Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = damaged ship motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 185
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

31 pages, 8743 KiB  
Article
Online Data-Driven Integrated Prediction Model for Ship Motion Based on Data Augmentation and Filtering Decomposition and Time-Varying Neural Network
by Nan Gao, Zhenju Chuang and Ankang Hu
J. Mar. Sci. Eng. 2024, 12(12), 2287; https://doi.org/10.3390/jmse12122287 - 12 Dec 2024
Viewed by 1091
Abstract
Online prediction for ship motion with strong nonlinear characteristics under harsh sea states will significantly reduce the damage of large accidents. Therefore, an integrated ship motion online prediction model consisting of a data augmentation algorithm based on the Improved Temporal Convolutional Network and [...] Read more.
Online prediction for ship motion with strong nonlinear characteristics under harsh sea states will significantly reduce the damage of large accidents. Therefore, an integrated ship motion online prediction model consisting of a data augmentation algorithm based on the Improved Temporal Convolutional Network and Time Generative Adversarial Network (ITCN-TGAN), and an Improved Empirical Mode Decomposition (IEMD) and a Time-Varying Neural Network based on Global Time Pattern Attention (GTPA-TNN), is proposed in this article. The results of the validation tests in which the container ship KCS is taken as the example show that the synthetic data generated by ITCN-TGAN based on the dataset with few nonlinear samples are very similar to the original data, which proves that the synthetic data have high authenticity and can be used as training data to reduce the sampling cost; the input signal is decomposed into multiple Intrinsic Mode Functions (IMFs) by IEMD without noise diffusion, an endpoint effect, or mode mixing occurring in it, which indirectly improved the accuracy; and the dynamic sliding window adaptively adjusts the input sequence length according to the waveform characteristics to improve the computational stability of the model, the accuracy of GTPA-TNN can maintain a high level during the prediction period in various working conditions, and the error distribution is almost the same, which suggests that the integrated model has strong robustness and can realize the goal of online prediction of ship motion under harsh sea conditions. Full article
(This article belongs to the Special Issue Advances in Ship and Marine Hydrodynamics)
Show Figures

Figure 1

22 pages, 7294 KiB  
Article
A Study on the Hydrodynamic Response Characteristics of Vessel-Shaped Cages Based on the Smoothed Particle Hydrodynamics Method
by Yue Zhuo, Junhua Chen, Lingjie Bao, Hao Li, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(12), 2199; https://doi.org/10.3390/jmse12122199 - 1 Dec 2024
Cited by 1 | Viewed by 999
Abstract
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish [...] Read more.
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish cages are prone to damage in the more hostile environments of the deep sea. In this paper, we present a design for a single-point mooring vessel-shaped fish cage that can quickly adjust its bow direction when subjected to waves from various angles. This design ensures that the floating frame consistently responds effectively to wave impacts, thereby reducing the wave forces experienced. The dynamic response of the floating frame and the mooring forces were simulated by coupling the Smoothed Particle Hydrodynamics method with the Moordyn numerical model for mooring analysis. The three degrees of freedom (heave, surge, and pitch) and the mooring forces of a scaled-down vessel-type ship cage model under wave conditions were investigated both numerically and experimentally. The results indicate that the error between the simulation data and the experimental results is maintained within 6%. Building on this foundation, the motion response and mooring force of a full-sized ship-shaped net box under wave conditions off the southeast coast of China were simulated. This study examined the effects of varying mooring lengths and buoy configurations on the motion response and mooring force of the fish cage. Finally, we constructed the fish cage and tested it under the influence of a typhoon. The results demonstrate that the fish cage could operate stably without structural damage, such as mooring failure or floating frame breakage, despite the significant deformation of the floating frame. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 11891 KiB  
Article
Dynamic Responses and Damage of a Model Ship in Multi-Rock Grounding
by Zhihui Zhou, Ling Zhu and Qiyu Liang
J. Mar. Sci. Eng. 2024, 12(11), 1908; https://doi.org/10.3390/jmse12111908 - 25 Oct 2024
Viewed by 993
Abstract
Ship grounding onto multiple rocks is one of the scenarios where a ship may suffer severe hull damage, thus leading to some serious consequences, such as casualties, oil spill pollution, and property damage. Ship bottom raking is the most common and severe damage [...] Read more.
Ship grounding onto multiple rocks is one of the scenarios where a ship may suffer severe hull damage, thus leading to some serious consequences, such as casualties, oil spill pollution, and property damage. Ship bottom raking is the most common and severe damage type in grounding caused by sharp rocks moving against the bottom plate. This paper investigates the dynamic responses of ship grounding onto multiple sharp rocks, which has rarely been studied in the literature. Nine ship grounding in-tank model tests were conducted to provide experimental data for ship grounding onto a single rock or multiple rocks. A simplified scaled ship model with replaceable bottom plating was designed and used in the model test. Some artificial cone rock models with a 1 mm tip radius and a 15° semi-apex angle were assumed. The damage modes of the bottom plating and motions during ship grounding onto multiple rocks were obtained and recorded in the model tests, as well as the longitudinal grounding resistances. The effects of the initial relative height of each rock and the size of rock distribution on the structural damage mode and dynamic response of a ship model in multi-rock ship grounding were investigated. In addition, the results obtained from single-rock and multi-rock ship grounding model tests are compared. Full article
(This article belongs to the Special Issue Advances in the Performance of Ships and Offshore Structures)
Show Figures

Figure 1

18 pages, 10942 KiB  
Article
A Study on the Impact Erosion Effect of a Two-Phase Jet Field on a Wall at Different Impact Distances by Numerical Simulation
by Ying Li, Mingzhu Dang and Yawei Wang
Fire 2024, 7(9), 312; https://doi.org/10.3390/fire7090312 - 4 Sep 2024
Viewed by 1014
Abstract
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase [...] Read more.
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase motion on a bulkhead was investigated. A two-dimensional SST k-ω model was used for the analysis. The grid size of the core area of a supersonic jet was selected as RN/24 by the calculation accuracy, and the resources and time consumption of the calculation were comprehensively considered. Based on the simulation of supersonic impact jets, the influence of the phase motion of solid particles was introduced, and the impact of a two-phase jet field on a wall was investigated. The addition of a particle phase created a hysteresis effect on the airflow, changing the shock structure of the pure gas-phase flow field. The rebound of the particle phase at the wall caused the waves in front of the wall to move forward and the stagnation bubble structures to disappear in some cases. The particle aggregation degree and collision angle would affect the particle erosion rate of solid bulkheads. The increase in particle jet impingement distance would change the distribution of particle aggregation and would influence the distribution of wall particle erosion rate and deposition rate. This paper would provide theoretical and engineering guidance for the safety protection design of magazines, which is of great significance for the safety assurance of ship magazines. Full article
(This article belongs to the Special Issue Protection of Ships against Fire and Personnel Evacuation)
Show Figures

Figure 1

25 pages, 11332 KiB  
Article
Experimental and Numerical Investigation into the Effects of Air–Fluid Interaction on the Dynamic Responses of a Damaged Ship
by Xinlong Zhang, Simone Mancini, Fei Liu and Renqing Zhu
J. Mar. Sci. Eng. 2024, 12(6), 992; https://doi.org/10.3390/jmse12060992 - 13 Jun 2024
Cited by 1 | Viewed by 1050
Abstract
To accurately assess the dynamic stability of the damaged ship, this paper performs an experimental campaign and presents a feasible numerical method to analyze the effects of microscopic air–fluid interactions on the motion responses of the damaged ship. The numerical approach can be [...] Read more.
To accurately assess the dynamic stability of the damaged ship, this paper performs an experimental campaign and presents a feasible numerical method to analyze the effects of microscopic air–fluid interactions on the motion responses of the damaged ship. The numerical approach can be applied to solve the coupled hydrodynamic behavior between the flooding process and the motion responses of the damaged ship. The volume of fluid (VOF) method was applied to capture the interface of the free surface, while the dynamic fluid–body Interaction (DFBI) morphing technique was applied to deal with mesh adaption. In particular, the UDF (user-defined field) function was activated to realize the initial distribution of the free surface. Firstly, by comparing the experimental and numerical results, the reliability of visualizing the flooding process and dealing with the motion responses of the damaged ship was efficiently verified. The numerical flooding process was able to reproduce the hydrodynamic phenomenon well, including the flooding jet, interaction, and flow between adjacent compartments. The numerical roll motion curve of the damaged ship was consistent with that predicted in the model test, with an error in roll amplitude of no more than 4%. Secondly, based on the verified numerical method, it was seen from the results with different ventilation positions that not only the air compressibility due to varying levels of ventilation cannot be neglected in damage assessment, but also the position of the ventilation hole was crucial. This was because different positions will create different paths for the compressed air to overflow and affect air–fluid interactions. Thus, the flooding force and air-impacting force acting on the internal hull will be different. In conclusion, this paper introduces a new consideration in the damage assessment of ships. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures)
Show Figures

Figure 1

22 pages, 7968 KiB  
Article
Ship-Fire Net: An Improved YOLOv8 Algorithm for Ship Fire Detection
by Ziyang Zhang, Lingye Tan and Robert Lee Kong Tiong
Sensors 2024, 24(3), 727; https://doi.org/10.3390/s24030727 - 23 Jan 2024
Cited by 21 | Viewed by 3998
Abstract
Ship fire may result in significant damage to its structure and large economic loss. Hence, the prompt identification of fires is essential in order to provide prompt reactions and effective mitigation strategies. However, conventional detection systems exhibit limited efficacy and accuracy in detecting [...] Read more.
Ship fire may result in significant damage to its structure and large economic loss. Hence, the prompt identification of fires is essential in order to provide prompt reactions and effective mitigation strategies. However, conventional detection systems exhibit limited efficacy and accuracy in detecting targets, which has been mostly attributed to limitations imposed by distance constraints and the motion of ships. Although the development of deep learning algorithms provides a potential solution, the computational complexity of ship fire detection algorithm pose significant challenges. To solve this, this paper proposes a lightweight ship fire detection algorithm based on YOLOv8n. Initially, a dataset, including more than 4000 unduplicated images and their labels, is established before training. In order to ensure the performance of algorithms, both fire inside ship rooms and also fire on board are considered. Then after tests, YOLOv8n is selected as the model with the best performance and fastest speed from among several advanced object detection algorithms. GhostnetV2-C2F is then inserted in the backbone of the algorithm for long-range attention with inexpensive operation. In addition, spatial and channel reconstruction convolution (SCConv) is used to reduce redundant features with significantly lower complexity and computational costs for real-time ship fire detection. For the neck part, omni-dimensional dynamic convolution is used for the multi-dimensional attention mechanism, which also lowers the parameters. After these improvements, a lighter and more accurate YOLOv8n algorithm, called Ship-Fire Net, was proposed. The proposed method exceeds 0.93, both in precision and recall for fire and smoke detection in ships. In addition, the mAP@0.5 reaches about 0.9. Despite the improvement in accuracy, Ship-Fire Net also has fewer parameters and lower FLOPs compared to the original, which accelerates its detection speed. The FPS of Ship-Fire Net also reaches 286, which is helpful for real-time ship fire monitoring. Full article
Show Figures

Figure 1

23 pages, 7796 KiB  
Article
The Effect of Inclined Conditions on the Consequences of Fires Caused by Spilled Flammable Liquids: Development of Inclined Spreading Extent Formulae
by Daeyu Baeg, Hyunho Lee, Seungyul Lee and Jung Kwan Seo
Appl. Sci. 2024, 14(2), 745; https://doi.org/10.3390/app14020745 - 15 Jan 2024
Cited by 1 | Viewed by 1621
Abstract
The accidental spillage of flammable liquids on in-service ships and offshore installations may lead to pool fires, which are likely to spread over a particularly large area in large compartments under ship motion, resulting in extensive damage. However, the effect of the spreading [...] Read more.
The accidental spillage of flammable liquids on in-service ships and offshore installations may lead to pool fires, which are likely to spread over a particularly large area in large compartments under ship motion, resulting in extensive damage. However, the effect of the spreading extent of liquid fuel due to inclined ship motion on pool fire consequences has not been considered in the existing literature. Thus, in this study, fuel discharge experiments were conducted to investigate the spreading behaviour under different substrate inclination angles and discharge rates. The experimental results were analysed to derive closed-form expressions to predict the spreading extent of liquid fuel in large compartments. Additionally, the effects of surface inclination on fire consequences were investigated using the Fire Dynamics Simulator in terms of the heat release rate. The findings can provide guidance for effective fire safety design and establishing a realistic fire modelling methodology for ships and offshore installations. Full article
Show Figures

Figure 1

16 pages, 10121 KiB  
Article
Fatigue Assessment Comparison between a Ship Motion-Based Data-Driven Model and a Direct Fatigue Calculation Method
by Xiao Lang, Da Wu, Wuliu Tian, Chi Zhang, Jonas W. Ringsberg and Wengang Mao
J. Mar. Sci. Eng. 2023, 11(12), 2269; https://doi.org/10.3390/jmse11122269 - 29 Nov 2023
Cited by 5 | Viewed by 2292
Abstract
Ocean-crossing ship structures continuously suffer from wave-induced loads when sailing at sea. The encountered wave loads cause significant variations in ship structural stresses, leading to accumulated fatigue damage. Where large inherent uncertainties still exist, it is now common to use spectral methods for [...] Read more.
Ocean-crossing ship structures continuously suffer from wave-induced loads when sailing at sea. The encountered wave loads cause significant variations in ship structural stresses, leading to accumulated fatigue damage. Where large inherent uncertainties still exist, it is now common to use spectral methods for direct fatigue calculation when evaluating ship fatigue. This paper investigates the use of a machine learning technique to establish a model for 2800TEU container vessel fatigue assessment. Measurement data from 3 years of cross-Atlantic sailing demonstrated and validated the machine learning model. In this investigation, the ship’s motions were used as inputs to build a machine learning model. The fatigue damage amounts predicted using a machine learning model were compared with those obtained from full-scale measurements and direct fatigue calculation. The pros and cons of the methods are compared in terms of their capability, robustness, and prediction accuracy. Full article
Show Figures

Figure 1

29 pages, 12392 KiB  
Article
The Dynamic Response of a Floating Wind Turbine under Collision Load Considering the Coupling of Wind-Wave-Mooring Loads
by Shuai Zong, Kun Liu, Yichi Zhang, Xingpeng Yan and Yukai Wang
J. Mar. Sci. Eng. 2023, 11(9), 1741; https://doi.org/10.3390/jmse11091741 - 4 Sep 2023
Cited by 6 | Viewed by 2284
Abstract
As the number of offshore wind turbines continues to rise and their proximity to navigational routes decreases, the risk of collisions between passing vessels and wind turbines increases, thereby presenting serious threats to the safety of personnel and equipment. Given that collisions between [...] Read more.
As the number of offshore wind turbines continues to rise and their proximity to navigational routes decreases, the risk of collisions between passing vessels and wind turbines increases, thereby presenting serious threats to the safety of personnel and equipment. Given that collisions between floating wind turbines and vessels entail a complex interplay of wind, wave, and mooring loads, this study established a bidirectional fluid-structure coupling simulation methodology based on Star-CCM+ and ABAQUS. Under the combined influences of wind, wave, and mooring loads, the study investigated the dynamic response of floating wind turbines following bow and side impacts from vessels. Analyses were conducted on the structural damage and deformation of floating wind turbines, the transformation of energy during collision processes, and the resultant motion response of the turbines. A sensitivity analysis was performed on parameters such as collision speed, collision angle, wind speed, and wave height. The findings indicate that the amplitude of pitching and heaving motions of the turbine exceed those observed under conditions devoid of collision loads, with the amplitude of motion intensifying with an increase in these parameters. The turbine’s floating body absorbed a minimal amount of internal energy, leading to minor damage, with the stress generated predominantly localized in the collision area of the floating body. The impact of a side collision from vessels exerted a larger influence on the structural dynamic response of floating wind turbines. The analysis results indicate that even though the offshore wind turbine structure is not critically damaged by ship impact, the equipment inside may still fail to work due to the high value of acceleration induced by ship impact. The research outcomes can benefit the safety design of offshore wind turbines in engineering practice. Full article
(This article belongs to the Special Issue Advances in Marine Mechanical and Structural Engineering)
Show Figures

Figure 1

25 pages, 9659 KiB  
Article
Numerical Study on the Green-Water Loads and Structural Responses of Ship Bow Structures Caused by Freak Waves
by Chengzhe Zhang, Weiyi Zhang, Hao Qin, Yunwu Han, Enjin Zhao, Lin Mu and Haoran Zhang
Appl. Sci. 2023, 13(11), 6791; https://doi.org/10.3390/app13116791 - 2 Jun 2023
Cited by 1 | Viewed by 2580
Abstract
In recent decades, freak waves, characterized by their unusual high amplitude, sharp crest, and concentrated energy, have attracted researchers’ attention due to their potential threat to marine structures. Green-water loads caused by freak waves can be significant and may lead to local damage [...] Read more.
In recent decades, freak waves, characterized by their unusual high amplitude, sharp crest, and concentrated energy, have attracted researchers’ attention due to their potential threat to marine structures. Green-water loads caused by freak waves can be significant and may lead to local damage to the ship structures. Therefore, this paper focuses on the study of green-water loads and examines the structural responses of ship bow structures under the influence of the green-water loads caused by freak waves. Firstly, a three-dimensional numerical wave tank is established in which the superposition model is used to generate freak waves. Validations on the freak-wave generation, ship motion response and the wave loading are carried out to verify the present solvers. The simulation on the interaction between the freak wave and the ship are conducted to obtain the interaction process and green-water loads. Secondly, a finite element (FEM) model of the ship bow is built, on which the green-water loads are applied to calculate the structural responses. Finally, the displacement and stress of the deck and breakwater structures are analyzed. It is found that green water events caused by freak waves can generate enormous impact forces on the bow deck and breakwater, resulting in severe structural responses and even possible damage to the structures. The local strength of structures under freak waves needs to be considered in practical engineering applications. Full article
(This article belongs to the Special Issue Advances in Applied Marine Sciences and Engineering)
Show Figures

Figure 1

17 pages, 5445 KiB  
Article
A CFD-Based Data-Driven Reduced Order Modeling Method for Damaged Ship Motion in Waves
by Zhe Sun, Lu-yu Sun, Li-xin Xu, Yu-long Hu, Gui-yong Zhang and Zhi Zong
J. Mar. Sci. Eng. 2023, 11(4), 686; https://doi.org/10.3390/jmse11040686 - 23 Mar 2023
Cited by 7 | Viewed by 2856
Abstract
A simple CFD-based data-driven reduced order modeling method was proposed for the study of damaged ship motion in waves. It consists of low-order modeling of the whole concerned parameter range and high-order modeling for selected key scenarios identified with the help of low-order [...] Read more.
A simple CFD-based data-driven reduced order modeling method was proposed for the study of damaged ship motion in waves. It consists of low-order modeling of the whole concerned parameter range and high-order modeling for selected key scenarios identified with the help of low-order results. The difference between the low and high-order results for the whole parameter range, where the main trend of the physics behind the problem is expected to be captured, is then modeled by some commonly used machine learning or data regression methods based on the data from key scenarios which is chosen as Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in this study. The final prediction is obtained by adding the results from the low-order model and the difference. The low and high-order modeling were conducted through computational fluid dynamics (CFD) simulations with coarse and refined meshes. Taking the roll Response Amplitude Operator (RAO) of a DTMB-5415 ship model with a damaged cabin as an example, the proposed physics-informed data-driven model was shown to have the same level of accuracy as pure high-order modeling, whilst the computational time can be reduced by 22~55% for the studied cases. This simple reduced order modeling approach is also expected to be applicable to other ship hydrodynamic problems. Full article
(This article belongs to the Special Issue Fluid/Structure Interactions II)
Show Figures

Figure 1

22 pages, 6757 KiB  
Article
On Boundary Conditions for Damage Openings in RoPax-Ship Survivability Computations
by Petri Valanto
J. Mar. Sci. Eng. 2023, 11(3), 643; https://doi.org/10.3390/jmse11030643 - 18 Mar 2023
Cited by 4 | Viewed by 1978
Abstract
The survivability of a damaged RoPax ship in the case of a flooding accident can be critical, as these ships have a tendency for a rapid capsize. Various simulation tools are presently in use to study the behavior of damaged RoPax and cruise [...] Read more.
The survivability of a damaged RoPax ship in the case of a flooding accident can be critical, as these ships have a tendency for a rapid capsize. Various simulation tools are presently in use to study the behavior of damaged RoPax and cruise ships. Recent benchmark tests show that the numerical tools for this purpose are very useful, but their accuracy and reliability still leave something to be desired. In many numerical simulation codes for ship survivability, the water inflow and outflow through a damage opening are modeled with Bernoulli equation, which describes steady flow in an inertial frame of reference. This equation takes neither the floodwater inertia in the opening into account nor does it regard the effect of ship motions on the flow in the opening. Thus, there are some approximations involved in the use of the Bernoulli equation for this purpose. Some alternative formulations are possible. This study sheds light on the question of how relevant is it to use the more complicated formulations instead of the very simple and robust Bernoulli model in the numerical simulation of damaged ships in the sea. Full article
(This article belongs to the Special Issue Damage Stability of Ships)
Show Figures

Figure 1

22 pages, 28742 KiB  
Article
Degradation Mechanism of a Sauce-Glazed Ware of the Song Dynasty Salvaged out of the Water at Dalian Island Wharf: Part I—The Effect of the Surface-Attached Composite Coagula
by Rao Ding, Weidong Li, Zelin Yang, Changsong Xu and Xiaoke Lu
Materials 2023, 16(3), 1176; https://doi.org/10.3390/ma16031176 - 30 Jan 2023
Cited by 5 | Viewed by 2282
Abstract
Dalian Island is located in the sea area near Pingtan County, Fujian, Southeast China. The sea area used to be the junction of the eastern and western ship routes on the Maritime Silk Road, and is also an important region for underwater archaeology [...] Read more.
Dalian Island is located in the sea area near Pingtan County, Fujian, Southeast China. The sea area used to be the junction of the eastern and western ship routes on the Maritime Silk Road, and is also an important region for underwater archaeology in China. This study focused on a sauce-glazed ware of the Song Dynasty, with serious degradation, which was salvaged out of the water at the Dalian Island Wharf. Optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and micro-Raman spectroscopy were used to comprehensively analyze the composition, phase attributes and microstructure of the ware and the surface-attached coagula. The findings revealed that the sea wave-borne debris scoured the surface of the ware, causing mechanical damage to varying degrees and a significant decrease in its degradation resistance. This was the primary factor accounting for the poor preservation state of the salvaged ceramic ware, and the precondition for the subsequent attachment of marine organisms and the deposition of inorganic pollutants. The calcareous skeletons formed on the surface induced by the bio-mineralization of coralline algae (a type of marine plant) could resist the mechanical action caused by the motion of sea waves, thereby slowing down the ware’s degradation process. In other words, the calcareous skeletons played a ‘bio-protective’ role to a certain degree. In addition, inorganic pollutants represented by iron rusts also participated in the corrosion of the glaze. Some pollutants were directly deposited on the pits and cracks on the surface of the ware, which brought stress to the glaze and glaze/body interface, causing the glaze to further crack and spall. Moreover, iron rusts reacted with the glaze, leading to chemical alteration, accompanied by the formation of iron silicate as the alteration product. Anorthite crystals in the interlayer did not participate in the reaction but remained at the original position. The alteration product gradually replaced the original glass phase of the glaze and entered into the body via pores and cracks. In conclusion, the complex degradation morphology of the salvaged sauce-glazed ware could be attributed to the combined action of mechanical damage, marine bio-fouling, and chemical alteration. Full article
(This article belongs to the Special Issue Imaging and Microstructure Analyses in Archaeological Materials)
Show Figures

Figure 1

16 pages, 4735 KiB  
Article
AIS-Enabled Weather Routing for Cargo Loss Prevention
by Kalliopi Spyrou-Sioula, Ioannis Kontopoulos, Dimitrios Kaklis, Antonios Makris, Konstantinos Tserpes, Pavlos Eirinakis and Fotis Oikonomou
J. Mar. Sci. Eng. 2022, 10(11), 1755; https://doi.org/10.3390/jmse10111755 - 15 Nov 2022
Cited by 4 | Viewed by 3218
Abstract
The operation of any vessel includes risks, such as mechanical failure, collision, property loss, cargo loss, or damage. For modern container ships, safe navigation is challenging as the rate of innovation regarding design, speed profiles, and carrying capacity has experienced exponential growth over [...] Read more.
The operation of any vessel includes risks, such as mechanical failure, collision, property loss, cargo loss, or damage. For modern container ships, safe navigation is challenging as the rate of innovation regarding design, speed profiles, and carrying capacity has experienced exponential growth over the past few years. Prevention of cargo loss in container ship liners is of high importance for the Maritime industry and the waterborne sector as it can lead to potentially disastrous, harmful, or even life-threatening outcomes for the crew, the shipping company, the marine environment, and aqua-culture. With the installment of onboard decision support system(s) (DSS) that will provide the required operational guidance to the vessel’s master, we aim to prevent and overcome such events. This paper explores cargo losses in container ships by employing a novel weather routing optimization DS framework that aims to identify excessive motions and accelerations caused by bad weather at specific times and locations; it also suggests alternative routes and, thus, ultimately prevents cargo loss and damage. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop