Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines
Abstract
1. Introduction
2. Results
2.1. Combined Analysis of Variance Indicating Performance of the Mutant Lines Across the Two Seasons
2.2. Performance of M5 Cowpea Mutants in Agronomic Traits Across the Two Seasons
2.3. Yield and Yield Trait Performance of M5 Cowpea Mutants Across the Two Cropping Seasons
2.4. Genetic Parameters for the M5 Cowpea Population During the 2022/23 and 2023/24 Cropping Seasons
2.5. Correlation Coefficient Analysis
2.6. Agro-Morphological Cluster Analysis
2.7. Principal Component Analysis
3. Discussion
3.1. Developmental Stages and Growth Habits
3.2. Yield and Yield Components
3.3. Heritability Estimates and Genetic Variability for the Agro-Morphological Traits
3.4. Pearson Correlation Among the Agro-Morphological Traits
3.5. Cluster and Principal Component Analysis for Agro-Morphological Traits
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Site and Design
4.3. Data Collection
4.3.1. Agronomic Traits and Grain Yield
4.3.2. Heritability Estimates for Induced Genetic Variability
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M5 | Mutant 5 |
DE | Days to 50% emergence |
DF | Days to 50% flowering |
PW | Pod weight |
SN/P | Seed number per pod |
100-SW | 100-seed weight |
GY | Grain yield |
PL | Pod number |
PN | Pod number |
GH | Growth habit |
H2 | Broad-sense heritability |
GA | Genetic advance |
GA% | Genetic advance expressed as a percentage |
GV | Genotypic variance |
GCV | Genotypic coefficient of variation |
PV | Phenotypic variance |
PCV | Phenotypic coefficient of variation |
ANOVA | Analysis of variance |
IAEA | International Atomic Energy Agency |
SSD | Single-seed descent |
PCA | Principal component analysis |
ROS | Reactive oxygen species |
Appendix A
Appendix A.1
Appendix A.2
References
- Bhandari, H.R.; Bhanu, A.N.; Strivastava, K.; Sign, M.N.; Hemantaranjan, S.A. Assessment of Genetic Diversity in Crop Plants—An Overview. Adv. Plants Agric. Res. 2017, 7, 279–286. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T. Food Production in the Context of Global Developmental Challenges. Agriculture 2022, 12, 832. [Google Scholar] [CrossRef]
- Diouf, M.; Diallo, S.; Badiane, F.A.; Diack, O.; Diouf, D. Development of new cowpea [Vigna unguiculata (L.) Walp] Mutant Genotypes, Analysis of Their Agromorphological Variation, Genetic Diversity and Population Structure. Biocell 2021, 45, 345–362. [Google Scholar] [CrossRef]
- Horn, L.N.; Nghituwamata, S.N.; Isabella, U. Cowpea Production Challenges and Contribution to Livelihood in Sub-Saharan Region. Agric. Sci. 2022, 13, 25–32. [Google Scholar] [CrossRef]
- Ambika, A.M.S.; Hamwieh, A.; Talukdar, A.; Kumar, G.S.; Sharma, A.; Joshi, R.; Upadhyaya, H.; Singh, K.; Humar, R. Unraveling Origin, History, Genetics, and Strategies for Accelerated Domestication and Diversification of Food Legumes. Front. Genet. 2022, 13, 932430. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.R.; Solanki, S.D.; Rahevar, P.M.; Patel, D.A. Genetic Variability, Correlation and Path Coefficient Analysis for Yield and Its Attributing Traits in Cowpea [Vigna unguiculata (L.) Walp] Accessions. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1281–1293. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.; Olufajo, O.; et al. Cowpea [Vigna unguiculata (L.) Walp]: Genetics, Genomics and Breeding. Plant Breed. 2019, 138, 415–424. [Google Scholar] [CrossRef]
- Sarma, A.; Dhole, V.J.; Bhattacharjee, A.; Das, P.; Sarma, D.; Bordoloi, D. Induced Genetic Variability through Physical and Chemical Mutagens in M2 Generation of Green gram. Legume Res. 2022, 45, 1357–1361. [Google Scholar] [CrossRef]
- Abha, R.; Meena, M.L. Studies on Genetic Variability, Heritability and Genetic Advance in Cowpea [Vigna unguiculata (L.) Walp] for Green Pod Yield and its Component. J. Exp. Agric. Int. 2024, 46, 1005–1015. [Google Scholar] [CrossRef]
- Mba, C. Induced Mutations Unleash the Potential of Plant Genetic Resources for Food and Agriculture. Agronomy 2013, 3, 200–231. [Google Scholar] [CrossRef]
- Raina, A.; Khan, S. Field Assessment of Yield and its Contributing Traits in Cowpea Treated with Lower, Intermediate, and Higher Doses of Gamma Rays and Sodium Azide. Front. Plant Sci. 2023, 14, 1188077. [Google Scholar] [CrossRef]
- Hase, Y.; Satoh, K.; Seito, H.; Oono, Y. Genetic Consequences of Acute/Chronic Gamma and Carbon Ion Irradiation of Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and its Recent Advances: An Overview of its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Pinheiro dos Santos, S.; Dos Santos Araújo, M.; Frazão Lelis de Aragão, W.; Jackson Damasceno-Silva, K.; De Moura Rocha, M. Genetic Analysis of Yield Component Traits in Cowpea [Vigna unguiculata (L.) Walp]. Crop Breed. Appl. Biotechnol. 2024, 24, 46432413. [Google Scholar] [CrossRef]
- Panchta, R.; Arya, R.K.; Vu, N.N.; Behl, R.K. Genetic Divergence in Cowpea [Vigna unguiculata (L). Walp]—An Overview. Ekin J. Crop Breed. Genet. 2021, 7, 1–20. [Google Scholar]
- Sadimantara, G.R.; Yusuf, D.N.; Febrianti, E.; Leomo, S.; Muhidin, M. The Performance of Agronomic Traits, Genetic Variability, and Correlation Studies for Yield and its Components in Some Red Rice (Oryza sativa) Promising Lines. Biodiversitas 2021, 22, 3994–4001. [Google Scholar] [CrossRef]
- Meena, B.L.; Das, S.P.; Meena, S.K.; Kumari, R.; Devi, A.G.; Devi, H.L. Assessment of GCV, PCV, Heritability and Genetic Advance for Yield and its Components in Field Pea (Pisum sativum L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1025–1033. [Google Scholar] [CrossRef]
- Baye, T. Genotypic and Phenotypic Variability in Vernonia Galamensis Germplasm Collected from Eastern Ethiopia. J. Agric. Sci. 2002, 139, 161–168. [Google Scholar] [CrossRef]
- Biru, A.; Kassahun, T.; Teklehaimanot, H.; Dagnachew, L. Broad Sense Heritability and Genetic Advance for Grain Yield and Yield Components of Chickpea (Cicer arietinum L.) Genotypes in Western Ethiopia. Int. J. Genet. Mol. Biol. 2017, 9, 21–25. [Google Scholar] [CrossRef]
- Yadesa, L.; Abebe, B.; Tafa, Z. Genetic Variability, Heritability, Correlation Analysis, Genetic advance, and Principal Component Analysis of Grain Yield and Yield Related Traits of Quality Protein Maize (Zea mays L.) Inbred lines Adapted to Mid-altitude Agroecology of Ethiopia. EAS J. Nutr. Food Sci. 2022, 4, 8–17. [Google Scholar] [CrossRef]
- Saibari, I.; Barrijal, S.; Mouhib, M.; Belkadi, N.; Hamim, A. Gamma Irradiation-Induced Genetic Variability and its Effects on the Phenotypic and Agronomic Traits of Groundnut (Arachis hypogaea L.). Front. Genet. 2023, 14, 1124632. [Google Scholar] [CrossRef] [PubMed]
- El-Maarouf-bouteau, H. The Seed and the Metabolism Regulation. Biology 2022, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.J.; Meneghello, G.E.; Jorge, M.H.A.; Costa, E. The Importance of Physiological Quality of Seeds for Agriculture. Colloq. Agrar. 2021, 17, 102–119. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Quiroz, L.F.; Spillane, C.; Wu, R.; Mattoo, A.K.; Ortiz, R. Unlocking Allelic Variation in Circadian Clock Genes to Develop Environmentally Robust and Productive Crops. Planta 2024, 259, 72. [Google Scholar] [CrossRef]
- Kamsurya, M.Y.; Ala, A.; Musa, Y.; Rafiuddin. The Effect of Micro-Climate on The Flowering Phenology of Forest Clove Plants (Zyzygium obtusifolium L.). Earth Environ. Sci. 2023, 1134, 012031. [Google Scholar] [CrossRef]
- Kang, R.; Seo, E.; Kim, G.; Park, A.; Kanh, S.; Ha, B. Radio Sensitivity of Cowpea Plants After Gamma-Ray and Proton-Beam Irradiation. Plant Breed. Biotechnol. 2020, 8, 281–292. [Google Scholar] [CrossRef]
- Victor, A.O.; Chris, E.K.; Garuba, O.; Eberechi, A.F.; Innocent, A.S. Effect of X-Ray Irradiation on the Growth and Yield Parameters of Four Cowpea [Vigna unguiculata (L.) Walp] Genotypes. J. Sci. Technol. Res. 2021, 3, 58–68. [Google Scholar]
- Rukesh, A.G.; Rahuman, M.A.; Rahuman, A.; Latitia, C.; Packiaraj, D. Impact of Gamma Irradiation Induced Mutation on Morphological and Yield Contributing Traits of Two Genotypes of Green Gram (Vigna radiata L.). J. Pharmacogn. Phytochem. 2017, 6, 1229–1234. [Google Scholar]
- Thounaojam, A.S.; Patel, K.V.; Solanki, R.U.; Chaudhary, R.I.; Chavda, N.K. Response of Gamma Irradiation on Germination and Seedling Growth of Green Gram var. GAM 8. Environ. Conserv. J. 2024, 25, 131–137. [Google Scholar] [CrossRef]
- Vanmathi, S.; Arulbalachandran, D.; Soundarya, V. Effects of Gamma Radiation on Quantitative Traits and Genetic Variation of Three Successive Generations of Cowpea [Vigna unguiculata (L.) Walp]. Plant Sci. Today 2021, 8, 578–589. [Google Scholar] [CrossRef]
- Raina, A.; Laskar, R.A.; Wani, M.R.; Jan, B.L.; Ali, S.; Khan, S. Gamma Rays and Sodium Azide Induced Genetic Variability in High-Yielding and Biofortified Mutant Lines in Cowpea [Vigna unguiculata (L.) Walp]. Front. Plant Sci. 2022, 13, 911049. [Google Scholar] [CrossRef]
- Horn, L.N.; Ghebrehiwot, H.M.; Shimelis, H.A. Selection of Novel Cowpea Genotypes Derived Through Gamma Irradiation. Front. Plant Sci. 2016, 7, 262. [Google Scholar] [CrossRef]
- Rizzo, G.; Monzon, J.P.; Tenorio, F.A.; Howard, E.; Cassman, K.G.; Grassini, P. Climate and Agronomy, not Genetics, Underpin Recent Maize Yield Gains in Favorable Environments. Proc. Natl. Acad. Sci. USA 2022, 119, e2113629119. [Google Scholar] [CrossRef]
- Silva, J.A.; Barros, J.R.A.; Silva, E.G.F.; Rocha, M.M.; Angelotti, F. Cowpea: Prospecting Heat-Tolerant Genotypes. Agronomy 2024, 14, 1969. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Biol. 2010, 3, 942–945. [Google Scholar] [CrossRef]
- Turc, O.; Tardieu, F. Drought Affects Abortion of Reproductive Organs by Exacerbating Developmentally Driven Processes via Expansive Growth and Hydraulics. J. Exp. Bot. 2018, 69, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.S.; McLaughlin, J.E. Functional Reversion to Identify Controlling Genes in Multigenic Responses: Analysis of Floral Abortion. J. Exp. Bot. 2007, 58, 267–277. [Google Scholar] [CrossRef]
- Resentini, F.; Orozco-Arroyo, G.; Cucinotta, M.; Mendes, M.A. The Impact of Heat Stress in Plant Reproduction. Front. Plant Sci. 2023, 14, 1271644. [Google Scholar] [CrossRef]
- Mthiyane, P.; Aycan, M.; Mitsui, T. Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review. Stresses 2024, 14, 452–480. [Google Scholar] [CrossRef]
- Badr, A.; El-Shazly, H.H.; Halawa, M. Cytological Effects of Gamma Radiation and its Impact on Growth and Yield of M1 and M2 Plants of Cowpea Cultivars. Cytologia 2014, 79, 195–206. [Google Scholar] [CrossRef]
- Khan, W.M. Gamma Radiation Induced Mutation in M2 Generation of Pea (Pisum sativum L.). Pure Appl. Biol. 2018, 7, 832–839. [Google Scholar] [CrossRef]
- Sarri, E.; Samolada, S.M.; Katsileros, A.; Tomlekova, N.; Abraham, E.M.; Tani, E. Effect of γ-Irradiation on the Growth and Yield Response of Three Varieties of Pea (Pisum spp.). Agronomy 2024, 14, 1695. [Google Scholar] [CrossRef]
- Masry, A.; Fayad, A.; Taher, D. Genetic Improvements in Pea (Pisum sativum L.) Through Irradiation by Gama Rays. J. Plant Prod. 2019, 10, 1089–1093. [Google Scholar] [CrossRef]
- Raina, A.; Laskar, R.A.; Tantray, Y.R.; Khursheed, S.; Wani, M.R.; Khan, S. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Sci. Rep. 2020, 10, 3687. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, A.; Adly, M.; El-Fiki, A. Morphological, Agronomical and Molecular Characterization in Irradiated Cowpea [Vigna unguiculata (L.) Walp] and Detection by Start Codon Target Markers. J. Radiat. Res. Appl. Sci. 2019, 12, 403–412. [Google Scholar] [CrossRef]
- Thenuja, M.; Sutharsan, S.; Rifnas, L.M. Effects of Different Levels of Gamma Radiation on Growth and Yield Characteristics of Groundnut. Asian J. Res. Agric. For. 2024, 10, 1–10. [Google Scholar] [CrossRef]
- Khan, K.; Muhammad, I.; Abdul, A.; Bashir, A.; Fazli, K.; Hassan, S. Effect of Gamma Irradiation on Yield and Yield Components of Barley (Hordeum vulgare L.). Pak. J. Biol. Sci. 2003, 6, 1695–1697. [Google Scholar] [CrossRef]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed Number as a Function of Growth. A Comparative Study in Soybean, Sunflower, and Maize. Crop Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef]
- Ogidi, E.G.O.; Omosun, O.; Markson, A.A.; Kalu, M. Effects of Gamma Ray Irradiation on the Metric Traits of Vegetable Cowpea [Vigna unguiculata (L.) Walp] in Umudike, Southern Nigeria. Asian J. Sci. Technol. 2010, 5, 86–90. Available online: https://www.journalajst.com (accessed on 22 May 2014).
- Olasupo, F.O.; Ilori, C.O.; Forster, B.P.; Bado, S. Mutagenic Effects of Gamma Radiation on Eight Accessions of Cowpea (Vigna unguiculata (L.) Walp). Am. J. Plant Sci. 2016, 7, 339–351. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. Horticulturae 2022, 8, 241. [Google Scholar] [CrossRef]
- Yuliasti, Y.; Reflinur, R. Field Performance of Five Soybean Mutants Under Drought Stress Conditions and Molecular Analysis using SSR Markers. At. Indones. 2017, 43, 103–109. [Google Scholar] [CrossRef]
- Supanjani, S.; Alexander, S.; Setyowati, N. Effect of Gamma Irradiation Dosage on Green Bean Growth and Yield. BIO Web Conf. 2024, 123, 01024. [Google Scholar] [CrossRef]
- Amin, R.; Laskar, R.A.; Khan, S. Assessment of Genetic Response and Character Association for Yield and Yield Components in Lentil (Lens culinaris L.) Population Developed Through Chemical Mutagenesis. Cogent Food Agric. 2015, 1, 1000715. [Google Scholar] [CrossRef]
- Roka, P.; Shrestha, S.; Adhikari, S.P.; Neupane, A.; Shreepaili, B.; Bista, M.K. A review on Genetic Parameters Estimation, Trait Association, and Multivariate Analysis for Crop Improvement. Arch. Agric. Environ. Sci. 2024, 9, 618–625. [Google Scholar] [CrossRef]
- Kuru, B.; Menzir, A.; Kassa, M. Genetic Parameters, Association of Traits and Selection of Durum Wheat Genotypes (Triticum turgidum L. var. durum) Advanced Lines at Injibara, Northwestern Ethiopia. Agrosyst. Geosci. Environ. 2025, 8, e70143. [Google Scholar] [CrossRef]
- Mohammed, A.; Tesso, B.; Ojiewo, C.; Ahmed, S. Assessment of Genetic Variability and Heritability of Agronomic Traits in Ethiopian Chickpea (Cicer Arietinum L.) Landraces. Black Sea J. Agric. 2019, 2, 10–15. [Google Scholar]
- Satpute, V.D.; Jagtap, V.S.; Sarvade, P.B.; Swami, M.R.; Gavhale, K.N.; Gavhane, Y.D. Genetic Variability, Heritability and Genetic Advance of Yield and Related Traits in F4 and F5 Generations of Okra [Abelmoschus esculentus (L.) Moench]. Int. J. Curr. Microbiol. Appl. Sci. 2014, 13, 15–21. [Google Scholar] [CrossRef]
- Adhikari, B.N.; Joshi, B.P.; Shrestha, J.; Bhatta, N.R. Genetic Variability, Heritability, Genetic Advance and Correlation Among Yield and Yield Components of Rice (Oryza sativa L.). J. Agric. Nat. Resour. 2018, 1, 149–160. [Google Scholar] [CrossRef]
- Sadhukhan, R.; Chandra, B.; Viswavidyalaya, K.; Vangaru, S. Genetic Variability Studies in Chickpea Yield and Yield Related Traits Takkuri Raju. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 177–183. [Google Scholar]
- Balkan, A. Genetic Variability, Heritability and Genetic Advance for Yield and Quality Traits in M2-4 Generations of Bread Wheat (Triticum aestivum L.) Genotypes. Turk. J. Field Crops 2018, 23, 173–179. [Google Scholar] [CrossRef]
- Rudra, V.N.; Biradar, S.S.; Yadawad, A.A.; Desai, S.A.; Sanjay, B.A.V. Study of Genetic Variability Parameters in Bread Wheat (Triticum aestivum L.) Genotypes. Res. J. Agric. Sci. 2014, 6, 123–125. [Google Scholar]
- Ajayi, A.T.; Gbadamosi, A.E. Genetic Variability, Character Association and Yield Potentials of Twenty-five Accessions of Cowpea [Vigna unguiculata (L.) Walp]. J. Pure Appl. Agric. 2020, 5, 1–16. [Google Scholar] [CrossRef]
- Swathi, I.I. Genetic Analysis in Cowpea [Vigna unguiculata (L.) Walp] Under Prayagraj Agro Climatic Conditions. J. Pharmacogn. Phytochem. 2019, 8, 1271–1274. [Google Scholar]
- Goyal, S.; Wani, M.R.; Raina, A.; Laskar, R.A.; Khan, S. Phenotypic Diversity in Mutagenized Population of Urdbean (Vigna mungo (L.) Hepper). Heliyon 2012, 7, 05356. [Google Scholar] [CrossRef] [PubMed]
- Azigwe, C.; Zoryeku, P.A.D.; Asante, I.K.; Oppong-Adjei, F. Effect of Gamma Irradiation on Chlorophyll Content in the Cowpea [Vigna unguiculata (L.) Walp]. Ghana J. Sci. 2021, 61, 113–117. [Google Scholar] [CrossRef]
- Nkhoma, N.; Shimelis, H.; Laing, M.D.; Shayanowako, A.; Mathew, I. Assessing the Genetic Diversity of Cowpea [Vigna unguiculata (L.) Walp] Germplasm Collections Using Phenotypic Traits and SNP Markers. BMC Genet. 2020, 21, 110. [Google Scholar] [CrossRef]
- Wani, M.R.; Khan, S. Estimates of Genetic Variability in Mutated Populations and the Scope of Selection for Yield Attributes in Vigna radiata (L.) Wilczek. Egypt. J. Biol. 2006, 8, 1–6. [Google Scholar]
- Amri-Tiliouine, W.; Laouar, M.; Abdelguerfi, A.; Jankowicz-Cieslak, J.; Jankuloski, L.; Till, B.J. Genetic Variability Induced by Gamma Rays and Preliminary Results of Low-Cost TILLING on M2 Generation of Chickpea (Cicer arietinum L.). Front. Plant Sci. 2018, 871, 2018. [Google Scholar] [CrossRef]
- Lamara, A.; Fellahi, Z.E.A.; Hannachi, A.; Benniou, R. Assessing the Phenotypic Variation, Heritability and Genetic Advance in Bread Wheat (Triticum aestivum L.) Candidate Lines Grown Under Rainfed Semi-Arid Region of Algeria. J. Natl. Fac. Agron. Medellín 2022, 75, 10107–10118. [Google Scholar] [CrossRef]
- Friedman, J.; Middleton, T.E.; Rubin, M.J. Environmental Heterogeneity Generates Intrapopulation Variation in Life-history Traits in an Annual Plant. New Phytol. 2019, 224, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Walter, G.M.; Monro, K.; Terranova, D.; Spina, E.; Majorana, M.; Pepe, G.; Clark, J.; Cozzolino, S.; Cristaudo, A.; Hiscock, S.J.; et al. Environmental Effects on Genetic Variance are Likely to Constrain Adaptation in Novel Environments. Evol. Lett. 2014, 8, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, J.J.C.; Colina, A.; Visser, M.E.; Gienapp, P. Environmental Coupling of Heritability and Selection is Rare and of Minor Evolutionary Significance in Wild Populations. Nat. Ecol. Evol. 2018, 2, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.J.; Do-Amareal-Junior, A.T.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; De-Oliverira-Santos, T.; Schmitt, K.F.M.; Chaves, M.M.; De-Oliveira, U.A.; Santos, P.H.A.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef]
- Goyal, S.; Khan, S. Cytology of Induced Morphological Mutants in Vigna mungo (L.) Hepper. Egypt. J. Biol. 2010, 12, 81–85. [Google Scholar]
- Srija, K.; Lal, G.M.; Snehapriya, P.; Lavanya, G.R. Estimation of Genetic Variability and Correlation Analysis for Quantitative Traits in Chickpea (Cicer arietinum L.). Int. J. Environ. Clim. Change 2022, 12, 3641–3649. [Google Scholar] [CrossRef]
- Dhanavel, D.; Gnanamurthy, S.; Girija, M. Effect of Gamma Irradiation on the Morphological Characters of Cowpea [Vigna unguiculata (L.) Walp]. Int. J. Curr. Res. 2013, 2, 38–43. [Google Scholar]
- Kim, Y.U.; Choi, D.H.; Ban, H.Y.; Seo, B.S.; Kim, J.; Lee, B.W. Temporal Patterns of Flowering and Pod Set of Determinate Soybean in Response to High Temperature. Agronomy 2020, 10, 414. [Google Scholar] [CrossRef]
- Geiler-Samerotte, K.A.; Li, S.; Lazaris, C.; Taylor, A.; Ziv, N.; Ramjeawan, C.; Paaby, A.B.; Siegal, M.L. Extent and Context Dependence of Pleiotropy Revealed by High-Throughput Single-Cell Phenotyping. PLoS Biol. 2020, 18, 2–32. [Google Scholar] [CrossRef]
- Arshad, M.; Ali, N.; Ghafoor, A. Character Correlation and Path Coefficient in Soyabean Glycine max (L.) Merrill. Pak. J. Bot. 2006, 38, 121–130. [Google Scholar]
- Alam, Z.; Khan, M.; Hossain, M.; Karim, M.; Saif, H.; Mustakim, A.; Molla, M.; Islam, M.; Akther, S.; Akter, S. Genetic Variability and Diversity Analysis for Some Agronomic Traits of a Sweet Potato (Ipomoea batatas L.) collection: Insights for Breeding Superior Genotypes. Heliyon 2024, 10, e38616. [Google Scholar] [CrossRef]
- Rana, A.; Rana, V.; Bakshi, S.; Sood, V.K. Agro-morphological Evaluation of Gamma Ray-Induced Mutant Populations and Isolation of Harder Grain Mutants in Wheat (Triticum aestivum L.). Plant Genet. Resour. Charact. Util. 2024, 22, 396–407. [Google Scholar] [CrossRef]
- Nikolic, S.; Sekulic, T.; Medic, B. Cluster Analysis: Theory, Methodology, and Applications. South East. Eur. J. Public Health 2025, XXVI, 673–681. [Google Scholar]
- Dabiré, M.M.T.; Nikiem, M.; Yonli, D.; Sanna, S.; Gouba, W.; Pale, S.; Traore, H.; Batieno, J.; Prasad, V.; Stewart, Z.; et al. Genetic Enhancement of Indigenous Cowpea with Gamma-Ray Induced Trait Variation. Am. J. Plant Sci. 2024, 15, 651–676. [Google Scholar] [CrossRef]
- Lohani, M.; Singh, D.; Singh, J.P. Genetic Diversity Assessment Through Principal Component Analysis in Potato (Salamun tuberosun L.). Int. J. Veg. Sci. 2012, 39, 207–209. [Google Scholar]
- Laskar, R.S.; Khan, S.S. Assessment on Induced Genetic Variability and Divergence in the Mutagenized Lentil Populations of Microsperma and Macrosperma Cultivars Developed Using Physical and Chemical Mutagenesis. PLoS ONE 2017, 12, 0184598. [Google Scholar] [CrossRef]
- Ntswane, M.; Labuschagne, M.; Shandu, S.F.; Mbuma, N.W. Phenotypic Diversity Among Cowpea Mutants and Accessions for Grain Yield and Yield Components. S. Afr. J. Bot. 2023, 161, 519–530. [Google Scholar] [CrossRef]
- Popoola, B.; Ongom, P.; Mohammed, S.; Tagola, A.; Ishaya, D.; Bala, G.; Fatokum, C.; Boukar, O. Assessing the Impact of Genotype-by-Environment Interactions on Agronomic Traits in Elite Cowpea Lines across Agro-Ecologies in Nigeria. Agronomy 2024, 14, 263. [Google Scholar] [CrossRef]
- Azam, M.; Sarker, U.; Hossain, M.; Mahabubul, A.A.; Islam, M.; Hossain, N.; Alamri, S. Phenotypic Diversity in Qualitative and Quantitative Traits for Selection of High Yield Potential Field Pea Genotypes. Sci. Rep. 2024, 14, 18561. [Google Scholar] [CrossRef]
- Parker, T.A.; Cetz, J.; de Sousa, L.L.; Kuzay, S.; Lo, S.; Floriani, T.; Njau, S.; Arunga, E.; Duitama, J.; Jernstedt, J.; et al. Loss of Pod Strings in Common Bean is Associated with Gene Duplication, Retrotransposon Insertion and Overexpression of PvIND. New Phytol. 2022, 235, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Ramolekwa, K.; Pholo-Tait, M.; Ngwako, S.; Malambane, G.; Lekgari, L. Agronomic and Physicochemical Characterization of Gamma Irradiation on M4 Cowpea [Vigna unguiculata (L.) Walp] Mutants. Univers. J. Agric. Res. 2024, 12, 629–641. [Google Scholar] [CrossRef]
- Fery, R.L.; Marechal, R.; Mehra, K.L.; Ng, O.; Steele, W.M.; Van-der-Maesen, L.J.G. Descriptors for Cowpea; International Board for Plant Genetic Resources: Rome, Italy, 1983. [Google Scholar]
- Burton, G.W.; Devane, E.M. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetic-DS Falconer; Longman: New York, NY, USA, 1989. [Google Scholar]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, J.; Singh, N.; Singh, S.P. Mineral Profile and Variability in Vegetable Amaranth (Amaranthus tricolor). Plant Foods Hum. Nutr. 2006, 61, 21–26. [Google Scholar] [CrossRef]
Source of Variation | DF | DE | DF | GH | PN | PW (g) | PL (cm) | SN/P | 100-SW (g) | GY (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|
Rep | 4 | 0.857 NS | 2.643 NS | 0.286 NS | 4.091 NS | 13.757 NS | 0.073 NS | 0.621 NS | 0.404 NS | 48.736 NS |
Season | 1 | 192.857 *** | 12,036.214 *** | 0.857 NS | 1326.298 *** | 33,701.312 *** | 0.087 NS | 44.620 *** | 165.482 *** | 44,141.451 *** |
Var | 6 | 3.690 *** | 9.579 *** | 2.056 NS | 26.809 * | 212.427 *** | 0.096 NS | 1.178 ** | 3.364 *** | 210.144 * |
Season*Var | 6 | 4.246 *** | 12.103 *** | 0.135 NS | 17.175 NS | 267.676 *** | 0.227 NS | 0.905 * | 1.874 ** | 124.490 NS |
Error | 24 | 0.635 | 1.698 | 0.536 | 9.558 | 8.175 | 0.236 | 0.301 | 0.474 | 69.248 |
CV % | 8.996 | 3.287 | 36.596 | 15.289 | 4.964 | 3.566 | 4.994 | 5.321 | 11.463 |
Traits | GV | PV | GCV | PCV | H2 | GA | GA % | MEAN ± SEM |
---|---|---|---|---|---|---|---|---|
DE | 1.373 | 1.857 | 17.452 | 20.296 | 73.900 | 2.076 | 30.912 | 6.714 ± 0.402 |
DF | 3.357 | 5.111 | 8.067 | 9.953 | 65.700 | 3.059 | 13.467 | 22.714 ± 0.765 |
GH | 0.151 | 0.683 | 18.122 | 38.553 | 22.100 | 0.376 | 17.547 | 2.000 ± 0.421 |
PN | 0.954 | 17.049 | 6.688 | 28.277 | 5.600 | 0.476 | 3.259 | 14.602 ± 2.316 |
PW | 3.546 | 7.483 | 6.432 | 9.344 | 47.400 | 2.670 | 9.120 | 29.276 ± 1.146 |
SN/P | 0.480 | 0.867 | 6.954 | 9.351 | 55.300 | 1.061 | 10.653 | 9.958 ± 0.359 |
100 SW | 0.496 | 1.117 | 6.431 | 9.652 | 44.400 | 0.967 | 8.827 | 10.951 ± 0.455 |
Gy | 5.201 | 61.888 | 5.676 | 19.580 | 8.400 | 1.362 | 3.389 | 40.178 ± 4.347 |
Traits | GV | PV | GCV | PCV | H2 | GA | GA % | MEAN ± SEM |
---|---|---|---|---|---|---|---|---|
DE | 0.849 | 1.635 | 8.378 | 11.624 | 51.900 | 1.368 | 12.437 | 11.000 ± 0.512 |
DF | 2.738 | 4.382 | 2.925 | 3.700 | 62.500 | 2.695 | 4.764 | 56.571 ± 0.740 |
GH | 0.222 | 0.762 | 25.382 | 47.001 | 29.200 | 0.524 | 28.237 | 2.000 ± 0.424 |
PN | 7.336 | 10.357 | 10.481 | 12.454 | 70.800 | 4.696 | 18.172 | 25.841 ± 1.004 |
PW | 151.038 | 163.450 | 14.302 | 14.878 | 92.400 | 24.337 | 28.322 | 85.929 ± 2.034 |
SN/P | 0.014 | 0.229 | 0.988 | 3.981 | 6.200 | 0.061 | 0.505 | 12.020 ± 0.268 |
100 SW | 0.934 | 1.261 | 6.476 | 7.524 | 74.100 | 1.713 | 11.483 | 14.921 ± 0.330 |
Gy | 60.178 | 141.986 | 7.387 | 11.347 | 42.400 | 10.404 | 9.907 | 105.016 ± 5.222 |
Traits | PC1 | PC2 | PC3 |
---|---|---|---|
DE | −0.342 | 0.410 | −0.132 |
DF | −0.423 | −0.312 | −0.245 |
GH | −0.409 | 0.384 | 0.087 |
PN | 0.323 | 0.468 | 0.066 |
PW | −0.449 | −0.158 | −0.240 |
PL | 0.127 | −0.536 | 0.333 |
SN/P | −0.369 | 0.056 | 0.294 |
100 SW | 0.292 | −0.144 | 0.518 |
GY | −0.036 | 0.179 | 0.623 |
Eigenvalue | 3.17 | 2.39 | 1.94 |
Variation% | 41.26 | 26.59 | 21.61 |
Cumulative% | 41.26 | 67.85 | 89.46 |
Cowpea Mutant Lines | Agronomic Characteristics |
---|---|
Tswana Control | Late maturing and low yielding |
Tswana-300Gy-202 | Early emergence and early flowering |
Tswana-300Gy-214 | Early emergence and early flowering |
Tswana-400Gy-49 | High seed weight |
Tswana-400Gy-85 | High pod and high seed weight |
Tswana-500Gy-31 | High seed weight, high yielding |
Tswana-500Gy-53 | High seed weight, high yielding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramolekwa, K.; Pholo-Tait, M.; Parker, T.; Malambane, G.; Ngwako, S.; Lekgari, L. Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines. Int. J. Mol. Sci. 2025, 26, 7543. https://doi.org/10.3390/ijms26157543
Ramolekwa K, Pholo-Tait M, Parker T, Malambane G, Ngwako S, Lekgari L. Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines. International Journal of Molecular Sciences. 2025; 26(15):7543. https://doi.org/10.3390/ijms26157543
Chicago/Turabian StyleRamolekwa, Kelebonye, Motlalepula Pholo-Tait, Travis Parker, Goitseone Malambane, Samodimo Ngwako, and Lekgari Lekgari. 2025. "Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines" International Journal of Molecular Sciences 26, no. 15: 7543. https://doi.org/10.3390/ijms26157543
APA StyleRamolekwa, K., Pholo-Tait, M., Parker, T., Malambane, G., Ngwako, S., & Lekgari, L. (2025). Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines. International Journal of Molecular Sciences, 26(15), 7543. https://doi.org/10.3390/ijms26157543