Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice
Abstract
1. Introduction
2. Results
2.1. Tested Compounds
2.2. Effects on Motor Performance
2.3. Effects on Drug-Induced Seizures
2.4. Docking Assays on Putative Targets
2.5. Results in Glial and Neuronal Cultures
2.5.1. Astrocytes
2.5.2. Neurons
2.6. Immunohistochemistry of Nervous Tissue
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Chemicals
4.1.2. Animals
4.2. Behavioral Evaluation
4.2.1. Motor Evaluation
4.2.2. Seizures Induction and Treatments
4.3. Evaluation of Neuronal Survival
4.4. Evaluation of Toxicity in Neuronal or Glial Culture Cells Exposed to FB1 or AB1
4.4.1. Evaluation of Cytotoxicity in Primary Astrocyte Cell Culture
4.4.2. Evaluation of Cytotoxicity in Primary Hippocampal Neuronal Cell Culture
4.5. Statistical Analysis
4.6. Molecular Docking on Potential Targets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grams, R.J.; Santos, W.L.; Scorei, I.R.; Abad-García, A.; Rosenblum, C.A.; Bita, A.; Cerecetto, H.; Viñas, C.; Soriano-Ursúa, M.A. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem. Rev. 2024, 124, 2441–2511. [Google Scholar] [CrossRef]
- Williams, G.T.; Kedge, J.L.; Fossey, J.S. Molecular boronic acid-based saccharide sensors. ACS Sens. 2021, 6, 1508–1528. [Google Scholar] [CrossRef]
- Nan, K.; Jiang, Y.-N.; Li, M.; Wang, B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. Biosensors 2023, 13, 618. [Google Scholar] [CrossRef]
- Bérubé, M.; Dowlut, M.; Hall, D.G. Benzoboroxoles as efficient glycopyranoside-binding agents in physiological conditions: Structure and selectivity of complex formation. J. Org. Chem. 2008, 73, 6471–6479. [Google Scholar] [CrossRef]
- Jangid, A.K.; Kim, K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv. Colloid Interface Sci. 2024, 333, 103301. [Google Scholar] [CrossRef]
- Banach, Ł.; Williams, G.T.; Fossey, J.S. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester-Controlled Release. Adv. Ther. 2021, 4, 2100118. [Google Scholar] [CrossRef]
- Mohanty, A.R.; Ravikumar, A.; Peppas, N.A. Recent advances in glucose-responsive insulin delivery systems: Novel hydrogels and future applications. Regen. Biomater. 2022, 9, rbac056. [Google Scholar] [CrossRef]
- Itoh, T.; Tamura, K.; Ueda, H.; Tanaka, T.; Sato, K.; Kuroda, R.; Aoki, S. Design and synthesis of boron containing monosaccharides by the hydroboration of d-glucal for use in boron neutron capture therapy (BNCT). Bioorg. Med. Chem. 2018, 26, 5922–5933. [Google Scholar] [CrossRef]
- Barrón-González, M.; Montes-Aparicio, A.V.; Cuevas-Galindo, M.E.; Orozco-Suárez, S.; Barrientos, R.; Alatorre, A.; Querejeta, E.; Trujillo-Ferrara, J.G.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J. Inorg. Biochem. 2022, 238, 112027. [Google Scholar] [CrossRef]
- Pearl, N.Z.; Babin, C.P.; Catalano, N.T.; Blake, J.C.; Ahmadzadeh, S.; Shekoohi, S.; Kaye, A.D. Narrative review of topiramate: Clinical uses and pharmacological considerations. Adv. Ther. 2023, 40, 3626–3638. [Google Scholar] [CrossRef]
- Erdogan, M.A.; Yusuf, D.; Christy, J.; Solmaz, V.; Erdogan, A.; Taskiran, E.; Erbas, O. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 2018, 18, 81. [Google Scholar] [CrossRef]
- Lalhmangaihzuala, S.; Vanlaldinpuia, K.; Khiangte, V.; Laldinpuii, Z.; Liana, T.; Lalhriatpuia, C.; Pachuau, Z. Therapeutic applications of carbohydrate-based compounds: A sweet solution for medical advancement. Mol. Divers. 2024, 28, 4553–4579. [Google Scholar] [CrossRef]
- Juvale, I.I.A.; Has, A.T.C. The evolution of the pilocarpine animal model of status epilepticus. Heliyon 2020, 6, e04557. [Google Scholar] [CrossRef]
- Farfán-García, E.D.; Castillo-Mendieta, N.T.; Ciprés-Flores, F.J.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett. 2016, 258, 115–125. [Google Scholar] [CrossRef]
- Hadrup, N.; Frederiksen, M.; Sharma, A.K. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, J.V.; Burman, R.J.; Katz, A.A.; Akerman, C.J. Ion dynamics during seizures. Front. Cell. Neurosci. 2015, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Sumadewi, K.T.; Harkitasari, S.; Tjandra, D.C. Biomolecular mechanisms of epileptic seizures and epilepsy: A review. Acta Epileptol. 2023, 5, 28. [Google Scholar] [CrossRef]
- Ng, A.C.-H.; Chahine, M.; Scantlebury, M.H.; Appendino, J.P. Channelopathies in epilepsy: An overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J. Neurol. 2024, 271, 3063–3094. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Devinsky, O.; Rothermel, M.; Koch, H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front. Neurol. 2023, 13, 1040648. [Google Scholar] [CrossRef]
- Tse, K.; Beamer, E.; Simpson, D.; Beynon, R.J.; Sills, G.J.; Thippeswamy, T. The impacts of surgery and intracerebral electrodes in C57BL/6J mouse kainate model of epileptogenesis: Seizure threshold, proteomics, and cytokine profiles. Front. Neurol. 2021, 12, 625017. [Google Scholar] [CrossRef]
- Cordova-Chávez, R.I.; Trujillo-Ferrara, J.G.; Padilla-Martínez, I.I.; González-Espinosa, H.; Abad-García, A.; Farfán-García, E.D.; Ortega-Camarillo, C.; Contreras-Ramos, A.; Soriano-Ursúa, M.A. One-Step Synthesis, Crystallography, and Acute Toxicity of Two Boron–Carbohydrate Adducts That Induce Sedation in Mice. Pharmaceuticals 2024, 17, 781. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, Q.; Zhang, X.C.; Zhao, Y. Structural insights into the allosteric effects of the antiepileptic drug topiramate on the CaV2.3 channel. Biochem. Biophys. Res. Commun. 2024, 725, 150271. [Google Scholar] [CrossRef]
- Van Erum, J.; Van Dam, D.; De Deyn, P.P. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019, 95, 51–55. [Google Scholar] [CrossRef]
- Kudin, A.P.; Debska-Vielhaber, G.; Vielhaber, S.; Elger, C.E.; Kunz, W.S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 2004, 45, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.B.; Agarwal, N.K.; Mediratta, P.K.; Sharma, K.K. Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 2011, 20, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Dhaher, R.; Gruenbaum, S.E.; Sandhu, M.R.S.; Ottestad-Hansen, S.; Tu, N.; Wang, Y.; Lee, T.-S.W.; Deshpande, K.; Spencer, D.D.; Danbolt, N.C.; et al. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021, 96, e2261–e2271. [Google Scholar] [CrossRef] [PubMed]
- Mula, M.; Cavanna, A.E.; Monaco, F.; Robertson, M.M.; Critchley, H.D. Psychopharmacology of topiramate: From epilepsy to bipolar disorder. Neuropsychiatr. Dis. Treat. 2006, 2, 475–488. [Google Scholar] [CrossRef]
- Zhang, X.; Velumian, A.A.; Jones, O.T.; Carlen, P.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia 2000, 41, 52–60. [Google Scholar] [CrossRef]
- Gibbs, J.W., 3rd; Sombati, S.; DeLorenzo, R.J.; Coulter, D.A. Cellular actions of topiramate: Blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 2000, 41, 10–16. [Google Scholar] [CrossRef]
- Dodgson, S.J.; Shank, R.P.; Maryanoff, B.E. Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 2000, 41 (Suppl. S1), S35–S39. [Google Scholar] [CrossRef]
- Khalil, N.Y.; AlRabiah, H.K.; Al Rashoud, S.S.; Bari, A.; Wani, T.A. Topiramate: Comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol. 2019, 44, 333–378. [Google Scholar] [CrossRef] [PubMed]
- Maryanoff, B.E.; Costanzo, M.J.; Nortey, S.O.; Greco, M.N.; Shank, R.P.; Schupsky, J.J.; Ortegon, M.P.; Vaught, J.L. Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate: Enhanced potency with cyclic sulfate derivatives. J. Med. Chem. 1998, 41, 1315–1343. [Google Scholar] [CrossRef]
- Yuan, X.; Fu, Z.; Ji, P.; Guo, L.; Al-Ghamdy, A.O.; Alkandiri, A.; Habotta, O.A.; Moneim, A.E.A.; Kassab, R.B. Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int. J. Nanomed. 2020, 15, 6339–6353. [Google Scholar] [CrossRef]
- Mejía, C.V.; Nuñez-Ibarra, B.H.; Medina-Ceja, L. An update of 4-aminopyride as a useful model of generalized seizures for testing antiseizure drugs: In vitro and in vivo studies. Acta Neurobiol. Exp. 2023, 83, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.J.; Bankstahl, M.; Gröticke, I.; Löscher, W. Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. Eur. J. Pharmacol. 2009, 619, 15–24. [Google Scholar] [CrossRef]
- Meldrum, B.S. Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 1993, 3, 405–412. [Google Scholar] [CrossRef]
- Lopes, J.P.B.; Silva, L.; Lüdtke, D.S. An overview on the synthesis of carbohydrate-based molecules with biological activity related to neurodegenerative diseases. RSC Med. Chem. 2021, 12, 2001–2015. [Google Scholar] [CrossRef]
- Bajad, N.G.; Swetha, R.; Gutti, G.; Singh, M.; Kumar, A.; Singh, S.K. A systematic review of carbohydrate-based bioactive molecules for Alzheimer’s disease. Futur. Med. Chem. 2021, 13, 1695–1711. [Google Scholar] [CrossRef]
- Cifuentes, J.; Salazar, V.A.; Cuellar, M.; Castellanos, M.C.; Rodríguez, J.; Cruz, J.C.; Muñoz-Camargo, C. Antioxidant and neuroprotective properties of non-centrifugal cane sugar and other sugarcane derivatives in an in vitro induced Parkinson’s model. Antioxidants 2021, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M., Jr.; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [Google Scholar] [CrossRef]
- Cowgill, J.; Fan, C.; Haloi, N.; Tobiasson, V.; Zhuang, Y.; Howard, R.J.; Lindahl, E. Structure and dynamics of differential ligand binding in the human ρ-type GABAA receptor. Neuron 2023, 111, 3450–3464.e5. [Google Scholar] [CrossRef]
- Mexican Official Standard NOM-062-ZOO-1999-SAGARPA; Technical Specifications for the Production, Care, and Use of Laboratory Animals. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: Mexico City, Mexico, 1999.
- Nazıroğlu, M.; Kutluhan, S.; Uğuz, A.C.; Çelik, Ö.; Bal, R.; Butterworth, P.J. Topiramate and vitamin E modulate the electroencephalographic records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. J. Membr. Biol. 2009, 229, 131–140. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Kutluhan, S.; Yılmaz, M. Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2+-ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. J. Membr. Biol. 2008, 225, 39–49. [Google Scholar] [CrossRef]
- Fedor, F.Z.; Paraczky, C.; Ravasz, L.; Tóth, K.; Borhegyi, Z.; Somogyvári, Z.; Juhász, G.; Fekete, Z. Electrophysiological and behavioral properties of 4-aminopyridine-induced epileptic activity in mice. Biol. Future 2020, 71, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Balaha, M.F.; Alamer, A.A.; Abdel-Kader, M.S.; Alharthy, K.M. Ameliorative potential of (-) pseudosemiglabrin in mice with pilocarpine-induced epilepsy: Antioxidant, anti-inflammatory, anti-apoptotic, and neurotransmission modulation. Int. J. Mol. Sci. 2023, 24, 10773. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Galindo, M.E.; Rubio-Velázquez, B.A.; Jarillo-Luna, R.A.; Padilla-Martínez, I.I.; Soriano-Ursúa, M.A.; Trujillo-Ferrara, J.G. Synthesis, In Silico, In Vivo, and Ex Vivo Evaluation of a Boron-Containing Quinolinate Derivative with Presumptive Action on mGluRs. Inorganics 2023, 11, 94. [Google Scholar] [CrossRef]
- Smith, J.; Richerson, G.; Kouchi, H.; Duprat, F.; Mantegazza, M.; Bezin, L.; Rheims, S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2023, 65, 9–25. [Google Scholar] [CrossRef]
- Mátyás, A.; Borbély, E.; Mihály, A. Hippocampal sclerosis in pilocarpine epilepsy: Survival of peptide-containing neurons and learning and memory disturbances in the adult NMRI strain mouse. Int. J. Mol. Sci. 2021, 23, 204. [Google Scholar] [CrossRef]
- Çetiner, E.; Sayın, K.; Ünal, Y. Optimization, spectral characterization, QSAR, and molecular docking analyses of newly designed boron compounds. Struct. Chem. 2023, 34, 1731–1742. [Google Scholar] [CrossRef]
- Zhang, M.; Shan, Y.; Pei, D. Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel. Nat. Commun. 2023, 14, 1470. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and Au-toDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef]
- Soriano-Ursúa, M.A.; Farfán-García, E.D.; López-Cabrera, Y.; Querejeta, E.; Trujillo-Ferrara, J.G. Boron-containing acids: Preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. NeuroToxicology 2014, 40, 8–15. [Google Scholar] [CrossRef]
- Jensen, J.P.A. The rise and fall of borax as an antiepileptic drug. Arch. Neurol. 2006, 63, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Varughese, S.; Azim, Y.; Desiraju, G.R. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring. J. Pharm. Sci. 2010, 99, 3743–3753. [Google Scholar] [CrossRef]
Group | Latency Time (min) | |
---|---|---|
Treatment | Inducer Agent | |
Negative (vehicle) | PTZ | 5.49 ± 0.62 |
Topiramate | 8.55 ± 0.30 ** | |
AB1 FB1 | 7.66 ± 0.86 * 5.80 ± 1.2 | |
Negative (vehicle) | 4AP | 13.2 ± 0.26 |
Topiramate | 13.0 ± 0.46 | |
AB1 FB1 | 12.8 ± 0.62 14.0 ± 0.28 | |
Negative (vehicle) | Pil | 26.4 ± 0.44 |
Topiramate | 29.2 ± 0.20 * | |
AB1 FB1 | 28.4 ± 0.26 * 26.6 ± 0.68 |
Target: (PDB ID) | GABAA Receptor (6X3W) | NMDa Receptor (7YFM) | K+ Channel (7YIE) | Ca2+ Channel (7YG5) |
---|---|---|---|---|
Ligand: | ||||
Topiramate | 4.30 | 4.62 | 4.84 | 4.41 |
AB1 | 4.93 | 4.23 | 4.06 | 4.54 |
FB1 | 4.58 | 4.58 | 3.89 | 4.34 |
Murine Behavioral Model | ||
---|---|---|
Group | Pre-Treatment | Stimulating Agent |
1 | None (Control group) | None |
2 | Vehicle (5% DMSO v/v with 0.9% w/v saline solution, intraperitoneal 0.5 mL injection) | None |
3 | Negative (Vehicle, intraperitoneal 0.5 mL injection) | PTZ (80 mg/kg, intraperitoneal 1-mL injection) |
4 | Topiramate (50.0 mg/kg, 147.33 µmol/kg) | |
5 | AB1 (47.4 mg/kg, 147.33 µmol/kg) | |
6 | FB1 (51.9 mg/kg, 147.33 µmol/kg) | |
7 | Negative (Vehicle, intraperitoneal 0.5 mL injection) | 4AP (15 mg/kg, intraperitoneal 1-mL injection) |
8 | Topiramate (50.0 mg/kg, 147.33 µmol/kg) | |
9 | AB1 (47.4 mg/kg, 147.33 µmol/kg) | |
10 | FB1 (51.9 mg/kg, 147.33 µmol/kg) | |
11 | Negative (Vehicle, intraperitoneal 0.5 mL injection) | Pil (360 mg/kg, intraperitoneal 1-mL injection) |
12 | Topiramate (50.0 mg/kg, 147.33 µmol/kg) | |
13 | AB1 (47.4 mg/kg, 147.33 µmol/kg) | |
14 | FB1 (51.9 mg/kg, 147.33 µmol/kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Schejtman, Y.; Soriano-Ursúa, M.A.; Estevez-Fregoso, E.; García-López, D.; Cordova-Chavez, R.I.; Hernández-Rodríguez, M.; Biță, A.; Contreras-Ramos, A.; Hernández-Zamora, M.; Farfán-García, E.D. Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice. Pharmaceuticals 2025, 18, 1470. https://doi.org/10.3390/ph18101470
Valenzuela-Schejtman Y, Soriano-Ursúa MA, Estevez-Fregoso E, García-López D, Cordova-Chavez RI, Hernández-Rodríguez M, Biță A, Contreras-Ramos A, Hernández-Zamora M, Farfán-García ED. Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice. Pharmaceuticals. 2025; 18(10):1470. https://doi.org/10.3390/ph18101470
Chicago/Turabian StyleValenzuela-Schejtman, Yaqui, Marvin A. Soriano-Ursúa, Elizabeth Estevez-Fregoso, Daniel García-López, R. Ivan Cordova-Chavez, Maricarmen Hernández-Rodríguez, Andrei Biță, Alejandra Contreras-Ramos, Miriam Hernández-Zamora, and Eunice D. Farfán-García. 2025. "Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice" Pharmaceuticals 18, no. 10: 1470. https://doi.org/10.3390/ph18101470
APA StyleValenzuela-Schejtman, Y., Soriano-Ursúa, M. A., Estevez-Fregoso, E., García-López, D., Cordova-Chavez, R. I., Hernández-Rodríguez, M., Biță, A., Contreras-Ramos, A., Hernández-Zamora, M., & Farfán-García, E. D. (2025). Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice. Pharmaceuticals, 18(10), 1470. https://doi.org/10.3390/ph18101470