Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,353)

Search Parameters:
Keywords = day-to-day variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4615 KiB  
Article
Daily Variation in the Feeding Activity of Pacific Crown-of-Thorns Starfish (Acanthaster cf. solaris)
by Josie F. Chandler, Deborah Burn, Will F. Figueira, Peter C. Doll, Abby Johandes, Agustina Piccaluga and Morgan S. Pratchett
Biology 2025, 14(8), 1001; https://doi.org/10.3390/biology14081001 - 5 Aug 2025
Abstract
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this [...] Read more.
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this study, structure-from-motion photogrammetry and intensive tracking of adult Pacific CoTS over an extended survey period were used to generate three-dimensional, high-resolution estimates of daily feeding rates. Our findings revealed substantial variation in the areal extent of coral consumed, both across consecutive days and among individuals. Notably, CoTS did not feed consistently; feeding occurred on 65% of observation days, with 2–3 days periods of inactivity common. Despite this variability, mean daily feeding rates aligned with previous studies (1.35 coral colonies d−1; 198.4 cm2 day−1 planar area, and 998.83 cm2 day−1 three-dimensional surface area). Across all tracked individuals (n = 8), feeding was recorded on 17 coral genera; however, Acropora alone accounted for 51% of colonies consumed and contributed 82% of the total three-dimensional surface area ingested during the survey period. This highlights the disproportionately large feeding yield derived from Acropora-dominated diets and raises important questions about how future declines in Acropora cover may impact CoTS feeding success and energetic intake. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

23 pages, 2733 KiB  
Article
Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines
by Kelebonye Ramolekwa, Motlalepula Pholo-Tait, Travis Parker, Goitseone Malambane, Samodimo Ngwako and Lekgari Lekgari
Int. J. Mol. Sci. 2025, 26(15), 7543; https://doi.org/10.3390/ijms26157543 (registering DOI) - 5 Aug 2025
Abstract
Induced mutation plays an integral part in plant breeding as it introduces new variability among the population. A study was conducted in cowpeas [Vigna unguiculata (L.) Walp] to assess the yield divergence, heritability, genetic advance, and correlation among the M5 Tswana cowpea [...] Read more.
Induced mutation plays an integral part in plant breeding as it introduces new variability among the population. A study was conducted in cowpeas [Vigna unguiculata (L.) Walp] to assess the yield divergence, heritability, genetic advance, and correlation among the M5 Tswana cowpea mutants. The experiment utilized seven genotypes under rainfed and supplementary irrigation during the 2022/23 and 2023/24 cropping seasons. The mutant lines demonstrated significant variations in days to 50% emergence (DE) and days to 50% flowering (DF). Tswana emerged earlier (5–7 days) and flowered in 21–54 days across the two seasons, compared to some of the mutant lines. The yield and yield components varied among some mutant lines and the control. Most importantly, mutants outperformed the Tswana control for some of these traits, indicating potential for genetic improvement. An analysis of genetic parameters revealed minimal environmental influences on some of the observed traits (GH, PN, GY), while others showed little environmental impact. Variation in heritability (H2) and genetic advance (GA%) between the two seasons limited the contribution of genotypic effects in the expression of the studied traits. Correlation analysis revealed strong and significant positive associations between DE and GH, as well as between DF and PW. Most traits, except DF and PW, were positively correlated with grain yield (GY), although the correlations were not significantly different. Cluster analysis grouped the genotypes into four distinct clusters. Principal component analysis (PCA) revealed the superiority of mutant lines (Tswana-300Gy-214, Tswana-400Gy mutant lines, and Tswana-500Gy-31) in their association with improved GY, pod weight (PW), 100-seed weight (100-SW), and seed number per pod (SN/P). Interestingly, the Tswana control formed a separate cluster and diverged from the mutants in PCA, suggesting that induced mutagenesis effectively targeted genes controlling the traits considered in this study. Full article
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

22 pages, 2066 KiB  
Article
Optimizing In Vitro Establishment Protocols for ‘Merensky 2’ Avocado Rootstock (Persea americana Mill.)
by Fernanda García-Cabrera, Mónica Castro, Ricardo Cautin, Carmen Estay, Leda Guzmán, María José Marchant and Francesca Guerra
Horticulturae 2025, 11(8), 900; https://doi.org/10.3390/horticulturae11080900 (registering DOI) - 3 Aug 2025
Viewed by 46
Abstract
In vitro propagation of avocado faces several limitations. To optimize the establishment phase, we evaluated three plant material types: etiolated shoots, 30-day covered field shoots, and uncovered field shoots, collected at two time points. Biochemical and anatomical analyses were conducted to understand material [...] Read more.
In vitro propagation of avocado faces several limitations. To optimize the establishment phase, we evaluated three plant material types: etiolated shoots, 30-day covered field shoots, and uncovered field shoots, collected at two time points. Biochemical and anatomical analyses were conducted to understand material performance during establishment. Across both collection times, etiolated shoots exhibited minimal oxidation, enhanced bud sprouting, reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels, increased peroxidase (POD) activity, and improved xylem development, consistently outperforming field-derived materials. Using etiolated shoots, we optimized disinfection and in vitro multiplication protocols. Pre-disinfection with 3 mL L−1 Phyton 27® and 2% sodium hypochlorite yielded the highest survival rates. In multiplication experiments, varying concentrations of 6-benzylaminopurine (BAP) and meta-topolin (MT), supplemented with gibberellic acid (GA3), did not significantly affect growth variation. However, 8.88 µM BAP with 0.29 µM GA3 resulted in the greatest number of sprouted buds. Full article
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 96
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

11 pages, 577 KiB  
Article
New Method for the Determination of Lamotrigine in Human Saliva Using SPE-LC-DAD
by Ewelina Dziurkowska, Aleksandra Michalak, Alina Plenis and Maciej Dziurkowski
Molecules 2025, 30(15), 3237; https://doi.org/10.3390/molecules30153237 - 1 Aug 2025
Viewed by 135
Abstract
(1) Background: The concentration of lamotrigine, an antiepileptic drug very often used in bipolar disorder, is most often determined in the blood, with many inconveniences. An alternative may be to use saliva as a diagnostic material for this purpose. The development of a [...] Read more.
(1) Background: The concentration of lamotrigine, an antiepileptic drug very often used in bipolar disorder, is most often determined in the blood, with many inconveniences. An alternative may be to use saliva as a diagnostic material for this purpose. The development of a method to determine lamotrigine in saliva as a biological material significantly improves patient comfort during sampling. The developed method uses solid-phase extraction for the isolation of the drug from saliva for the first time. (2) Methods: This study aimed to develop a method to determine lamotrigine in saliva using solid-phase extraction (SPE) for isolation and liquid chromatography with a diode array detector (LC-DAD) for quantitative analysis. (3) Results: The method was validated by determining its linearity in the concentration range 10–2000 ng/mL (R2 > 0.99), and the intra- and inter-day precision expressed as coefficient of variation (CV%) did not exceed 15%. (4) Conclusions: The developed method was used to determine the salivary concentration of lamotrigine in patients treated with the studied compound, confirming its usefulness in bipolar disorder (BD). Full article
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 146
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 - 31 Jul 2025
Viewed by 237
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

17 pages, 919 KiB  
Article
Timing of Intervals Between Utterances in Typically Developing Infants and Infants Later Diagnosed with Autism Spectrum Disorder
by Zahra Poursoroush, Gordon Ramsay, Ching-Chi Yang, Eugene H. Buder, Edina R. Bene, Pumpki Lei Su, Hyunjoo Yoo, Helen L. Long, Cheryl Klaiman, Moira L. Pileggi, Natalie Brane and D. Kimbrough Oller
Brain Sci. 2025, 15(8), 819; https://doi.org/10.3390/brainsci15080819 (registering DOI) - 30 Jul 2025
Viewed by 178
Abstract
Background: Understanding the origin and natural organization of early infant vocalizations is important for predicting communication and language abilities in later years. The very frequent production of speech-like vocalizations (hereafter “protophones”), occurring largely independently of interaction, is part of this developmental process. Objectives: [...] Read more.
Background: Understanding the origin and natural organization of early infant vocalizations is important for predicting communication and language abilities in later years. The very frequent production of speech-like vocalizations (hereafter “protophones”), occurring largely independently of interaction, is part of this developmental process. Objectives: This study aims to investigate the gap durations (time intervals) between protophones, comparing typically developing (TD) infants and infants later diagnosed with autism spectrum disorder (ASD) in a naturalistic setting where endogenous protophones occur frequently. Additionally, we explore potential age-related variations and sex differences in gap durations. Methods: We analyzed ~1500 five min recording segments from longitudinal all-day home recordings of 147 infants (103 TD infants and 44 autistic infants) during their first year of life. The data included over 90,000 infant protophones. Human coding was employed to ensure maximally accurate timing data. This method included the human judgment of gap durations specified based on time-domain and spectrographic displays. Results and Conclusions: Short gap durations occurred between protophones produced by infants, with a mode between 301 and 400 ms, roughly the length of an infant syllable, across all diagnoses, sex, and age groups. However, we found significant differences in the gap duration distributions between ASD and TD groups when infant-directed speech (IDS) was relatively frequent, as well as across age groups and sexes. The Generalized Linear Modeling (GLM) results confirmed these findings and revealed longer gap durations associated with higher IDS, female sex, older age, and TD diagnosis. Age-related differences and sex differences were highly significant for both diagnosis groups. Full article
Show Figures

Figure 1

14 pages, 2075 KiB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 196
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

17 pages, 2495 KiB  
Article
Production Capacity and Temperature–Pressure Variation Laws in Depressurization Exploitation of Unconsolidated Hydrate Reservoir in Shenhu Sea Area
by Yuanwei Sun, Yuanfang Cheng, Yanli Wang, Jian Zhao, Xian Shi, Xiaodong Dai and Fengxia Shi
Processes 2025, 13(8), 2418; https://doi.org/10.3390/pr13082418 - 30 Jul 2025
Viewed by 238
Abstract
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law [...] Read more.
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law under depressurization exploitation. Therefore, a thermal–fluid–solid–chemical coupling model for natural gas hydrate depressurization exploitation in the Shenhu sea area was constructed to analyze the variation law of reservoir parameters and productivity. The results show that within 0–30 days, rapid near-well pressure drop (13.83→9.8 MPa, 36.37%) drives peak gas production (25,000 m3/d) via hydrate dissociation, with porosity (0.41→0.52) and permeability (75→100 mD) increasing. Within 30–60 days, slower pressure decline (9.8→8.6 MPa, 12.24%) and fines migration cause permeability fluctuations (120→90 mD), reducing gas production to 20,000 m3/d. Within 60–120 days, pressure stabilizes (~7.6 MPa) with residual hydrate saturation < 0.1, leading to stable low permeability (60 mD) and gas production (15,000 m3/d), with cumulative production reaching 2.2 × 106 m3. This study clarifies that productivity is governed by coupled “pressure-driven dissociation–heat limitation–fines migration” mechanisms, providing key insights for optimizing depressurization strategies (e.g., timed heat supplementation, anti-clogging measures) to enhance commercial viability of unconsolidated hydrate reservoirs. Full article
Show Figures

Figure 1

17 pages, 1893 KiB  
Article
Tracking Heat Stress in Broilers: A Thermographic Analysis of Anatomical Sensitivity Across Growth Stages
by Rimena do Amaral Vercellino, Irenilza de Alencar Nääs and Daniella Jorge de Moura
Animals 2025, 15(15), 2233; https://doi.org/10.3390/ani15152233 - 29 Jul 2025
Viewed by 210
Abstract
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical [...] Read more.
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical regions were recorded using infrared thermography. Thermal response metrics (maximum, minimum, and mean peak variation) were analyzed with repeated-measures ANOVA and eta squared (η2) to quantify the strength of physiological responses. Principal component and cluster analyses grouped body regions based on their thermal sensitivity. The comb and wattle consistently showed the highest temperature increases (ΔT = 2.3–4.1 °C) and strongest effect sizes (η2 ≥ 0.70), establishing them as primary thermoregulatory markers. As age increased, more body regions—especially peripheral zones like the drumstick and tail—exhibited strong responses (η2 > 0.40), indicating an expansion of thermoregulatory activity. Cluster analysis identified three distinct sensitivity groups, confirming anatomical differences in thermal regulation. Thermographic responses to heat stress in broilers depend on age and region. The comb and wattle are the most reliable biomarkers, while peripheral responses grow more prominent with maturity. These findings support the use of targeted, age-specific infrared thermography for monitoring poultry welfare. Full article
Show Figures

Graphical abstract

20 pages, 4256 KiB  
Article
Design Strategies for Stack-Based Piezoelectric Energy Harvesters near Bridge Bearings
by Philipp Mattauch, Oliver Schneider and Gerhard Fischerauer
Sensors 2025, 25(15), 4692; https://doi.org/10.3390/s25154692 - 29 Jul 2025
Viewed by 171
Abstract
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as [...] Read more.
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as bridges. The need for such monitoring is exemplified by the fact that the condition of close to 25% of public roadway bridges in, e.g., Germany is not satisfactory. Stack-based piezoelectric energy harvesting systems (pEHSs) installed near bridge bearings could provide information about the traffic and dynamic loads on the one hand and condition-dependent changes in the bridge characteristics on the other. This paper presents an approach to co-optimizing the design of the mechanical and electrical components using a nonlinear solver. Such an approach has not been described in the open literature to the best of the authors’ knowledge. The mechanical excitation is estimated through a finite element simulation, and the electric circuitry is modeled in Simulink to account for the nonlinear characteristics of rectifying diodes. We use real traffic data to create statistical randomized scenarios for the optimization and statistical variation. A main result of this work is that it reveals the strong dependence of the energy output on the interaction between bridge, harvester, and traffic details. A second result is that the methodology yields design criteria for the harvester such that the energy output is maximized. Through the case study of an actual middle-sized bridge in Germany, we demonstrate the feasibility of harvesting a time-averaged power of several milliwatts throughout the day. Comparing the total amount of harvested energy for 1000 randomized traffic scenarios, we demonstrate the suitability of pEHS to power wireless sensor nodes. In addition, we show the potential sensory usability for traffic observation (vehicle frequency, vehicle weight, axle load, etc.). Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Demographic Parameters and Life History Traits of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) Influenced by Different Temperatures and Two Types of Food
by Mohammed M. E. Elmoghazy, Eslam Kamal Fahmy, Tagwa Salah Ahmed Mohammed Ali, Mohamed El-Sherbiny, Rasha Hamed Al-Serwi, Moaz Abulfaraj and Dalia M. A. Elsherbini
Insects 2025, 16(8), 777; https://doi.org/10.3390/insects16080777 - 29 Jul 2025
Viewed by 330
Abstract
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history [...] Read more.
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history and demographic parameters of the predator mite N. cucumeris. Mite cultures in the laboratory were developed using Tetranychus urticae Koch, and N. cucumeris was collected from field plants. The developmental stages of N. cucumeris fed on date palm pollen and the immature stages of T. urticae were investigated in a laboratory setting at different temperatures. Our research revealed that N. cucumeris readily accepted both food types at all the tested temperatures. The developmental stages and adult longevity of N. cucumeris, both female and male, decreased dramatically when the temperature increased from 18 °C to 34 °C. The net reproductive rate (R0) reached its greatest values of 22.52 and 9.72 offspring/individual at 26 °C, and the intrinsic rate of increase (rm) reached its maximum values of 0.17 and 0.13 day−1 at 34 °C and minimum of 0.12 and 0.10 day−1 at 18 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. Conversely, the average generation time (T) showed a notable reduction from 22.48 to 16.48 and 20.88 to 16.76 days, accompanied by an upsurge in temperature from 18 °C to 34 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. The finite rate of growth (λ) exhibited distinct variations, reaching its highest value at 34 °C, 26 °C, and 18 °C when fed on date palm pollen and immature stages of T. urticae, respectively. From these results, we can conclude that N. cucumeris was successfully fed date palm pollen as an alternate source of nourishment. In addition, the immature stages of T. urticae are suitable as food sources for N. cucumeris because they shorten the mean generation time. Therefore, the success of mass-rearing the predator mite N. cucumeris on a different, less expensive diet, such as date palm pollen, and determining the most suitable temperature for it has increased its spread as a biocontrol agent. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 10485 KiB  
Article
The Role of Air Conditioning Adaptation in Mitigating Compound Day–Night Heatwave Exposure in China Under Climate Change
by Yuke Wang and Feng Ma
Atmosphere 2025, 16(8), 912; https://doi.org/10.3390/atmos16080912 - 28 Jul 2025
Viewed by 178
Abstract
Global warming and rapid urbanization have increased population exposure to heatwaves, with compound day- and night-time heatwaves (CDNH) posing greater health risks than individual heatwave events. Although air conditioning (AC) adaptation effectively mitigates heat-related impacts, its role in reducing CDNH exposure under climate [...] Read more.
Global warming and rapid urbanization have increased population exposure to heatwaves, with compound day- and night-time heatwaves (CDNH) posing greater health risks than individual heatwave events. Although air conditioning (AC) adaptation effectively mitigates heat-related impacts, its role in reducing CDNH exposure under climate change remains unknown. Using meteorological and socioeconomic data, this study quantified population exposure to CDNHs and the impacts that could be avoided through AC adaptation across China and its regional variations. Results show that CDNH exposure risks were particularly high in the middle–lower Yangtze–Huaihe Basin and south China, with an increasing trend observed over the period of 2001–2022. AC adaptation has reduced the exposure risk and its upward trend by 5.85% and 37.87%, respectively, with higher mitigating effects in urban areas. By breaking down the total exposure changes into climatic, demographic, and AC-driven changes, this study reveals that increased AC contributes 10.16% to exposure reduction, less than the effect of climate warming (59.80%) on the exposure increases. These findings demonstrate that expanding AC adaptation alone is insufficient to offset climate-driven increases in exposure, highlighting the urgent need for more effective adaptation measures to address climate change and thereby alleviate its adverse impacts on human beings. Full article
Show Figures

Figure 1

Back to TopTop