Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = d-arabinose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9228 KB  
Article
Autotrophic and Mixotrophic Batch Processes with Clostridium autoethanogenum LAbrini in Stirred Tank Bioreactors with Continuous Gassing
by Anne Oppelt, Tran Yen Nhi Nguyen, Yaodan Zhang and Dirk Weuster-Botz
Microorganisms 2026, 14(1), 175; https://doi.org/10.3390/microorganisms14010175 - 13 Jan 2026
Abstract
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth [...] Read more.
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth and biomass formation compared to the wild-type in fully controlled, stirred-tank bioreactors with a continuous gas supply. In mixotrophic processes, the pre-culture strategy has a significant impact on the growth and metabolic activity of C. autoethanogenum LAbrini. C. autoethanogenum LAbrini can metabolize sugars (D-fructose, D-xylose, or L-arabinose) and CO simultaneously. All mixotrophic batch processes showed increased growth and product formation compared to the autotrophic process. The mixotrophic batch process with D-fructose enabled superior production of alcohols (10.7 g L−1 ethanol and 3.2 g L−1 D-2,3-butanediol) with a heterotrophic pre-culture. Using an autotrophic pre-culture and L-arabinose resulted in a total alcohol formation of more than 13 g L−1. The formation of meso-2,3-butanediol (>0.50 g L−1) occurred exclusively under mixotrophic conditions. Thus, C. autoethanogenum LAbrini, clearly representing notable improvements over the wild-type strain in mixotrophic batch processes, offers a good basis for further strain improvements to shift the product range even further towards more reduced products. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

20 pages, 5643 KB  
Article
A Neutral Polysaccharide from Ginseng Berry Mitigates D-Galactose-Induced Oxidative Stress and Cognitive Deficits Through the Keap1/Nrf2/HO-1/NQO1 Pathway
by Ting Ren, Lina Wang, Jiaxin Zhang, Ruitong Song, Xin Li, Jiayue Gao, Xin Sun and Lili Jiao
Antioxidants 2026, 15(1), 65; https://doi.org/10.3390/antiox15010065 - 3 Jan 2026
Viewed by 317
Abstract
Oxidative stress contributes to brain aging processes and is implicated in related functional decline. Developing strategies to mitigate oxidative stress is therefore of significant interest. In this study, a neutral polysaccharide (GBPN) was isolated from ginseng berry. Structural analysis revealed that GBPN (molecular [...] Read more.
Oxidative stress contributes to brain aging processes and is implicated in related functional decline. Developing strategies to mitigate oxidative stress is therefore of significant interest. In this study, a neutral polysaccharide (GBPN) was isolated from ginseng berry. Structural analysis revealed that GBPN (molecular weight 1.52 × 104 Da) is primarily composed of glucose (53.18%), arabinose (24.3%), and galactose (16.75%). Glucose exists in the forms of →4)-Glcp-(1→ (32.95%), →6)-Glcp-(1→ (13.81%), and →4,6)-Glcp-(1→ (3.70%), while arabinose exists as →1)-Araf (9.73%), →1)-Arap (5.82%), →2)-Arap-(1→ (0.66%), →5)-Araf-(1→ (7.62%), and →3,5)-Araf-(1→ (1.69%) forms, while galactose exists in the forms of →1)-Galp (3.58%), →3)-Galp-(1→ (1.59%), and →3,6)-Galp-(1→ (12.67%). GBPN adopts a triple-helix conformation and exhibits a curled lamellar appearance. Functionally, GBPN exhibited strong 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical scavenging activity, and iron ion chelation capacity. It can activate the antioxidant system in D-galactose-induced aging-like mice, and simultaneously enhance their learning and memory abilities. Mechanistic analysis revealed that these effects are associated with the kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 pathway. These findings suggest that ginseng berry polysaccharides like GBPN hold promise as potential agents for alleviating oxidative stress and cognitive deficits in aging-related contexts. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

18 pages, 2149 KB  
Article
Structural Characterization and In Vitro Hypoglycemic Activity of a Polysaccharides Obtained from Fructus arctii
by Pin Gong, Jiawei Gao, Hui Long, Haotian Gao, Wenjuan Yang, Jing Wang, Nan Li, Yanni Zhao, Huan Liu and Fuxin Chen
Molecules 2025, 30(22), 4403; https://doi.org/10.3390/molecules30224403 - 14 Nov 2025
Viewed by 698
Abstract
In recent years, the number of diabetes patients worldwide has been increasing daily, and more than 700 million people are in a prediabetic state. Fructus arctii exhibits notable anti-diabetic activity, but its active components remain unclear. In this study, a polysaccharide (FAP-W) was [...] Read more.
In recent years, the number of diabetes patients worldwide has been increasing daily, and more than 700 million people are in a prediabetic state. Fructus arctii exhibits notable anti-diabetic activity, but its active components remain unclear. In this study, a polysaccharide (FAP-W) was extracted and characterized using UV, FTIR, HPLC, NMR, AFM, the Congo red test, and SEM. FAP-W has a molecular weight of 1.99 × 104 Da and mainly consists of α-d-glucopyranosyl-(1→2)-[β-d-fructofuranosyl-(1→2)]10-β-d-furanofructosyl units. Monosaccharide analysis revealed mannose, glucose, galactose, and arabinose in a 3.4:23.59:21.27:47.7 ratio. In insulin-resistant HepG2 cells, FAP-W significantly increased glucose consumption, enhanced glycogen content, and elevated HK and PK activities. It also decreased TG, MDA, and ROS levels while improving SOD activity. These results suggest that FAP-W ameliorates insulin resistance, regulates glucose–lipid metabolism, and alleviates oxidative stress, indicating its potential as a functional food or therapeutic candidate for diabetes. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

21 pages, 16399 KB  
Article
Structural Basis for Targeting the Bifunctional Enzyme ArnA
by Xinyu Liu, Ruochen Yang, Libang Ren, Tong Li, Yanrong Li, Zhihua Yan, Yanrong Gao, Mingqi Yang and Jiazhi Li
Biomolecules 2025, 15(11), 1594; https://doi.org/10.3390/biom15111594 - 13 Nov 2025
Viewed by 728
Abstract
Polymyxin antibiotics are often the last line of defense against multidrug-resistant Gram-negative pathogens. A key resistance mechanism involves the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to lipid A, mediated by the bifunctional enzyme ArnA. However, the evolutionary rationale and structural basis for ArnA’s domain fusion, [...] Read more.
Polymyxin antibiotics are often the last line of defense against multidrug-resistant Gram-negative pathogens. A key resistance mechanism involves the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to lipid A, mediated by the bifunctional enzyme ArnA. However, the evolutionary rationale and structural basis for ArnA’s domain fusion, hexameric assembly, and catalytic coordination remain mechanistically unresolved. Here, we integrate evolutionary genomics, high-resolution cryo-electron microscopy (cryo-EM), and computational protein design to provide a comprehensive mechanistic analysis of ArnA. Our evolutionary analysis reveals that the dehydrogenase (DH) and formyltransferase (TF) domains evolved independently and were selectively fused in Gammaproteobacteria, suggesting an adaptive advantage. A 2.89 Å cryo-EM structure of apo-ArnA resolves the flexible interdomain linker and reveals a DH-driven hexameric architecture essential for enzymatic activity. 3D variability analysis captures intrinsic conformational dynamics, indicating a molecular switch that may coordinate sequential catalysis and substrate channeling. Structure-based peptide inhibitors targeting the hexamerization and predicted ArnA–ArnB interaction interfaces were computationally designed, offering a novel strategy for disrupting L-Ara4N biosynthesis. These findings illuminate a previously uncharacterized structural mechanism of antimicrobial resistance and lay the groundwork for therapeutic intervention. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

17 pages, 1286 KB  
Article
Structural Characterization and Molecular Docking Studies of Fresh Coconut Meat Polysaccharides
by Jiayuan Huang, Mingyang Ma, Miaomiao Qin, Xinyun Li and Yongshen Ren
Int. J. Mol. Sci. 2025, 26(20), 10222; https://doi.org/10.3390/ijms262010222 - 21 Oct 2025
Cited by 2 | Viewed by 560
Abstract
Fresh coconut meat polysaccharides (FCMPs) are high-value natural active polysaccharides with both medicinal and edible uses, but their structural characteristics and potential biological activities have not been well studied. In this work, FFCMP was separated and purified by sequential application of water extraction [...] Read more.
Fresh coconut meat polysaccharides (FCMPs) are high-value natural active polysaccharides with both medicinal and edible uses, but their structural characteristics and potential biological activities have not been well studied. In this work, FFCMP was separated and purified by sequential application of water extraction and alcohol precipitation methods, the Sevag method, DEAE-52 cellulose column chromatography, and Sephadex G-100 gel column chromatography, yielding four components (FCMP 1-FCMP 4). High-performance liquid chromatography (HPLC) was used to determine their molecular weights as 343,016.9, 2279.4, 1363.2, and 2228.9 Da, respectively. Structural characterization and monosaccharide analysis revealed that the FCMP series primarily consists of mannose, glucose, galactose, arabinose, and rhamnose. Methylation experiments and nuclear magnetic resonance (NMR) indicated that FCMP 1 exhibits a complex topological structure with a β-1→4 main chain, β-1→6 branches, and an α-L-rhamnose terminal; FCMP 2 is a heteropolysaccharide with a β-(1→3)-mannan main chain containing β-(1→6)-galactose branches; the main chain of FCMP 3 consists of β-D-mannose and β-D -galactose, with side chains containing α-L-rhamnose and terminal α-L-arabinose and β-D-mannose; and FCMP 4 has a main chain primarily composed of glucose and mannose linked via 1→4 bonds, with some C6 positions exhibiting 1→6 branch structures. Molecular docking predictions suggest that the FCMP series of polysaccharides possess immunomodulatory, anti-inflammatory, and edema-treating properties, providing a theoretical basis for their application in pharmacology and food science research. Full article
Show Figures

Figure 1

19 pages, 2397 KB  
Article
Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice
by Yaqui Valenzuela-Schejtman, Marvin A. Soriano-Ursúa, Elizabeth Estevez-Fregoso, Daniel García-López, R. Ivan Cordova-Chavez, Maricarmen Hernández-Rodríguez, Andrei Biță, Alejandra Contreras-Ramos, Miriam Hernández-Zamora and Eunice D. Farfán-García
Pharmaceuticals 2025, 18(10), 1470; https://doi.org/10.3390/ph18101470 - 30 Sep 2025
Viewed by 1241
Abstract
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 [...] Read more.
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 (from D-arabinose), as well as phenylboronic acid, were recently reported as sedative and safe agents in mice. Their sedative properties and structural similarity to topiramate suggest potential antiseizure activity. Objective: The objective of this study was to evaluate the antiseizure potential of FB1 and AB1. Methods: Boron-containing compounds were administered to mice with seizures induced by pentylenetetrazol (a GABA-A receptor antagonist), 4-aminopyridine (a non-selective K+ channel blocker), or pilocarpine (a muscarinic agonist) to assess efficacy across models and explore potential mechanisms of action. Neuronal and glial toxicity was evaluated both in vitro and in vivo. Results: AB1 reduced seizure activity after intraperitoneal administration, whereas FB1 did not exhibit anticonvulsant effects, although it modified motor performance and limited neuronal loss. The effect of AB1 was comparable to that of topiramate across all three seizure models. Docking studies suggested that these compounds can interact with GABA-A (chloride), NMDA (glutamate), calcium, and potassium channels. Toxicity assays indicated that the concentrations required to affect neurons or glial cells were ≥300 µM, supporting the safety of these compounds. Conclusions: This preliminary evaluation demonstrates the antiseizure potential of AB1. Further experimental studies are needed to clearly establish its mechanism(s) of action. Full article
Show Figures

Figure 1

22 pages, 10187 KB  
Article
Box–Behnken-Assisted Optimization of High-Performance Liquid Chromatography Method for Enhanced Sugar Determination in Wild Sunflower Nectar
by Nada Grahovac, Milica Aleksić, Lato Pezo, Ana Đurović, Zorica Stojanović, Jelena Jocković and Sandra Cvejić
Separations 2025, 12(9), 244; https://doi.org/10.3390/separations12090244 - 7 Sep 2025
Cited by 1 | Viewed by 1128
Abstract
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols [...] Read more.
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols (e.g., mannitol and inositol) occur in lower concentrations and vary with biotic and abiotic factors. This study developed a robust high-performance liquid chromatography method with refractive index detection (HPLC-RID) for the simultaneous quantification of eight sugars (D-ribose, xylose, arabinose, fructose, mannose, glucose, sucrose, and maltose) and two sugar alcohols (mannitol, meso-inositol) in wild sunflower nectar. A Box–Behnken design (BBD), coupled with response surface methodology (RSM), was used to systematically optimize column temperature (20–23 °C), acetonitrile concentration (80–85%), and flow rate (0.7–1 mL/min), while achieving baseline separation of critical sugar pairs, including the previously co-eluting glucose/mannitol and glucose/mannose. Satisfactory resolution (Rs > 1 for all analytes) was achieved under optimized separation conditions comprising a column temperature of 20 °C, 82.5% acetonitrile, and a flow rate of 0.766 mL/min. The RSM efficiently evaluated factor interactions to maximize chromatographic performance, resulting in an optimized protocol that provides a cost-effective and environmentally friendly alternative to conventional sugar analysis methods. Method validation confirmed satisfactory linearity across relevant concentration ranges (50–500 mg/L for most sugars; 50–5500 mg/L for fructose and glucose), with correlation coefficients (R) between 0.985 and 0.999. The limits of detection (LOD) and quantification (LOQ) for the analyzed sugars and sugar alcohols ranged from 4.04 to 19.46 mg/L and from 13.46 to 194.61 mg/L, respectively. Glucose exhibited the highest sensitivity showing LOD of 4.04 and LOQ of 13.46 mg/L, whereas mannose was identified as the least sensitive analyte, with LOD of 19.46 mg/L and LOQ of 194.61 mg/L. The described method represents a reliable tool for sugar and sugar alcohol analysis in sunflower nectar and can be extended to other plant and food matrices with suitable sample preparation. Full article
(This article belongs to the Special Issue Innovative Sustainable Methods for Food Component Extraction)
Show Figures

Graphical abstract

23 pages, 13081 KB  
Article
Structural Characterization of a Novel Pectin Polysaccharide from Mango (Mangifera indica L.) Peel and Its Regulatory Effects on the Gut Microbiota in High-Fat Diet-Induced Obese Mice
by Ruyan Fan, Wenting Zhang, Lang Wang, Tao Fei, Jianbo Xiao and Lu Wang
Foods 2025, 14(16), 2910; https://doi.org/10.3390/foods14162910 - 21 Aug 2025
Cited by 5 | Viewed by 1480
Abstract
The gut microbiota plays a significant role in metabolic diseases such as obesity. We extracted and purified a new type of pectin polysaccharide (mango peel pectin, MPP) from mango (Mangifera indica L.) peel. The structural analysis results reveal that MPP has a [...] Read more.
The gut microbiota plays a significant role in metabolic diseases such as obesity. We extracted and purified a new type of pectin polysaccharide (mango peel pectin, MPP) from mango (Mangifera indica L.) peel. The structural analysis results reveal that MPP has a molecular weight (Mw) of 6.76 × 105 Da and the mass fractions of the main components were galacturonic acid (21.36%), glucose (8.85%), and arabinose (5.97%). The results of methylation and NMR analyses reveal that the backbone of MPP consisted of →6)-α-D-GalpAOMe-(1→ and →4)-β-D-Glcp-(1→ linkages. Based on the above structural analysis, we further explored the therapeutic effect of MPP on high-fat diet-induced obese mice. The results demonstrate that MPP significantly suppressed body weight and dyslipidemia, reduced liver damage and lipid accumulation, attenuated changes in adipocyte hypertrophy, and improved glucose homeostasis and insulin resistance, with fasting blood glucose (FBG) levels decreasing by more than 12.8%. Furthermore, the modulatory impact of MPP on gut microbiota composition was investigated. MPP treatment significantly enhanced the levels of short-chain fatty acids (SCFAs) by decreasing the amount of Bacillota and reducing the Bacillota/Bacteroidota ratio, especially with an increase in the total SCFA content of over 64%. Meanwhile, MPP treatment encouraged beneficial bacteria to grow (e.g., Bacteroidota, Akkermansia, and Nanasyncoccus), altered the gut microbiome profiles in mice, and decreased the abundance of harmful bacteria (e.g., Paralachnospira, Coproplasma, Pseudoflavonifractor, Parabacteroides, Acetatifactor, and Phocaeicola). Overall, the findings demonstrate for the first time that MPP treats obesity by alleviating dyslipidemia, improving insulin resistance, and regulating gut microbiota to improve the intestinal environment. Full article
Show Figures

Figure 1

26 pages, 4290 KB  
Article
Structural Characterization and Ameliorative Effects of Mesona chinensis Benth Polysaccharide Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Epithelial Cells
by Ai-Hua Zhong, Qiu-Yun Li, Hua Su, Li-Jun Huang, Quan Zhou, Xiao-Dan Wang, Jia Song, Yong-Ning Wu, Xing-Fen Yang and Wei-Liang Wu
Nutrients 2025, 17(16), 2592; https://doi.org/10.3390/nu17162592 - 9 Aug 2025
Cited by 1 | Viewed by 1090
Abstract
Objectives: Deoxynivalenol (DON) is a ubiquitous mycotoxin detected in the environment and foodstuffs. DON exposure can lead to chronic intestinal inflammation. Therefore, intervention strategy needs to be established to prevent the intestinal inflammation caused by DON. Methods: The structure of Mesona [...] Read more.
Objectives: Deoxynivalenol (DON) is a ubiquitous mycotoxin detected in the environment and foodstuffs. DON exposure can lead to chronic intestinal inflammation. Therefore, intervention strategy needs to be established to prevent the intestinal inflammation caused by DON. Methods: The structure of Mesona chinensis Benth polysaccharide-3 (MCP-3), a major component isolated and purified from crude MCP, was analyzed using spectroscopic and chromatographic methods. In vitro assays were conducted on the potential antioxidant bioactivities of MCP-3 and its ameliorative effects on deoxynivalenol-induced oxidative stress in intestinal epithelial cells. Results: Saline-eluted MCP-3 was identified as an acidic heterogeneous polysaccharide with an average molecular weight of 16.014 kDa. Its major monosaccharide components were glucose (20.19%), galactose (11.82%), rhamnose (17.23%), galacturonic acid (29.72%), arabinose (7.11%), xylose (8.09%), mannose (2.79%), and glucuronic acid (3.04%). The main backbone of MCP-3 was composed of the following sequence: →4)-α-D-GalpA-6-(1→4)-α-GalpA-(1→4)-α-D-GalpA-6-(1→2)-α-L-Rhap-(1→4)-α-D-GalpA-6-(1→2,4)-α-L-Rhap-(1→. MCP-3 showed strong antioxidant ability in in vitro assays. It effectively prevented redox imbalance induced by the mycotoxin deoxynivalenol in intestinal epithelial cell models based on Caco-2 and NCM460 cells. MCP-3 significantly increased (p < 0.05) the activities of superoxide dismutase, glutathione peroxidase, and catalase, and significantly decreased (p < 0.05) the levels of malondialdehyde and reactive oxygen species, thereby improving redox homeostasis. Conclusions: MCP-3 has potential as a natural antioxidant for use in functional food and nutraceutical industries to help regulate intestinal oxidative stress caused by mycotoxin DON. Full article
(This article belongs to the Special Issue Health Effects of Diet-Sourced Hazardous Factors)
Show Figures

Figure 1

20 pages, 5045 KB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Cited by 2 | Viewed by 2467
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

12 pages, 1360 KB  
Article
Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
by Šutovská Martina, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková and Peter Capek
Int. J. Mol. Sci. 2025, 26(13), 5993; https://doi.org/10.3390/ijms26135993 - 22 Jun 2025
Viewed by 807
Abstract
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres [...] Read more.
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres and phenolic compounds, making it suitable as a potential functional food for supporting human health. Cold (Cw) and hot (Hw) water-extracted (poly)phenolic polysaccharide–protein complexes, differing in carbohydrate, phenolic and protein contents, were isolated from blackthorn fruits and characterized. The complexes exhibited molecular weights of 235,200 g/mol (Cw) and 218,400 g/mol (Hw), and were rich in pectic polymers containing galacturonic acid, arabinose, galactose and rhamnose, indicating a dominance of homogalacturonan (HG) [→4)-α-D-GalA(1→4)-α-D-GalA(1→]n and a low content of RGI [→2)-α-L-Rha(1→4)-α-D-GalA(1→2)-α-L-Rha(1→]n sequences associated with arabinan or arabinogalactan. Minor content of glucan, probably starch-derived, was also solubilized. Pectic polysaccharides were highly esterified and partly acetylated. Pharmacological testing was performed in male Dunkin–Hartley guinea pigs, a model with human-like airway reflexes. Both complexes affected airway defense mechanisms. Particularly, Hw significantly suppressed citric acid-induced cough, similar to codeine, and reduced bronchoconstriction comparably to salbutamol in a dose-dependent manner. These findings support further exploration of Hw as a natural antitussive and bronchodilatory agent. Full article
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Expression and Characterization of L-Arabinose Isomerase and Its Enzymatic Recycling of the Expired Milk
by Zhou Chen, Yuhan Yan, Ziang Wu, Yanyin Song and Jiangqi Xu
Foods 2025, 14(11), 1873; https://doi.org/10.3390/foods14111873 - 25 May 2025
Cited by 7 | Viewed by 1519
Abstract
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. [...] Read more.
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. BmAIase12 exhibited a specific activity of 10.7 U/mg and showed optimal performance at 50 °C and pH 7.0. Furthermore, it exhibited higher activity than most other L-arabinose isomerases. It converted D-galactose into D-tagatose with a high conversion ratio of 53.3% after 48 h at 50 °C. The conversion efficiency of expired milk to D-tagatose was recorded at 40.62%, resulting in a maximum tagatose yield of 1.625 g/L. This was accomplished through the incorporation of β-galactosidase (120 U/mL) and Saccharomyces cerevisiae (30 mg/mL) to hydrolyze lactose and metabolize glucose, followed by the addition of 3 U/mL of BmAIase12. Ultimately, following purification, the purity of tagatose was determined to be 98%, and the final yield was 29.8%. These results suggest that BmAIase12 may serve as a promising enzyme for D-tagatose production due to its high conversion yield. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

19 pages, 11588 KB  
Article
One-Step Carbonization of Monosaccharide and Dicyandiamide to Oxygen and Nitrogen Co-Doped Carbon Nanosheets for Electrocatalytic O2 Reduction to H2O2
by Dan Wang, Yanan Liu, Kun Wan, Danning Feng, Yan Pei, Minghua Qiao, Xiaoxin Zhang and Baoning Zong
Catalysts 2025, 15(5), 459; https://doi.org/10.3390/catal15050459 - 7 May 2025
Viewed by 1058
Abstract
The electrocatalytic reduction of O2 via two-electron reaction (2e-ORR) to H2O2 represents a promising alternative to the current anthraquinone process, since it is advantageous in the sustainable and decentralized production of H2O2. Herein, we report [...] Read more.
The electrocatalytic reduction of O2 via two-electron reaction (2e-ORR) to H2O2 represents a promising alternative to the current anthraquinone process, since it is advantageous in the sustainable and decentralized production of H2O2. Herein, we report the development of oxygen and nitrogen-rich few-layered graphene-like materials (ms-dcda) by the one-step carbonization of biomass-sourced monosaccharides (D-glucose, D-fructose, D-galactose, D-ribose, D-xylose, L-arabinose, and D-mannose) with the aid of dicyandiamide for electrochemical O2 reduction to H2O2. The ms-dcda materials were porous and possessed wrinkled morphology typical of graphene nanosheets. In H2O2 production via 2e-ORR in an acidic electrolyte, these ms-dcda materials were all active and stable catalysts, among which glu-dcda derived from D-glucose and dicyandiamide displayed the lowest onset potential of 0.553 V and the highest selectivity of up to 91.6%. The catalyst was also highly stable in chronoamperometric tests. Selective chemical titration of the C–OH and C=O groups revealed that the latter is far more active and selective than the former in 2e-ORR. Moreover, a positive correlation between the contents of C=O and pyrrolic N and the H2O2 partial current suggests that the pyrrolic N group also contributes to 2e-ORR. This work affords a facile strategy for the sustainable fabrication of metal-free carbon-based catalysts efficient for H2O2 electrosynthesis. Full article
Show Figures

Graphical abstract

13 pages, 1924 KB  
Article
Enabling Stable Recycling of L-Arabinose Isomerase Through Whole-Cell Immobilization for Efficient and Cost-Effective D-Tagatose Production
by Zepeng Li, Runmin Wang, Xiantai Lai, Wenyi Liao, Runfeng Liao, Zhuohong Wu, Guoyan Zhang and Xianghui Qi
Foods 2025, 14(9), 1538; https://doi.org/10.3390/foods14091538 - 28 Apr 2025
Cited by 4 | Viewed by 1471
Abstract
D-tagatose is a functional sweetener with glucose-regulating and prebiotic properties, but its bioproduction from D-galactose faces many limitations, particularly the high production costs. In particular, the current biosynthesis of D-tagatose suffers from thermal instability and the substrate selectivity issues of L-arabinose isomerase (L-AI) [...] Read more.
D-tagatose is a functional sweetener with glucose-regulating and prebiotic properties, but its bioproduction from D-galactose faces many limitations, particularly the high production costs. In particular, the current biosynthesis of D-tagatose suffers from thermal instability and the substrate selectivity issues of L-arabinose isomerase (L-AI) required to convert D-galactose into D-tagatose. In this study, recombinant Escherichia coli BW25113/pQE-80L-araAF118M/F279I expressing double mutant L-AI was immobilized to enhance its stability and reusability. The optimal conditions for whole-cell catalysis were 60 °C, pH 6.5, 5 mM Mn2+, and 20 h, with a yield of 55.2 g/L of D-tagatose. Immobilization with 3% sodium alginate and 2% CaCl2 retained 90% of the production efficiency displayed by free cells. Notably, the immobilized cells exhibited enhanced heat resistance (60–70 °C) and operational stability, retaining 76% activity after five cycles. The D-tagatose production was further increased to 129.43 g/L by increasing the substrate concentration to 250 g/L. Compared to free cells, immobilized cells retained 83.6% of the initial yield up to 10 batches. This study presents a cost-effective and sustainable method for the production of D-tagatose using optimized whole-cell catalysis through immobilization, which paves the way to solve industrial challenges such as thermal instability and low substrate efficiency. Full article
(This article belongs to the Special Issue Advances in Food Biotechnology and Enzyme Engineering)
Show Figures

Figure 1

16 pages, 3163 KB  
Article
Bacillus multifaciens sp. nov., a Crucial and Highly-Active Flavor and Protease Producer Isolated from the qu-Starter of Chinese Wuliangye Baijiu
by Qingchun Luo, Xinrui Zhao, Xi Li, Yuzhu Li, Pengju Zhao, Yanping Lu, Duotao Liu, Jian Su, Jian Chen, Dong Zhao, Jianghua Li and Jia Zheng
Microorganisms 2025, 13(5), 993; https://doi.org/10.3390/microorganisms13050993 - 25 Apr 2025
Cited by 1 | Viewed by 1118
Abstract
In the study presented herein, an aerobic, Gram-stain-positive, spore-forming bacterium, designated as WLY-B-L8T, was isolated from a qu-starter (baobaoqu) cultivation facility used for the production of Wuliangye baijiu in Yibin city (Sichuan province, China). The strain comprised short, [...] Read more.
In the study presented herein, an aerobic, Gram-stain-positive, spore-forming bacterium, designated as WLY-B-L8T, was isolated from a qu-starter (baobaoqu) cultivation facility used for the production of Wuliangye baijiu in Yibin city (Sichuan province, China). The strain comprised short, rod-shape cells of 1.2–1.9 μm in width and 1.7–4.8 μm in length, arranged singly or in pairs. The isolate was able to grow at temperatures of 20–42 °C (optimum growth at 40 °C), pH 5.0–10.0 (optimum growth at pH 8.0), and in the presence of 0–2% (w/v) NaCl (optimum growth with 1% NaCl). Ribose, xylose, arabinose, mannose, glucose, and galactose constituted the major cell-wall sugars. Moreover, meso-diaminopimelic acid (meso-DAP) constituted the diagnostic amino acid. The main polar lipids of WLY-B-L8T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), unidentified aminolipids (UAL 1–2), an unidentified aminophospholipid (UAPL), an unidentified aminoglycolipid (UAGL), and an unidentified lipid (UL). MK-7 was the predominant menaquinone and iso-C15:0 (23.00%) was the major fatty acid. Comparisons of the 16S rRNA gene sequence indicated that WLY-B-L8T was most closely related to Bacillus rhizoplanae JJ-63 DSM 12442T (98.71%), Bacillus pseudomycoides DSM 12442T (98.21%), and Bacillus cytotoxicus NVH 391–98T (98.14%). The average nucleotide identity (ANI) values of strain WLY-B-L8T and the three type strains mentioned above were 88.24%, 80.57%, and 78.70%. The average amino identity (AAI) values between them were 89.84%, 79.51%, and 80.41%. In addition, the digital DNA–DNA hybridization (dDDH) values between them were 36.70%, 26.10%, and 23.90%. The genomic DNA G+C content was 35.97%. Based on the evidence presented herein, WLY-B-L8T (CICC 25210T = JCM 36284T) exhibits promise as the type strain of a novel species, designated as Bacillus multifaciens sp. nov., that can produce protease (119.38 ± 7.44 U/mL) and volatile flavor components when cultured on raw wheat, such as 2-pipendinone (21.95 ± 1.56 mg/L), phenylethyl alcohol (19.08 ± 0.82 mg/L), hydrocinnamic acid (18.60 ± 0.53 mg/L), and acetoin (7.58 ± 0.11 mg/L). Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

Back to TopTop