magnetic field intensity of 2.32 T, a foaming agent dosage of 90 g/t, a collector dosage of 2125 g/t, and an inhibitor dosage of 1500 g/t, the desulfurization and deashing effect is the best. The desulphurization rate is 76.51%, the sulfur removal rate of pyrite is 96.50%, and the deashing rate is 61.91%. Microwaves have the characteristic of selective heating, and the thermal conductivity of organic matter in coal is greater than that of mineral. Microwave irradiation can improve the reactivity of pyrite in coal, pyrolyze pyrite into high-magnetic pyrite, improve the magnetic properties, and improve the magnetic separation effect. Therefore, microwave irradiation plays a role in promoting magnetic separation. Through microwave irradiation, the positive and negative charges in coal molecules constantly vibrate and create friction under the action of an electric field force, and the thermal action generated by this vibration and friction process affects the structural changes in oxygen-containing functional groups in coal. With the increase in the irradiation time and power, the hydrophilic functional groups of –OH and –COOH decrease and the hydrophilicity decreases. Microwave heating evaporates the water in the pores of coal samples and weakens surface hydration. At the same time, microwave irradiation destroys the structure of coal and impurity minerals, produces cracks at the junction, increases the surface area of coal to a certain extent, enhances the hydrophobicity, and then improves the effect of flotation desulfurization and deashing. Therefore, after the microwave irradiation of raw coal, the magnetic separation effect is enhanced, and the flotation desulfurization effect is also enhanced. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

18 pages, 16102 KB  
Article
Study on the Deashing of Lignite with Hydrochloric Acid/Sodium Fluoride Leaching, Assisted by Microwave and Ultrasonic Waves
by Xinming Ran and Jie Yuan
Materials 2024, 17(14), 3537; https://doi.org/10.3390/ma17143537 - 17 Jul 2024
Cited by 2 | Viewed by 1584
Abstract
This study was aimed at investigating the effects of adding sodium fluoride (NaF) and using the assistance of ultrasonic and microwave energy on the removal efficiency of ash content during the hydrochloric acid (HCl) chemical leaching process of lignite samples from Zhaotong, Yunnan, [...] Read more.
This study was aimed at investigating the effects of adding sodium fluoride (NaF) and using the assistance of ultrasonic and microwave energy on the removal efficiency of ash content during the hydrochloric acid (HCl) chemical leaching process of lignite samples from Zhaotong, Yunnan, China. Chemical leaching was conducted on lignite samples from Zhaotong, Yunnan, China, under the experimental conditions of time (30–120 min), temperature (55–95 °C), microwave power (240–800 W), ultrasonic power (25–100%), and NaF addition concentration (0.2–1.2 M). The addition of NaF greatly improved the removal efficiency of ash content from lignite. Under optimized conditions, the addition of NaF increased the removal rate of ash content from lignite from 25% to 65.27%. The microwave-assisted deashing of lignite can significantly improve the deashing efficiency, with positive implications for the microstructure regulations of lignite. Ultrasonic-assisted deashing can lower the temperature for coal powder burnout and enhance the combustion performance of coal. Full article
Show Figures

Figure 1

16 pages, 8611 KB  
Article
Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells
by Hao Ren, Qi Gao, Liangmeng Ni, Mengfu Su, Shaowen Rong, Shushu Liu, Yanhang Zhong and Zhijia Liu
Molecules 2024, 29(6), 1400; https://doi.org/10.3390/molecules29061400 - 21 Mar 2024
Cited by 5 | Viewed by 2737
Abstract
To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells [...] Read more.
To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells (BBSSs). The results show that deashing decreased the K content of the biochar from 50.3% to 1.08% but increased the Si content from 33.48% to 89.15%. The formation of silicates and aluminosilicates from alkali metal oxides with silicon was an inevitable result of ash phase transformation at the high temperatures used to improve the fusion temperature (>1450 °C). The thermochemical behavior of ash mainly occurs at 1000 °C. The deashing treatment significantly reduced the reaction intensity during the high-temperature process. This significantly increased the thermal stability of the ash. The adjustment of the washing sequence had a slight impact on the chemical compositions, but the differences in ash micromorphology were obvious. Deashing treatments with different washing sequences can significantly improve ash fusion properties effectively and reduce the risk of scaling, slagging, and corrosion. This study provides a new and reasonable strategy for the deashing of biochar to commercially utilize bamboo shoot shell resources. Full article
Show Figures

Figure 1

17 pages, 3106 KB  
Article
Adsorption of Pyraclostrobin in Water by Bamboo-Derived and Pecan Shell-Derived Biochars
by Kongtan Yang, Xumi Wang, Huanqi Wu, Nan Fang, Yuxue Liu, Changpeng Zhang, Xiaobin Yu and Xiangyun Wang
Sustainability 2023, 15(19), 14585; https://doi.org/10.3390/su151914585 - 8 Oct 2023
Cited by 10 | Viewed by 2015
Abstract
Pyraclostrobin is a potent extensive-spectrum fungicide widely used in agricultural production but poses a substantial threat to aquatic life. Therefore, there is an urgent need to remove pyraclostrobin from the ecological environment. This study reports the adsorption of pyraclostrobin in water using pecan-shell [...] Read more.
Pyraclostrobin is a potent extensive-spectrum fungicide widely used in agricultural production but poses a substantial threat to aquatic life. Therefore, there is an urgent need to remove pyraclostrobin from the ecological environment. This study reports the adsorption of pyraclostrobin in water using pecan-shell biochar, bamboo biochar, and their deashing products. The kinetics and isotherms indicate that the pseudo-second-order kinetics and Freundlich model are the most suitable for both types of biochar. The thermodynamic results demonstrate that the adsorption process of biochar is spontaneous and exothermic. Combined with characterization and factor analysis experiments, it is revealed that the adsorption of pyraclostrobin on biochar is attributed to various mechanisms, including pore filling, hydrophobic interactions, π-π and p-π interactions, and hydrogen bonding. At the initial concentration of 0.5 mg·L−1, the adsorption rates of pyraclostrobin of the four biochar samples (<0.075 mm) reached 67–80% within 5 min. These findings suggest that both pecan-shell and bamboo biochars are efficient pyraclostrobin adsorbents, with the former showing better outcomes. There is still an adsorption rate of >97% after 5 cycles of adsorption by two types of biochars. Deashing significantly enhances the adsorption efficiency of pecan biochar, but it has an insignificant effect on bamboo biochar. This study will aid in the selection of cost-effective and ecofriendly adsorbents to reduce the environmental risk associated with pyraclostrobin. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

14 pages, 3306 KB  
Article
Deashed Wheat-Straw Biochar as a Potential Superabsorbent for Pesticides
by Irmina Ćwieląg-Piasecka, Elżbieta Jamroz, Agnieszka Medyńska-Juraszek, Magdalena Bednik, Bogna Kosyk and Nora Polláková
Materials 2023, 16(6), 2185; https://doi.org/10.3390/ma16062185 - 9 Mar 2023
Cited by 22 | Viewed by 5882
Abstract
Biochar activation methods have attracted extensive attention due to their great role in improving sorptive properties of carbon-based materials. As a result, chemically modified biochars gained application potential in the purification of soil and water from xenobiotics. This paper describes changes in selected [...] Read more.
Biochar activation methods have attracted extensive attention due to their great role in improving sorptive properties of carbon-based materials. As a result, chemically modified biochars gained application potential in the purification of soil and water from xenobiotics. This paper describes changes in selected physicochemical properties of high-temperature wheat-straw biochar (BC) upon its deashing. On the pristine and chemically activated biochar (BCd) retention of five pesticides of endocrine disrupting activity (carbaryl, carbofuran, 2,4-D, MCPA and metolachlor) was studied. Deashing resulted in increased sorbent aromaticity and abundance in surface hydroxyl groups. BCd exhibited more developed meso- and microporosity and nearly triple the surface area of BC. Hydrophobic pesticides (metolachlor and carbamates) displayed comparably high (88–98%) and irreversible adsorption on both BCs, due to the pore filling, whereas the hydrophilic and ionic phenoxyacetic acids were weakly and reversibly sorbed on BC (7.3 and 39% of 2,4-D and MCPA dose introduced). Their removal from solution and hence retention on the deashed biochar was nearly total, due to the increased sorbent surface area and interactions of the agrochemicals with unclogged OH groups. The modified biochar has the potential to serve as a superabsorbent, immobilizing organic pollutant of diverse hydrophobicity from water and soil solution. Full article
(This article belongs to the Special Issue Biochar and Carbon-Based Materials: Properties and Applications)
Show Figures

Figure 1

14 pages, 2751 KB  
Article
Synergistic Effect Evaluation of Slot-Type Nozzle Area, Jet Pressure and Jet Distance on Improving Deashing Performance of Flat CARTRIDGE Filter
by Xue Li, Huan Cheng, Haiyan Chen, Zhengxue Xiao and Juan Lv
Atmosphere 2023, 14(2), 325; https://doi.org/10.3390/atmos14020325 - 6 Feb 2023
Viewed by 1839
Abstract
The difference of deashing performance between the areas of positive-to-blowing holes and that of non-positive-to-blowing holes is an important problem that causes a non-uniform deashing performance to a flat box filter cartridge, which limits the improvement of raising the ash cleaning efficiency to [...] Read more.
The difference of deashing performance between the areas of positive-to-blowing holes and that of non-positive-to-blowing holes is an important problem that causes a non-uniform deashing performance to a flat box filter cartridge, which limits the improvement of raising the ash cleaning efficiency to this kind of filter. In order to solve the above problems, the influence of blowing pressure, blowing distance and blowing hole area on cleaning performance was studied. Industrial coating test was also carried out to investigate and verify the actual ash cleaning performance under the optimal conditions obtained from the above investigations. Finally, the design method of the size of the slotted blowing hole was optimized. The results showed that at 0.3 MPa of the pulse pressure, the cleaning performance can meet the cleaning requirements and the best cleaning uniformity can be obtained. With the increase in slot-type nozzle area, the pressure at the areas facing the non-positive nozzles increased significantly, and thus the overall cleaning uniformity increased. The slot-type nozzle area of 273, 546 and 819 mm2 had the best cleaning effects at the jet distances of 40, 20~40 and 20 mm, respectively. The findings of this study are of great significance and can provide theoretical and experimental reference for important parameters selection of the flat cartridges filter in industrial application to improve the efficiency of dust removal. Full article
(This article belongs to the Special Issue Control and Purification of Particulate Matter)
Show Figures

Figure 1

16 pages, 2729 KB  
Review
Pre-PCR Mutation-Enrichment Methods for Liquid Biopsy Applications
by Farzaneh Darbeheshti, Fangyan Yu and G. Mike Makrigiorgos
Cancers 2022, 14(13), 3143; https://doi.org/10.3390/cancers14133143 - 27 Jun 2022
Cited by 10 | Viewed by 4349
Abstract
Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to [...] Read more.
Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to cancer, circulating DNA from the tumor (ctDNA) has a wide range of applications, from early cancer detection to the early detection of relapse or drug resistance, and the tracking of the dynamic genomic make-up of tumor cells. However, the detection of ctDNA remains technically challenging, due, in part, to the low frequency of ctDNA among excessive circulating cfDNA originating from normal tissues. During the past three decades, mutation-enrichment methods have emerged to boost sensitivity and enable facile detection of low-level mutations. Although most developed techniques apply mutation enrichment during or following initial PCR, there are a few techniques that allow mutation selection prior to PCR, which provides advantages. Pre-PCR enrichment techniques can be directly applied to genomic DNA and diminish the influence of PCR errors that can take place during amplification. Moreover, they have the capability for high multiplexity and can be followed by established mutation detection and enrichment technologies without changes to their established procedures. The first approaches for pre-PCR enrichment were developed by employing restriction endonucleases directly on genomic DNA in the early 1990s. However, newly developed pre-PCR enrichment methods provide higher sensitivity and versatility. This review describes the available pre-PCR enrichment methods and focuses on the most recently developed techniques (NaME-PrO, UVME, and DEASH/MAESTRO), emphasizing their applications in liquid biopsies. Full article
(This article belongs to the Special Issue The 5th ACTC: “Liquid Biopsy in Its Best”)
Show Figures

Figure 1

11 pages, 1548 KB  
Article
Alumina and Silica Extraction and Byproduct Development Directly from Chemical Deashing of Coals
by Lijun Zhao
Minerals 2022, 12(2), 179; https://doi.org/10.3390/min12020179 - 29 Jan 2022
Cited by 5 | Viewed by 3766
Abstract
Coal ashes (minerals) could be chemically removed to produce ultraclean coals for advanced utilizations such as oil substitutes and electrode materials. To eliminate secondary pollution and reduce deashing cost, chemicals should be recycled and valuable byproducts developed, in addition to ultraclean coals. In [...] Read more.
Coal ashes (minerals) could be chemically removed to produce ultraclean coals for advanced utilizations such as oil substitutes and electrode materials. To eliminate secondary pollution and reduce deashing cost, chemicals should be recycled and valuable byproducts developed, in addition to ultraclean coals. In this work, an advanced alkali–acid (NaOH–HCl) chemical method featuring submolten salts was used to deash coals with high ash of 27.95%, and ultraclean coals were prepared with low ash of 0.62%. The alkali solutions after treating coals were regenerated by adding CaO, and the resulting precipitates were transformed into CaSO4 by adding dilute H2SO4, while alumina and silica were dissolved in acid solutions. The hydrochloric acid (HCl) after treating coals could be largely regenerated by evaporation. From concentrated solutions after evaporation, silica gels occurred with high purity, which were then filtered for the production of silicate fertilizer, highlighting low heavy metal content and Na2O. Concentrated H2SO4 was added into the remaining acid filtrate, and sulfates were precipitated and redissolved to remove CaSO4. By further two-step calcinations, alumina of high purity (98.6%) could be produced. Alumina and silica extraction and byproduct development from directly deashing the coals were compared with those from fly ashes. Full article
(This article belongs to the Special Issue Critical Material Recovery from Coal and Coal Byproducts)
Show Figures

Figure 1

16 pages, 5771 KB  
Article
Pyrolysis of High-Ash Natural Microalgae from Water Blooms: Effects of Acid Pretreatment
by Longfei Liu, Yichen Liu, Wenli Wang, Yue Wang, Guiying Li and Changwei Hu
Toxins 2021, 13(8), 542; https://doi.org/10.3390/toxins13080542 - 3 Aug 2021
Cited by 11 | Viewed by 3529
Abstract
Natural microalgae (NA, cyanobacteria) collected from Taihu Lake (Jiangsu, China) were used for biofuel production through pyrolysis. The microalgae were de-ashed via pretreatment with deionized water and hydrochloric acid, and the samples obtained were noted as 0 M, 0.1 M, 1 M, 2 [...] Read more.
Natural microalgae (NA, cyanobacteria) collected from Taihu Lake (Jiangsu, China) were used for biofuel production through pyrolysis. The microalgae were de-ashed via pretreatment with deionized water and hydrochloric acid, and the samples obtained were noted as 0 M, 0.1 M, 1 M, 2 M, 4 M, 6 M, 8 M, respectively, according to the concentration of hydrochloric acid used in the pretreatment. Pyrolysis experiments were carried out at 500 °C for 2 h. The products were examined by various techniques to identify the influence of the ash on the pyrolysis behavior. The results showed that the ash inhibited the thermal transformation of microalgae. The 2 mol/L hydrochloric acid performed the best in removing ash and the liquid yield increased from 34.4% (NA) to 40.5% (2 M). Metal-oxides (mainly CaO, MgO, Al2O3) in ash promoted the reaction of hexadecanoic acid and NH3 to produce more hexadecanamide, which was further dehydrated to hexadecanenitrile. After acid pretreatment, significant improvement in the selectivity of hexadecanoic acid was observed, ranging from 22.4% (NA) to 58.8% (4 M). The hydrocarbon compounds in the liquid product increased from 12.90% (NA) to 26.67% (2 M). Furthermore, the acid pretreatment enhanced the content of C9–C16 compounds and the HHV values of bio-oil. For natural microalgae, the de-ashing pretreatment before pyrolysis was essential for improving the biocrude yield and quality, as well as the biomass conversion efficiency. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

18 pages, 4052 KB  
Article
Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk
by Hyun Jin Jung, Hyun Kwak, Jinyoung Chun and Kyeong Keun Oh
Sustainability 2021, 13(4), 1951; https://doi.org/10.3390/su13041951 - 11 Feb 2021
Cited by 11 | Viewed by 3492
Abstract
The parameters of the alkaline fractionation process were investigated and optimized using a statistical analysis method to simultaneously remove hemicellulose and ash from rice husk (RH) concomitantly. After the alkaline fractionation process, the residual solid contained high cellulose, and the recovery yield of [...] Read more.
The parameters of the alkaline fractionation process were investigated and optimized using a statistical analysis method to simultaneously remove hemicellulose and ash from rice husk (RH) concomitantly. After the alkaline fractionation process, the residual solid contained high cellulose, and the recovery yield of hemicellulose was enhanced in the fractionated liquid hydrolyzate. The hemicellulosic sugar recovery yield (71.6%), de-ashing yield (>99%), and lignin removal (>80%) were obtained at the reaction conditions of 150 °C of temperature, 40 min of reaction time, and 6% (w/v) of NaOH concentration. Subsequently, nano-structured silica was synthesized using black liquor obtained as a by-product of this fractionation process. For the production of nano-structured silica, it was observed that the pH of a black liquor and the heat treatment temperature significantly influenced the textural properties of silica product. In addition, the two-stage bleaching of solid residue followed by colloid milling for the production of high value-added CNF with was attempted. As a result, in addition to 119 g of fermentable sugar, 143 g of high-purity (>98%) silica with a surface area of 328 m2g−1 and 273.1 g of high-functional CNF with cellulose content of 80.1% were simultaneously obtained from 1000 g of RH. Full article
Show Figures

Figure 1

Back to TopTop