Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,395)

Search Parameters:
Keywords = cyclic strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 17546 KB  
Article
Dynamic Finite Element and Experimental Strain Analysis of a Passenger-Car Rear Axle for Durable and Sustainable Suspension Design
by Ionut Daniel Geonea, Ilie Dumitru, Laurentiu Racila and Cristian Copilusi
Vehicles 2026, 8(1), 9; https://doi.org/10.3390/vehicles8010009 - 3 Jan 2026
Viewed by 403
Abstract
This paper proposes an integrated numerical–experimental methodology for the durability assessment and optimisation of a passenger-car rear axle. A dedicated rear-suspension durability test bench was designed to impose a controlled cyclic vertical excitation on a dependent axle, reproducing service-like translational and rotational amplitudes [...] Read more.
This paper proposes an integrated numerical–experimental methodology for the durability assessment and optimisation of a passenger-car rear axle. A dedicated rear-suspension durability test bench was designed to impose a controlled cyclic vertical excitation on a dependent axle, reproducing service-like translational and rotational amplitudes of the beam and stabiliser bar. A detailed flexible multibody model of the bench–axle system was developed in MSC ADAMS 2023 and used to tune the kinematic excitation and determine an equivalent design load at the wheel spindles, consistent with the stiffness of the suspension assembly. Experimental strain measurements at nine locations on the axle, acquired with strain-gauge instrumentation on the bench, were converted into stresses and used to validate an explicit dynamic finite element model in ANSYS. The FE predictions agree with the experiments within about 10% at the beam mid-span and correctly identify a critical region at the junction between the side plate and the arm, where peak von Mises stresses of about 104 MPa occur. The validated model then supports a response-surface-based optimisation of the safety-critical wheel spindle, yielding an optimised geometry in which spindle-fillet stresses remain around 180–185 MPa under a severe loading case corresponding to the maximum admissible wheel load at the bearings, while the associated increase in mass is modest and compatible with practical design constraints. Full article
(This article belongs to the Special Issue Intelligent Mobility and Sustainable Automotive Technologies)
Show Figures

Figure 1

38 pages, 2150 KB  
Review
Antifungal Biocontrol in Sustainable Crop Protection: Microbial Lipopeptides, Polyketides, and Plant-Derived Agents
by Nadya Armenova, Lidia Tsigoriyna, Alexander Arsov, Stefan Stefanov, Kaloyan Petrov, Wanmeng Mu, Wenli Zhang and Penka Petrova
J. Fungi 2026, 12(1), 22; https://doi.org/10.3390/jof12010022 - 27 Dec 2025
Viewed by 530
Abstract
Fungal phytopathogens cause significant global crop losses and remain a constant obstacle to sustainable food production. Biological control has become a vital alternative to synthetic fungicides, supported by the wide variety of antifungal molecules produced by bacteria, fungi, yeasts, and plants. This review [...] Read more.
Fungal phytopathogens cause significant global crop losses and remain a constant obstacle to sustainable food production. Biological control has become a vital alternative to synthetic fungicides, supported by the wide variety of antifungal molecules produced by bacteria, fungi, yeasts, and plants. This review consolidates current knowledge on the main classes of microbial secondary metabolites—particularly cyclic lipopeptides and polyketides from Bacillus, Pseudomonas, Streptomyces, Trichoderma, and related generа. It emphasizes their structural diversity, biosynthetic pathways, regulatory networks, and antifungal mechanisms. These molecules, including iturins, fengycins, surfactins, syringomycins, candicidins, amphotericin analogs, peptaibols, and epipolythiodioxopiperazines, target fungal membranes, mitochondria, cell walls, and signaling systems, offering broad activity against damaging pathogens such as Fusarium, Botrytis, Magnaporthe, Colletotrichum, Phytophthora, and Rhizoctonia. The plant-derived antifungal metabolites include essential volatile compounds that complement microbial agents and are increasingly important in eco-friendly crop protection. Recent progress in genomics, metabolic engineering, and synthetic biology has accelerated strain improvement and the discovery of new bioactive compounds. At the same time, global market analyses indicate rapid growth in microbial biofungicides driven by regulatory changes and consumer demand. Full article
(This article belongs to the Special Issue Plant Pathogenic Fungal Infections, Biocontrol and Novel Fungicides)
Show Figures

Figure 1

39 pages, 3829 KB  
Article
Adequacy of Standard Models for Long-Term Behavior of Lightweight Concrete with Sintered Aggregate Under Cyclic Loading
by Paweł M. Lewiński, Zbigniew Fedorczyk, Przemysław Więch and Łukasz Zacharski
Materials 2026, 19(1), 59; https://doi.org/10.3390/ma19010059 - 23 Dec 2025
Viewed by 236
Abstract
This paper presents an experimental determination of the long-term mechanical properties of lightweight concrete with sintered aggregate under cyclic loading and the corresponding analytical standard models. The research was designed around two concrete mixtures. Multiple tests were conducted at the Building Structures, Geotechnics [...] Read more.
This paper presents an experimental determination of the long-term mechanical properties of lightweight concrete with sintered aggregate under cyclic loading and the corresponding analytical standard models. The research was designed around two concrete mixtures. Multiple tests were conducted at the Building Structures, Geotechnics and Concrete Laboratory of the Building Research Institute (ITB), using various equipment including creep-testing machines and tensometric measurements of sample deformations. As a result of these tests, in addition to strength properties, the following time-dependent parameters were determined: the secant modulus of elasticity, shrinkage strains, and creep-recovery strains under cyclic loading. For the parameterization and modeling of constitutive equations, an analysis of creep strains under cyclic loads was carried out, taking into account the integral hereditary law according to the Boltzmann superposition principle and the long-term models formulated according to the following standards and pre-standards: Eurocode 2 (2004), Model Code 2010, Model Code 2020, and Eurocode 2 (2023). The results from the individual models were compared with the test results using the rules for evaluating correction factors for models determined according to Eurocode 2 (2023). It was concluded that the development of creep strain is correctly modeled by the aforementioned standard methods, albeit with the aforementioned correction factors. One of the research objectives was to determine whether the ratchetting phenomenon could be observed during creep of the tested concrete under cyclic loading; however, due to the very low level of plastic deformation, this phenomenon was not detected. The research confirmed the suitability of lightweight concrete with sintered aggregate for use in cyclically loaded concrete structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 6320 KB  
Article
Texture and Flexural Fatigue Resistance Governed by Surface-Dependent Deformation and Recrystallization in the Copper Foils
by Tong Wu, Guohao Liu, Di Liu, Bingxing Wang, Bin Wang and Yong Tian
Nanomaterials 2026, 16(1), 11; https://doi.org/10.3390/nano16010011 - 20 Dec 2025
Viewed by 395
Abstract
High-flexibility copper foils are critical for reliable flexible interconnects and displays. In this work, commercial-purity copper belts were processed by triple-layer stacked cold rolling to ultrathin foils, producing distinct surface- and layer-dependent deformation structures in the bright, matte, and central-interface layers; subsequent annealing [...] Read more.
High-flexibility copper foils are critical for reliable flexible interconnects and displays. In this work, commercial-purity copper belts were processed by triple-layer stacked cold rolling to ultrathin foils, producing distinct surface- and layer-dependent deformation structures in the bright, matte, and central-interface layers; subsequent annealing at 600 °C then promoted orientation-selective recrystallization. Under the present conditions, the center-interface layer of the triple-rolled foil achieved the highest flexural-fatigue life (≈8.0 × 104 cycles) within a window of cube ≈ 30–45% and grain size ≈ 40–60 μm. In this regime, grain-size control stabilizes intergranular slip compatibility, reduces elastic–plastic mismatch, and mitigates strain localization during cyclic bending. Even without aggressive cube enrichment, high flexural fatigue resistance can likewise be achieved through deliberate control of grain size. These findings establish a clear processing–microstructure–property linkage and indicate that layer-dependent control of texture and grain size can enhance flexural-fatigue performance in triple-layer stacked-rolled copper foils for flexible electronics. Full article
(This article belongs to the Special Issue Innovative Nanomaterials for Enhanced Steel and Alloy Performance)
Show Figures

Figure 1

14 pages, 6082 KB  
Article
The Effect of Potentiostatic Control on the Bioreduction of Hexavalent Chromium Using Bacillus cereus
by Huimei Chi and Man Feng
Microorganisms 2026, 14(1), 14; https://doi.org/10.3390/microorganisms14010014 - 20 Dec 2025
Viewed by 212
Abstract
Coupling microbial catalysis with electrochemical stimulation offers a promising strategy for heavy metal remediation. This study investigates how potentiostatic control influences the bioreduction of hexavalent chromium (Cr(VI)) by Bacillus cereus strain DIF1 in a bioelectrochemical system. Cr(VI) reduction was evaluated under various applied [...] Read more.
Coupling microbial catalysis with electrochemical stimulation offers a promising strategy for heavy metal remediation. This study investigates how potentiostatic control influences the bioreduction of hexavalent chromium (Cr(VI)) by Bacillus cereus strain DIF1 in a bioelectrochemical system. Cr(VI) reduction was evaluated under various applied cathodic potentials, and the highest reduction efficiency (91.45%) was achieved at +0.04 V after 24 h. This performance significantly surpassed that of the abiotic control (82.55%) and the open-circuit biotic control (9.25%), indicating that the applied potential enhances microbial Cr(VI) reduction beyond contributions from abiotic processes alone. Cyclic voltammetry (CV) revealed a distinct redox feature at +0.04 V with no corresponding reverse peak, indicating kinetically favored electron transfer during Cr(VI) reduction under this condition. Microscopic imaging confirmed that, under the applied potential, Bacillus cereus DIF1 formed filamentous connections, exhibited higher chromium accumulation on bacterial cells than on the surrounding carbon paper electrode, and developed a robust biofilm on the cathode surface. The system maintained consistent Cr(VI) reduction performance over three consecutive cycles, demonstrating good short-term operational reproducibility. These findings highlight the critical role of precise electrochemical control in modulating microbial Cr(VI) reduction and provide mechanistic insights into the interplay between electrode potential and bacterial activity. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 1404 KB  
Article
Chromatographic and Molecular Insights into Fatty Acid Profiles of Thermophilic Lactobacillus Strains: Influence of Tween 80TM Supplementation
by Dorota Zaręba and Małgorzata Ziarno
Molecules 2026, 31(1), 14; https://doi.org/10.3390/molecules31010014 - 19 Dec 2025
Viewed by 300
Abstract
The molecular fatty acid (FA) profiles of seven certified thermophilic Lactobacillus strains, including the influence of an extracellular source of oleic acid (as Tween 80TM), were characterised using advanced chromatographic and spectrometric methods. Cyclic and conjugated fatty acids were identified by [...] Read more.
The molecular fatty acid (FA) profiles of seven certified thermophilic Lactobacillus strains, including the influence of an extracellular source of oleic acid (as Tween 80TM), were characterised using advanced chromatographic and spectrometric methods. Cyclic and conjugated fatty acids were identified by GC-MS using co-injections with authentic standards, ECL, and diagnostic EI ions, with a secondary confirmation using literature data. Additionally, the molecular-level characterisation of fatty acid profiles of bacterial cells was summarised using the latest analytical approaches, highlighting inconsistencies and differences reported in previous studies. Six saturated fatty acids, two single-branched fatty acids with iso and anteiso structures, one hydroxy fatty acid, nine unsaturated fatty acids with one double bond, two fatty acids with unsaturated double bonds, six fatty acids with conjugated bonds, and three fatty acids with a cyclic part in the carbon chain were identified. Within these fatty acids, we also demonstrated the limitations of molecular chromatographic resolution and structural discrimination, which impacted the effective identification of fatty acids in our research. We confirmed the significant differences in terms of the identification of C18:1,cis-9 and C18:1,cis-11 acids, as well as cycC19:0,cis-10,11, and cycC19:0,cis-9,10 acids. The observations at the molecular–physiological interface related to the lack of growth of L. acidophilus strains and the visibly reduced growth of L. delbrueckii subsp. lactis ATCC 4797 in the MRS without the addition of Tween 80TM allowed us to confirm that the exclusion of this medium is useful in differentiating the lactobacilli. Full article
Show Figures

Figure 1

26 pages, 10588 KB  
Article
Mechanical Response of Supporting Unit with Continuous Mining and Continuous Backfilling Method in Close Distance Coal Seams
by Guozhen Zhao, Hao Wu and Jiaqi Zhang
Energies 2025, 18(24), 6627; https://doi.org/10.3390/en18246627 - 18 Dec 2025
Viewed by 220
Abstract
In the process of continuous mining and continuous backfilling (CMCB) in close-distance coal seams, the supporting unit (CMCBSU), composed of coal pillar and filling body, is affected by mining-induced disturbances from adjacent coal seams. This study establishes a mechanical model for the CMCBSU, [...] Read more.
In the process of continuous mining and continuous backfilling (CMCB) in close-distance coal seams, the supporting unit (CMCBSU), composed of coal pillar and filling body, is affected by mining-induced disturbances from adjacent coal seams. This study establishes a mechanical model for the CMCBSU, revealing that the coordination of the CMCBSU depends on the similarity degree of elastic modulus of the components. Subsequently, numerical simulations were conducted to analyze the stress conditions. The results showed that the σ1 and σ3 exhibited cyclic loading and unloading characteristics. Based on the stress paths, conventional triaxial compression tests were performed on coal (CTC-coal), filling body, and the CMCBSU, as well as triaxial cyclic loading and unloading tests on coal (TCLU-coal). The results indicated that coal exhibited significant brittleness, the filling body demonstrated strain-softening characteristics, and the CMCBSU showed strain-softening behavior. Hysteresis loops were observed in the elastic region of the TCLU-coal. The failure characteristics of the specimens indicated that the shear stress was the primary cause of specimen failure. After testing, the filling body exhibited radial fish-scale-like wrinkles on the specimen surface, the coal and the CMCBSU showed primary shear cracks. In the CMCBSU, the primary shear crack generated on the filling body side relates to that on the coal side. In contrast, secondary cracks on the filling body side rarely penetrate the coal side. Excluding the influence of internal weak planes on specimen failure, cyclic loading and unloading within the elastic region of the coal reduced its internal friction angle. Mechanical parameters indicate that the weaker load-bearing medium determined the load-bearing capacity of the CMCBSU, the medium with a higher elastic modulus primarily determined the CMCBSU’s resistance to elastic deformation, and the cyclic loading and unloading caused by CMCBSU in close-distance coal seams had minimal impact on the coal’s resistance to elastic deformation. Full article
Show Figures

Figure 1

18 pages, 1484 KB  
Article
Insights into Chemo-Mechanical Yielding and Eigenstrains in Lithium-Ion Battery Degradation
by Fatih Uzun
Batteries 2025, 11(12), 465; https://doi.org/10.3390/batteries11120465 - 18 Dec 2025
Viewed by 413
Abstract
In lithium-ion battery electrodes, repeated lithium insertion and extraction generate compositional gradients and volumetric changes that produce evolving stress fields and eigenstrains, accelerating mechanical degradation. While existing diffusion-induced stress models often capture only elastic behavior, they rarely provide a closed-form analytical treatment of [...] Read more.
In lithium-ion battery electrodes, repeated lithium insertion and extraction generate compositional gradients and volumetric changes that produce evolving stress fields and eigenstrains, accelerating mechanical degradation. While existing diffusion-induced stress models often capture only elastic behavior, they rarely provide a closed-form analytical treatment of irreversible deformation or its connection to cyclic degradation. In this work, a transparent analytical framework is developed for a planar electrode that explicitly couples lithium diffusion with elastic-plastic deformation, eigenstrain formation, and fracture-aware stress relaxation. The framework provides a means to quantitatively model the evolution of residual stress gradients, revealing the formation of a damaging tensile state at the electrode surface after delithiation and demonstrating how path-dependent irreversible deformation establishes a degradation memory. A parametric study is used to demonstrate the framework’s capability to clarify the influence of diffusivity and yield strength on residual stress development. This framework, which unifies diffusion, plasticity, and fracture in closed-form mechanical relations, provides new physical insight into the origins of chemo-mechanical degradation and offers a computationally efficient tool for guiding the design of durable next-generation electrode materials where chemo-mechanical strains are moderate. Full article
Show Figures

Graphical abstract

30 pages, 3804 KB  
Article
Evidence Supporting the Hydrophobic-Mismatch Model for Cytochrome b6f-Driven State Transitions in the Cyanobacterium Synechocystis Species PCC 6803
by Terezia Kovacs, Laszlo Kovacs, Mihaly Kis, Michito Tsuyama, Sindhujaa Vajravel, Eva Herman, Nia Petrova, Anelia Dobrikova, Tomas Zakar, Svetla Todinova, Sashka Krumova, Zoltan Gombos and Radka Vladkova
Membranes 2025, 15(12), 383; https://doi.org/10.3390/membranes15120383 - 17 Dec 2025
Viewed by 381
Abstract
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, [...] Read more.
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, we provide the first direct functional evidence for cytb6f using single-point mutation data. We introduced a PetD-Phe124Ala substitution in the cyanobacterium Synechocystis sp. PCC 6803 to test the key predictions of the hydrophobic-mismatch (HMM) model for cytb6f-driven STs in all oxygenic photosynthetic species. These predictions concern the role of the Phe/Tyr124fg-loop-PetD and the extent and kinetic characteristics of STs. The effects of PetD-F124A mutation on STs were monitored using 77K and Pulse-Amplitude-Modulated (PAM) fluorescence. For comparison, we employed a phycobilisome (PBS)-less Synechocystis mutant and wild-type (WT) strain, as well as the stn7 mutant and WT of Arabidopsis plant. The PetD-F124A mutation reduced the extent of STs and selectively affected the two-exponential kinetics components of the transitions. Under State 1 conditions, the mutant exhibited ~60% less energetic decoupling of PBS from photosystem I (PSI) compared to the WT. It is explainable by the HMM model with the inability of the PetD-F124A mutant, during the induction phase of the State 2→State 1 transition to adopt the cytb6f conformation with minimal hydrophobic thickness. PAM-derived parameters indicated that PSII electron transport function is not inhibited, and no detectable effect on cyclic electron transport around PSI was observed under low-light conditions. Circular dichroism and differential scanning calorimetry confirmed that both the PSI trimer/monomer ratio and the structural integrity of the PBSs are preserved in the mutant. The compensatory response to the mutation includes decreased PSI content and an increase in PBS rod size. In conclusion, (1) cytb6f is involved in cyanobacterial STs; (2) evidence is provided supporting the HMM model; (3) the electron transfer and signal transduction functions of cytb6f are separated into distinct domains; and (4) the signaling pathway regulating STs and pigment-protein composition in Synechocystis involves PetD-Phe124. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

50 pages, 1671 KB  
Review
Dynamic Tensile Strength of Concrete: A Review of Mechanisms, Test Results, and Applications for Dam Safety
by Anderssen Barbosa dos Santos, Pedro Alexandre Conde Bandini, Rocio Lilen Segura and Patrick Paultre
Materials 2025, 18(24), 5669; https://doi.org/10.3390/ma18245669 - 17 Dec 2025
Viewed by 576
Abstract
This paper provides a comprehensive review of the dynamic tensile behavior of concrete, focusing on its implications for seismic-resistant and impact-prone structures such as dams. The present work distinguishes itself in the following ways: providing the first comprehensive synthesis explicitly focused on large-aggregate [...] Read more.
This paper provides a comprehensive review of the dynamic tensile behavior of concrete, focusing on its implications for seismic-resistant and impact-prone structures such as dams. The present work distinguishes itself in the following ways: providing the first comprehensive synthesis explicitly focused on large-aggregate dam concrete behavior across the seismic strain rate range (104 to 102 s−1), which is critical yet underrepresented in the existing literature; integrating recent experimental and numerical advances regarding moisture effects, load history, and cyclic loading—factors that are essential for dam safety assessments; and critically evaluating current design guidelines for concrete dams against state-of-the-art research to identify gaps between engineering practice and scientific evidence. Through the extensive synthesis of experimental data, numerical simulations, and existing guidelines, the study examines key factors influencing dynamic tensile strength, including strain rate effects, crack evolution, testing techniques, and material variables such as moisture content, load history, and aggregate size. Experimental results from spall tests, split Hopkinson pressure bar configurations, and cyclic loading protocols are analyzed, revealing dynamic increase factors ranging from 1.1 to over 12, depending on the strain rates, saturation levels, and preloading conditions. The roles of inertial effects, free water (via the Stefan effect), and microstructural heterogeneity in enhancing or diminishing tensile performance are critically evaluated. Numerical models, including finite element, discrete element, and peridynamic approaches, are discussed for their ability to simulate crack propagation, inertia-dominated responses, and moisture interactions. The review identifies and analyzes current design guidelines. Key conclusions emphasize the necessity of integrating moisture content, load history, and mesoscale heterogeneity into dynamic constitutive models, alongside standardized testing protocols to bridge gaps between laboratory data and real-world applications. The findings advocate for updated engineering guidelines that reflect recent advances in rate-dependent fracture mechanics and multi-scale modeling, ensuring safer and more resilient concrete infrastructure under extreme dynamic loads. Full article
Show Figures

Graphical abstract

34 pages, 17210 KB  
Article
Experimental Study on Seismic Behavior of Irregular-Shaped Steel-Beam-to-CFST Column Joints with Inclined Internal Diaphragms
by Peng Li, Jialiang Jin, Chen Shi, Wei Wang and Weifeng Jiao
Buildings 2025, 15(24), 4514; https://doi.org/10.3390/buildings15244514 - 13 Dec 2025
Viewed by 289
Abstract
With the increasing functional and geometric complexity of modern steel buildings, irregular-shaped beam-to-column joints are becoming common in engineering practice. However, their seismic behavior remains insufficiently understood, particularly for configurations with geometric asymmetry and complex stress transfer mechanisms. This study experimentally investigates the [...] Read more.
With the increasing functional and geometric complexity of modern steel buildings, irregular-shaped beam-to-column joints are becoming common in engineering practice. However, their seismic behavior remains insufficiently understood, particularly for configurations with geometric asymmetry and complex stress transfer mechanisms. This study experimentally investigates the seismic performance of irregular steel-beam-to-concrete-filled steel tube (CFST) column joints incorporating inclined internal diaphragms (IIDs), taking unequal-depth beam (UDB) and staggered beam (SB) joints as representative cases. Two full-scale joint specimens were designed and tested under cyclic loading to evaluate their failure modes, load-bearing capacity, stiffness/strength degradation, energy dissipation capacity, strain distribution, and panel zone shear behavior. Both joints exhibited satisfactory strength and initial stiffness. Although diaphragm fracture occurred at approximately 3% drift, the joints retained 45–60% of their peak load capacity, based on the average strength of several loading cycles at the same drift level after diaphragm failure, and maintained stable hysteresis with average equivalent damping ratios above 0.20. Final failure was governed by successive diaphragm fracture followed by the tearing of the column wall, indicating that the adopted diaphragm thickness (equal to the beam flange thickness) was insufficient and that welding quality significantly affected joint performance. Refined finite element (FE) models were developed and validated against the test responses, reasonably capturing global strength, initial stiffness, and the stress concentration patterns prior to diaphragm fracture. The findings of this study provide a useful reference for the seismic design and further development of internal-diaphragm irregular steel-beam-to-CFST column joints. Full article
Show Figures

Figure 1

25 pages, 11355 KB  
Article
A Comparative Study on the Contact Fatigue Failure Mechanisms of Mn-Cr Series and Cr-Mo Series Gear Steels Based on Surface Integrity and Damage Morphology
by Dongfei Wang, Weijie Zhang, Lijun Wang, Xiaopeng Wang, Hui Wei, Qiang Xu and Rongxin Guan
Coatings 2025, 15(12), 1452; https://doi.org/10.3390/coatings15121452 - 9 Dec 2025
Viewed by 450
Abstract
The contact fatigue performance of carburized gear steels is critical for transmission durability, yet the mechanisms linking alloy-specific microstructure to failure modes remain complex. This study systematically compares the contact fatigue behaviors of 20MnCr5 and 20CrMoH gears using step-loading tests and multi-scale characterization. [...] Read more.
The contact fatigue performance of carburized gear steels is critical for transmission durability, yet the mechanisms linking alloy-specific microstructure to failure modes remain complex. This study systematically compares the contact fatigue behaviors of 20MnCr5 and 20CrMoH gears using step-loading tests and multi-scale characterization. The results demonstrate a significantly higher contact fatigue limit for 20MnCr5 of 1709 ± 12 MPa compared to 1652 ± 40 MPa for 20CrMoH, despite the latter exhibiting higher initial surface hardness. This hardness–toughness paradox is mechanistically elucidated by the distinct roles of alloying elements: while Molybdenum in 20CrMoH refines the grain size for high static strength, it limits retained austenite stability, resulting in a brittle hard-shell and soft-core structure prone to interface decohesion at martensite lath boundaries. Conversely, Manganese in 20MnCr5 promotes a gentler hardness gradient via favorable diffusion kinetics and stabilizes abundant film-like retained austenite. This microstructure activates a Stress Compensation Mechanism, where strain-induced martensitic transformation generates compressive volume expansion to counteract cyclic stress relaxation. Consequently, 20MnCr5 exhibits mild plastic micropitting driven by transformation toughening, whereas 20CrMoH undergoes severe brittle spalling driven by the Eggshell Effect. These findings confirm that balancing matrix toughness with hardness is more critical than maximizing surface hardness alone for contact fatigue resistance. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

18 pages, 5535 KB  
Article
Strain-Controlled Low-Cycle Fatigue Behavior and Microstructure Evolution of the Hot-Work Die Steel at 700 °C
by Pengfei Jin, Lichao Shi, Chao Zhao, Cheng Zhang and Jinfeng Huang
Materials 2025, 18(24), 5522; https://doi.org/10.3390/ma18245522 - 9 Dec 2025
Viewed by 410
Abstract
This study investigates the low-cycle fatigue behavior and microstructural evolution of a novel 30Cr2Ni3MoWV hot-work die steel at 700 °C under different strain amplitudes. High-temperature tensile tests demonstrated a tensile strength of 460 MPa and an elongation of 32%, confirming the material retains [...] Read more.
This study investigates the low-cycle fatigue behavior and microstructural evolution of a novel 30Cr2Ni3MoWV hot-work die steel at 700 °C under different strain amplitudes. High-temperature tensile tests demonstrated a tensile strength of 460 MPa and an elongation of 32%, confirming the material retains good ductility. Fracture analysis revealed ductile failure, supported by a 95% reduction in area. Low-cycle fatigue tests indicated notable cyclic softening at high strain amplitudes, with fatigue life declining rapidly as strain amplitude rose from 0.2% to 0.6%. A stress-softening coefficient model was established to describe this accelerated softening. Microstructural examination identified carbides (MC, M7C3, M23C6), which promoted secondary crack formation at 0.6% strain amplitude, contributing to early failure. TEM analysis further showed dislocation rearrangement, carbide coarsening, and martensite lath widening during cyclic loading. Among these, M23C6 precipitates were linked to increased softening at higher strains. The Coffin–Manson model parameters were optimized based on the relationship between fatigue life, plastic strain, and elastic strain. The model accurately predicted the steel’s fatigue life, with only a 0.01% deviation from experimental results. This work correlates accelerated softening and reduced fatigue life with three microstructural mechanisms—carbide coarsening, dislocation accumulation, and secondary cracking—offering valuable guidance for enhancing the high-temperature performance of hot-work die steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 3088 KB  
Article
Critical Stress Conditions for Foam Glass Aggregate Insulation in a Flexible Pavement Layered System
by Jean Pascal Bilodeau, Erdrick Pérez-González, Di Wang and Pauline Segui
Infrastructures 2025, 10(12), 339; https://doi.org/10.3390/infrastructures10120339 - 9 Dec 2025
Viewed by 390
Abstract
In cold regions, flexible pavements are vulnerable to frost-induced damage, necessitating effective insulation strategies. Foam glass aggregate (FGA) insulation layers, made from recycled glass, offer promising thermal insulation properties but are mechanically fragile and susceptible to permanent deformation under repeated loading. Manufacturers provide [...] Read more.
In cold regions, flexible pavements are vulnerable to frost-induced damage, necessitating effective insulation strategies. Foam glass aggregate (FGA) insulation layers, made from recycled glass, offer promising thermal insulation properties but are mechanically fragile and susceptible to permanent deformation under repeated loading. Manufacturers provide technical recommendations, particularly regarding load limits for installation and the dimensions of the thermal protection layer. These are considered insufficient to assist pavement designers in their work. The definition of critical criteria for permissible loads was deemed necessary to design mechanically durable structures using this alternative technology. This study investigates the critical stress conditions that FGA layers can tolerate within flexible pavement systems to ensure long-term structural integrity. Laboratory cyclic triaxial tests and full-scale accelerated pavement testing using a heavy vehicle simulator were conducted to evaluate the resilient modulus and permanent deformation behavior of FGA. The results show that FGA exhibits stress-dependent elastoplastic behavior, with resilient modulus values ranging from 70 to 200 MPa. Most samples exhibited plastic creep or incremental collapse behavior, underscoring the importance of careful stress management. A strain-hardening model was calibrated using both laboratory and full-scale data, incorporating a reliability level of 95%. This study identifies critical deviatoric stress thresholds (15–25 kPa) to maintain stable deformation behavior (Range A) under realistic confining pressures. FGA performs well as a lightweight, insulating, and draining layer, but design criteria remain to be defined for the design of multi-layer road structures adapted to local materials and traffic conditions. Establishing allowable critical stress levels would help designers mechanically validate the geometry, particularly the adequacy of the overlying layers. These findings support the development of mechanistic design criteria for FGA insulation layers, ensuring their durability and optimal performance in cold climate pavements. Full article
Show Figures

Figure 1

17 pages, 5520 KB  
Article
Cyclic Superelasticity, Elastocaloric Effect, and Shape Memory Effect of Solution-Treated Ti50Ni41Cu7Co2 Alloy
by Niranjan Kumar Choudhry, Da-Syuan Chou and Chih-Hsuan Chen
Materials 2025, 18(24), 5489; https://doi.org/10.3390/ma18245489 - 5 Dec 2025
Viewed by 415
Abstract
In recent years, there has been an increasing interest in studying multi-component alloys. A bulk solution-treated Ti50Ni41Cu7Co2 SMA was prepared and investigated. The functional properties, including phase transformation temperature, shape memory effect, cyclic superelasticity, and elastocaloric [...] Read more.
In recent years, there has been an increasing interest in studying multi-component alloys. A bulk solution-treated Ti50Ni41Cu7Co2 SMA was prepared and investigated. The functional properties, including phase transformation temperature, shape memory effect, cyclic superelasticity, and elastocaloric response, were systematically evaluated. The alloy exhibited a Ms temperature of around 250 K, which is beneficial for applications at room temperature. Shape memory effect with a maximum recoverable strain of 6.21% was obtained under a biased stress of 300 MPa. The superelasticity rapidly became stable during the cyclic test, reducing irrecoverable strain from 2.8% to 0.01% by the 10th cycle. After 250th superelastic cycles, the alloy exhibited a stable recoverable strain of 1.3%, and a lower critical stress for transformation (270 MPa, down from 405 MPa). The elastocaloric cooling effect reached −4.9 K at the 50th cycle and stabilized at −4.3 K thereafter. With an increase in operating temperature, the elastocaloric effect diminished and disappeared above 383 K, and the SMA retained a notable recoverable strain of ~0.5% up to 443 K. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

Back to TopTop