Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition and Fusion Temperature
2.2. Transformation Behavior of Minerals
2.3. Synchronous Thermal Analysis
2.4. Micro-Morphology of Minerals
3. Material and Methods
3.1. Raw Materials
3.2. Deashing of BBSS
3.3. Preparation of Ash Samples
3.4. Characterization of Ash Samples
3.5. Determination of Thermal Behaviors
3.6. Determination of Fusion Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Srirangan, K.; Akawi, L.; Moo-Young, M.; Chou, C.P. Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 2012, 100, 172–186. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Hu, H.; Yang, L.; Guo, P.; Xiao, B. Assessment of sustainable biomass resource for energy use in China. Biomass Bioenergy 2011, 35, 1–11. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Wang, X.; Liu, Z.; Liu, H.; Liu, Y.; Xu, T. Study on fusion characteristics of biomass ash. Bioresour. Technol. 2010, 101, 9373–9381. [Google Scholar] [CrossRef]
- Bandara, Y.W.; Gamage, P.; Gunarathne, D.S. Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size. Renew. Energy 2020, 153, 646–652. [Google Scholar] [CrossRef]
- Huang, X.; Tie, Y.; Jiang, J.; Deng, L.; Che, D. Water washing of biomass and biochar. Sustain. Energy Technol. Assess. 2023, 56, 103066. [Google Scholar] [CrossRef]
- Singhal, A.; Goel, A.; Bhatnagar, A.; Roslander, C.; Wallberg, O.; Konttinen, J.; Joronen, T. Improving inorganic composition and ash fusion behavior of spruce bark by leaching with water, acetic acid, and steam pre-treatment condensate. Chem. Eng. J. 2023, 452, 139351. [Google Scholar] [CrossRef]
- Mu, L.; Li, T.; Wang, Z.; Shang, Y.; Yin, H. Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal. Energy 2021, 234, 121286. [Google Scholar] [CrossRef]
- Kong, Z.; Liaw, S.B.; Gao, X.; Yu, Y.; Wu, H. Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. Fuel 2014, 128, 433–441. [Google Scholar] [CrossRef]
- Deng, L.; Ye, J.; Jin, X.; Che, D. Transformation and release of potassium during fixed-bed pyrolysis of biomass. J. Energy Inst. 2018, 91, 630–637. [Google Scholar] [CrossRef]
- Lee, Y.; Jo, J.; Kim, I.; Yoo, Y. Chemical characteristics and nacl component behavior of biochar derived from the salty food waste by water flushing. Energies 2017, 10, 1555. [Google Scholar] [CrossRef]
- He, Q.; Ding, L.; Raheem, A.; Guo, Q.; Gong, Y.; Yu, G. Kinetics comparison and insight into structure-performance correlation for leached biochar gasification. Chem. Eng. J. 2021, 417, 129331. [Google Scholar] [CrossRef]
- Liu, Z.; Hoekman, S.K.; Balasubramanian, R.; Zhang, F. Improvement of fuel qualities of solid fuel biochars by washing treatment. Fuel Process. Technol. 2015, 134, 130–135. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, X.; Zha, Z.; Ma, Y.; Zeng, M.; Wu, Y.; Zhang, H. The influence of a two-step leaching pretreatment on the steam gasification properties of cornstalk waste. Bioresour. Technol. 2022, 358, 127403. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Lyu, Y.; Luo, Y.; Duan, T.; Li, W.; Li, P. Impact of deashing treatment on biochar physicochemical properties and sorption mechanisms of naphthalene and 1-naphthol. Environ. Technol. Innov. 2021, 24, 101960. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, H.; Shao, J.; Chen, Y.; Feng, Y.; Wang, X.; Chen, H. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and co2 adsorption performance of nitrogen-enriched biochar. Energy 2015, 91, 903–910. [Google Scholar] [CrossRef]
- Mahdi, Z.; El Hanandeh, A.; Yu, Q.J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103379. [Google Scholar] [CrossRef]
- Fernández, M.J.; Chaloupková, V.; Barro, R. Water leaching of herbaceous biomass bales to reduce sintering and corrosion. Fuel 2022, 312, 122744. [Google Scholar] [CrossRef]
- Bakker, R.R.; Jenkins, B.M.; Williams, R.B. Fluidized bed combustion of leached rice straw. Energy Fuels 2002, 16, 356–365. [Google Scholar] [CrossRef]
- Zhao, H.; Song, Q.; Yao, Q. Hcl capture by rice straw char and its influence on the transformation of alkali and alkaline earth metallic species during pyrolysis. Energy Fuels 2016, 30, 5854–5861. [Google Scholar] [CrossRef]
- Gao, Q.; Ni, L.; He, Y.; Hou, Y.; Hu, W.; Liu, Z. Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells. Energy 2022, 247, 123510. [Google Scholar] [CrossRef]
- He, Y.; Ni, L.; Gao, Q.; Ren, H.; Su, M.; Hou, Y.; Liu, Z. Activated carbon with ultrahigh specific surface derived from bamboo shoot shell through k2feo4 oxidative pyrolysis for adsorption of methylene blue. Molecules 2023, 28, 3410. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Wang, S.; Wei, B.; Wang, J.; Chen, L.; Liu, K.; Wang, T. Effect of temperature and pressure on the transformation characteristics of inorganic elements in cotton straw ash. Fuel 2023, 340, 127443. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Zhao, H.; Song, Q.; Yao, Q. Release and transformation of k and cl during the pyrolysis of kcl-loaded cellulose. Fuel 2018, 226, 583–590. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of k, cl, and s during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef]
- Zhu, Y.; Tan, H.; Niu, Y.; Wang, X. Experimental study on ash fusion characteristics and slagging potential using simulated biomass ashes. J. Energy Inst. 2019, 92, 1889–1896. [Google Scholar] [CrossRef]
- Morgan, T.J.; Andersen, L.K.; Turn, S.Q.; Cui, H.; Li, D. Xrf analysis of water pretreated/leached banagrass to determine the effect of temperature, time, and particle size on the removal of inorganic elements. Energy Fuels 2017, 31, 8245–8255. [Google Scholar] [CrossRef]
- Bridgeman, T.G.; Darvell, L.I.; Jones, J.M.; Williams, P.T.; Fahmi, R.; Bridgwater, A.V.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S.C.; et al. Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 2007, 86, 60–72. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, T.; Zhang, J.; Xiang, H.; Yang, X.; Hu, W.; Liang, F.; Mi, B. Ash fusion characteristics of bamboo, wood and coal. Energy 2018, 161, 517–522. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, H.; Wang, X.; Du, W.; Mikulčić, H.; Duić, N. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. J. Clean. Prod. 2017, 155, 164–171. [Google Scholar] [CrossRef]
- Wang, M.; Xu, D.; Bai, Y.; Yu, G.; Zhang, J.; Zhang, S.; Xu, J.; Zhang, H.; Zhang, S.; Wei, J. Dynamic investigation on potassium migration and transformation during biochar combustion and its correlation with combustion reactivity. Fuel 2023, 340, 127540. [Google Scholar] [CrossRef]
- Ma, C.; Skoglund, N.; Carlborg, M.; Broström, M. Structures and diffusion motions of k and ca in biomass ash slags from molecular dynamics simulations. Fuel 2021, 302, 121072. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Song, X.; Bai, Y.; Yao, M.; Yu, G. Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash. Fuel 2020, 282, 118876. [Google Scholar] [CrossRef]
- Yang, X.; Lu, D.; Zhu, B.; Sun, Z.; Li, G.; Li, J.; Liu, Q.; Jiang, G. Phase transformation of silica particles in coal and biomass combustion processes. Environ. Pollut. 2022, 292, 118312. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Bai, J.; Kong, L.; Bai, Z.; Li, W.; Xu, J. Effect of sio 2/al 2 o 3 on fusion behavior of coal ash at high temperature. Fuel 2017, 193, 275–283. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, K.; Yao, X.; Li, J. Mineral transformations and molten mechanism during combustion of biomass ash. Renew. Energy 2023, 216, 119113. [Google Scholar] [CrossRef]
- Devasahayam, S.; Strezov, V. Thermal decomposition of magnesium carbonate with biomass and plastic wastes for simultaneous production of hydrogen and carbon avoidance. J. Clean. Prod. 2018, 174, 1089–1095. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Liu, Y.; Wang, X.; Xu, T. The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 1663–1669. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Gołombek, K.; Buk, P.; Cieślik, E.; Nowak, W. The influence of kcl on biomass ash melting behaviour and high-temperature corrosion of low-alloy steel. Energy 2019, 188, 116062. [Google Scholar] [CrossRef]
- Blomberg, T.; Makkonen, P.; Hiltunen, M. Role of alkali hydroxides in the fireside corrosion of heat transfer surfaces, a practical approach. Mater. Sci. Forum 2004, 461–464, 883–890. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Magdziarz, A.; Gajek, M.; Nowińska, K.; Nowak, W. Alkali metals association in biomass and their impact on ash melting behaviour. Fuel 2020, 261, 116421. [Google Scholar] [CrossRef]
- Fan, H.; Li, F.; Guo, Q.; Guo, M. Effect of biomass ash on initial sintering and fusion characteristics of high melting coal ash. J. Energy Inst. 2021, 94, 129–138. [Google Scholar]
- Tortosa Masiá, A.A.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Characterising ash of biomass and waste. Fuel Process. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Ma, M.; Yu, B.; Zhao, C.; Fang, Y. Prediction of ash flow temperature based on liquid phase mass fraction by factsage. J. Energy Inst. 2020, 93, 2228–2231. [Google Scholar] [CrossRef]
Samples | Content (%) | DT (°C) | ST (°C) | HT (°C) | FT (°C) |
---|---|---|---|---|---|
BA | 12.67 | <900 | <900 | <900 | <900 |
BA-WA | 1.41 | 1466 | 1485 | 1489 | 1492 |
BA-AW | 2.78 | 1472 | 1489 | >1500 | >1500 |
Samples | Chemical Composition (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | TiO2 | Fe2O3 | |
BA | 1.62 ± 0.10 | 3.07 ± 0.21 | 33.48 ±2.64 | 2.05 ± 0.04 | 1.98 ± 0.03 | 1.63 ± 0.05 | 50.30 ± 1.52 | 2.67 ± 0.21 | 0.17 ± 0.01 | 1.76 ± 0.09 |
BA-700 | 1.48 ± 0.08 | 2.78 ± 0.22 | 32.82 ±1.73 | 1.83 ± 0.02 | 1.99 ± 0.05 | 2.16 ± 0.10 | 51.65 ± 1.68 | 2.28 ± 0.07 | 0.16 ± 0.01 | 1.68 ± 0.09 |
BA-800 | 1.82 ± 0.08 | 3.24 ± 0.10 | 35.47 ±1.56 | 1.61 ± 0.01 | 2.14 ± 0.02 | 1.54 ± 0.04 | 46.17 ± 1.23 | 3.67 ± 0.09 | 0.24 ± 0.01 | 2.56 ± 0.01 |
BA-900 | 1.36 ± 0.04 | 3.21 ± 0.20 | 34.54 ±2.61 | 1.93 ± 0.07 | 2.99 ± 0.04 | 0.55 ± 0.03 | 48.10 ± 1.70 | 3.13 ± 0.15 | 0.19 ± 0.01 | 2.25 ± 0.06 |
BA-1000 | 1.18 ± 0.03 | 3.35 ± 0.07 | 34.44 ± 1.52 | 1.65 ± 0.03 | 2.20 ± 0.01 | 0.31 ± 0.01 | 48.81 ± 1.36 | 3.60 ± 0.02 | 0.26 ± 0.01 | 3.01 ± 0.11 |
BA-WA | 3.96 ± 0.17 | 2.74 ± 0.10 | 83.46 ± 0.28 | 1.56 ± 0.04 | 2.10 ± 0.04 | 0.07 ± 0.002 | 2.67 ± 0.07 | 1.53 ± 0.08 | 0.49 ± 0.03 | 0.64 ± 0.03 |
BA-WA-700 | 4.51 ± 0.12 | 3.49 ± 0.18 | 82.08 ± 0.19 | 1.73 ± 0.03 | 2.13 ± 0.03 | 0.05 ± 0.002 | 2.66 ± 0.06 | 1.41 ± 0.06 | 0.50 ± 0.02 | 0.68 ± 0.03 |
BA-WA-800 | 4.30 ± 0.21 | 3.33 ± 0.14 | 82.34 ± 0.28 | 1.77 ± 0.04 | 1.86 ± 0.05 | 0.03 ± 0.003 | 2.74 ± 0.10 | 1.54 ± 0.04 | 0.54 ± 0.02 | 0.73 ± 0.02 |
BA-WA-900 | 4.60 ± 0.18 | 3.17 ± 0.05 | 82.76 ± 0.62 | 1.79 ± 0.06 | 0.78 ± 0.2 | 0.02 ± 0.0006 | 2.80 ± 0.07 | 1.68 ± 0.16 | 0.56 ± 0.02 | 0.86 ± 0.08 |
BA-WA-1000 | 4.81 ± 0.07 | 2.85 ± 0.06 | 82.62 ± 0.22 | 1.85 ± 0.04 | 0.70 ± 0.005 | 0.02 ± 0.002 | 2.82 ± 0.07 | 1.99 ± 0.08 | 0.47 ± 0.02 | 0.78 ± 0.03 |
BA-AW | 2.93 ± 0.03 | 2.48 ± 0.12 | 89.15 ± 0.18 | 1.14 ± 0.03 | 1.31 ± 0.04 | 0.03 ± 0.001 | 1.08 ± 0.04 | 0.77 ± 0.03 | 0.27 ± 0.01 | 0.37 ± 0.01 |
BA-AW-700 | 2.86 ± 0.08 | 2.55 ± 0.09 | 88.94 ± 0.21 | 1.20 ± 0.08 | 1.29 ± 0.07 | 0.03 ± 0.002 | 1.14 ± 0.03 | 0.77 ± 0.02 | 0.31 ± 0.01 | 0.39 ± 0.01 |
BA-AW-800 | 2.48 ± 0.05 | 2.25 ± 0.08 | 90.34 ± 0.04 | 1.00 ± 0.04 | 1.07 ± 0.04 | 0.03 ± 0.002 | 1.04 ± 0.01 | 0.70 ± 0.01 | 0.25 ± 0.004 | 0.35 ± 0.005 |
BA-AW-900 | 2.52 ± 0.04 | 2.56 ± 0.15 | 89.80 ± 0.14 | 1.11 ± 0.09 | 0.63 ± 0.04 | 0.02 ± 0.002 | 1.26 ± 0.02 | 0.79 ± 0.02 | 0.31 ± 0.01 | 0.43 ± 0.01 |
BA-AW-1000 | 2.24 ± 0.11 | 2.12 ± 0.07 | 90.23 ± 0.55 | 1.23 ± 0.11 | 0.56 ± 0.05 | 0.02 ± 0.002 | 1.32 ± 0.04 | 0.85 ± 0.08 | 0.31 ± 0.02 | 0.48 ± 0.07 |
Removal Rate of Main Elements (wt%) | |||||||
---|---|---|---|---|---|---|---|
K | Si | Cl | Ca | Mg | Fe | Al | |
BA-WA | 99.41 | 72.24 | 99.52 | 93.62 | 72.78 | 95.95 | 90.06 |
BA-AW | 78.04 | 41.53 | 99.60 | 93.67 | 60.28 | 95.38 | 82.26 |
Samples | K | Si | Ca | Mg | Cl | Al | Fe |
---|---|---|---|---|---|---|---|
BA | 72.18 | 14.95 | 2.25 | 0.71 | 8.58 | 0.40 | 0.05 |
BA-700 | 59.72 | 28.90 | 1.62 | 0.75 | 2.32 | 0.57 | 1.29 |
BA-800 | 55.69 | 35.36 | 2.61 | 1.21 | 1.91 | 0.68 | 1.44 |
BA-900 | 66.45 | 23.52 | 2.54 | 0.22 | 1.21 | 0.14 | 0.69 |
BA-1000 | 60.79 | 28.29 | 3.73 | 0.90 | 0.44 | 0.52 | 1.72 |
BA-WA | 4.98 | 87.23 | 3.17 | 2.56 | 0.24 | 0 | 1.02 |
BA-WA-700 | 1.60 | 92.39 | 0.46 | 1.66 | 0 | 1.31 | 0.03 |
BA-WA-800 | 1.87 | 92.12 | 0.67 | 2.58 | 0.01 | 0.77 | 0.28 |
BA-WA-900 | 3.92 | 80.89 | 1.56 | 9.22 | 0 | 1.53 | 0.28 |
BA-WA-1000 | 1.81 | 87.55 | 1.34 | 5.96 | 0 | 0.59 | 0.14 |
BA-AW | 0.58 | 96.55 | 0.98 | 1.17 | 0.10 | 0.35 | 0.12 |
BA-AW-700 | 0.50 | 95.7 | 0.07 | 0.51 | 0.15 | 0.22 | 0.05 |
BA-AW-800 | 1.35 | 88.09 | 0.44 | 4.51 | 0.06 | 0.55 | 0.35 |
BA-AW-900 | 0.56 | 93.05 | 0.44 | 3.73 | 0 | 0.41 | 0.21 |
BA-AW-1000 | 0.99 | 92.62 | 0.70 | 1.83 | 0.05 | 1.05 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Gao, Q.; Ni, L.; Su, M.; Rong, S.; Liu, S.; Zhong, Y.; Liu, Z. Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells. Molecules 2024, 29, 1400. https://doi.org/10.3390/molecules29061400
Ren H, Gao Q, Ni L, Su M, Rong S, Liu S, Zhong Y, Liu Z. Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells. Molecules. 2024; 29(6):1400. https://doi.org/10.3390/molecules29061400
Chicago/Turabian StyleRen, Hao, Qi Gao, Liangmeng Ni, Mengfu Su, Shaowen Rong, Shushu Liu, Yanhang Zhong, and Zhijia Liu. 2024. "Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells" Molecules 29, no. 6: 1400. https://doi.org/10.3390/molecules29061400
APA StyleRen, H., Gao, Q., Ni, L., Su, M., Rong, S., Liu, S., Zhong, Y., & Liu, Z. (2024). Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells. Molecules, 29(6), 1400. https://doi.org/10.3390/molecules29061400