Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,520)

Search Parameters:
Keywords = cutaneous disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4142 KiB  
Article
Repeated Administration of Guar Gum Hydrogel Containing Sesamol-Loaded Nanocapsules Reduced Skin Inflammation in Mice in an Irritant Contact Dermatitis Model
by Vinicius Costa Prado, Bruna Rafaela Fretag de Carvalho, Kauani Moenke, Amanda Maccangnan Zamberlan, Samuel Felipe Atuati, Ana Clara Perazzio Assis, Evelyne da Silva Brum, Raul Edison Luna Lazo, Andréa Inês Horn Adams, Luana Mota Ferreira, Sara Marchesan Oliveira and Letícia Cruz
Pharmaceutics 2025, 17(8), 1029; https://doi.org/10.3390/pharmaceutics17081029 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum [...] Read more.
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum hydrogel with enhanced physicochemical and microbiological stability, providing an effective dosage form for topical application of sesamol nanocapsules to treat irritant contact dermatitis. Methods: Nano-based hydrogel containing 1 mg/g sesamol was prepared by adding the nanocapsule suspension to form a 2.5% (w/v) guar gum dispersion. Dynamic rheological analysis indicates that the formulations exhibit a non-Newtonian flow with pseudoplastic behavior. Hydrogels were evaluated by Fourier-transformed infrared (FTIR) spectroscopy, and, following spectrum acquisition, an unsupervised chemometrics model was developed to identify crucial variables. Additionally, the physicochemical and microbiological stability of the hydrogel was evaluated over a 60-day period. Results: ATR-FTIR spectra of all hydrogels evaluated are very similar after preparation and 60 days of storage. However, it showed a slight increase in average diameter and PDI and decreased pH values after 60 days. Microbiological assessment demonstrated that the hydrogel met the requirements for the microbial count over 60 days. The dermatitis model was induced by repeated applications of croton oil in the right ears of mice. The effectiveness of the hydrogels was evaluated by assessing ear edema and migration of polymorphonuclear cells. The nano-based hydrogel exhibited anti-inflammatory properties similar to those of dexamethasone. Conclusions: Therefore, the nano-based hydrogel containing sesamol exhibits therapeutic potential for treating cutaneous inflammatory diseases. Full article
Show Figures

Figure 1

19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

9 pages, 508 KiB  
Case Report
Scrofuloderma, an Old Acquaintance: A Case Report and Literature Review
by Heiler Lozada-Ramos and Jorge Enrique Daza-Arana
Infect. Dis. Rep. 2025, 17(4), 96; https://doi.org/10.3390/idr17040096 - 6 Aug 2025
Abstract
Scrofuloderma, a cutaneous manifestation of tuberculosis, is a rare but clinically significant form of mycobacterial infection. It typically results from the local spread of Mycobacterium tuberculosis from an infected lymph node or bone area to the overlying skin. This disease is mainly characterized [...] Read more.
Scrofuloderma, a cutaneous manifestation of tuberculosis, is a rare but clinically significant form of mycobacterial infection. It typically results from the local spread of Mycobacterium tuberculosis from an infected lymph node or bone area to the overlying skin. This disease is mainly characterized by chronic granulomatous inflammation, leading to skin ulcers and abscesses. Due to its nonspecific clinical presentation, scrofuloderma can mimic various dermatological conditions, making its diagnosis particularly challenging. This case report presents the clinical course of a patient who was positive for the Human Immunodeficiency Virus (HIV) with a diagnosis of scrofuloderma, managed at a tertiary healthcare center, with follow-up before and after treatment. A literature review was also made, highlighting the importance of maintaining a high index of clinical suspicion and utilizing appropriate diagnostic methods to ensure timely diagnosis. Full article
(This article belongs to the Section Tuberculosis and Mycobacteriosis)
Show Figures

Figure 1

15 pages, 1303 KiB  
Article
Extracellular Vesicle Release from Immune Cells in Cutaneous Leishmaniasis: Modulation by Leishmania (V.) braziliensis and Reversal by Antimonial Therapy
by Vanessa Fernandes de Abreu Costa, Thaize Quiroga Chometon, Katherine Kelda Gomes de Castro, Melissa Silva Gonçalves Ponte, Maria Inês Fernandes Pimentel, Marcelo Rosandiski Lyra, Rienk Nieuwland and Alvaro Luiz Bertho
Pathogens 2025, 14(8), 771; https://doi.org/10.3390/pathogens14080771 - 4 Aug 2025
Viewed by 193
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In [...] Read more.
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In this study, we combined a modified lymphocyte proliferation assay with nano-flow cytometry to quantify and phenotype EV released by CD4+, CD8+, and CD14+ cells in PBMC cultures from CL patients at different clinical stages: before treatment (PBT), during treatment (PDT), and post-treatment (PET) with antimonial. Healthy individuals (HI) were included as physiological controls. Upon stimulation with L. (V.) braziliensis antigens, we observed a distinct modulation of EV subsets. In the PBT group, CD4+ and CD14+ EV were significantly reduced, while CD8+ EV remained elevated. During PDT and PET, EV concentrations were restored across all subsets. These findings suggest that L. (V.) braziliensis selectively modulates the release of immune cell–derived EV, possibly as an immune evasion mechanism. The restoration of EV release following antimonial therapy highlights their potential as sensitive biomarkers for disease activity and treatment monitoring. This study offers novel insights into the immunoregulatory roles of EV in CL and underscores their relevance in host–parasite interactions. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Unveiling the Genetic Landscape of Canine Papillomavirus in the Brazilian Amazon
by Jeneffer Caroline de Macêdo Sousa, André de Medeiros Costa Lins, Fernanda dos Anjos Souza, Higor Ortiz Manoel, Cleyton Silva de Araújo, Lorena Yanet Cáceres Tomaya, Paulo Henrique Gilio Gasparotto, Vyctoria Malayhka de Abreu Góes Pereira, Acácio Duarte Pacheco, Fernando Rosado Spilki, Mariana Soares da Silva, Felipe Masiero Salvarani, Cláudio Wageck Canal, Flavio Roberto Chaves da Silva and Cíntia Daudt
Microorganisms 2025, 13(8), 1811; https://doi.org/10.3390/microorganisms13081811 - 2 Aug 2025
Viewed by 363
Abstract
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) [...] Read more.
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) remain scarce. This study investigated CPV types present in oral and cutaneous papillomatous lesions in domiciled dogs from Acre and Rondônia States, Brazil. Sixty-one dogs with macroscopically consistent lesions were clinically evaluated, and tissue samples were collected for histopathological examination and PCR targeting the L1 gene. Among these, 37% were histologically diagnosed as squamous papillomas or fibropapillomas, and 49.2% (30/61) tested positive for papillomavirus DNA. Sequencing of the L1 gene revealed that most positive samples belonged to CPV1 (Lambdapapillomavirus 2), while one case was identified as CPV8 (Chipapillomavirus 3). Complete genomes of three CPV1 strains were obtained via high-throughput sequencing and showed high identity with CPV1 strains from other Brazilian regions. Phylogenetic analysis confirmed close genetic relationships among isolates across distinct geographic areas. These findings demonstrate the circulation of genetically conserved CPVs in the Amazon and reinforce the value of molecular and histopathological approaches for the accurate diagnosis and surveillance of viral diseases in domestic dogs, especially in ecologically complex regions. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 306
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

28 pages, 13735 KiB  
Article
Immunohistopathological Analysis of Spongiosis Formation in Atopic Dermatitis Compared with Other Skin Diseases
by Ryoji Tanei and Yasuko Hasegawa
Dermatopathology 2025, 12(3), 23; https://doi.org/10.3390/dermatopathology12030023 - 1 Aug 2025
Viewed by 276
Abstract
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis [...] Read more.
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis in AD compared with those in other eczematous dermatitis and inflammatory skin diseases by using immunohistochemical methods. Infiltration of IDECs (CD11c+ cells and/or CD206+ cells) and T-lymphocytes, accompanied by degenerated keratinocytes and aggregated LCs (CD207+ cells), was frequently observed as a common feature of spongiosis in multiple conditions. However, IDECs expressing IgE were identified exclusively in IgE-mediated AD. Aggregation of IDECs was predominantly observed in the spongiosis of adaptive immune-mediated eczematous disorders, such as AD and allergic contact dermatitis. These IDEC aggregations constituted the major components of the epidermal dendritic cell clusters seen in AD and other eczematous or eczematoid dermatoses, and may serve as a useful distinguishing marker from Pautrier collections seen in cutaneous T-cell lymphoma. These findings suggest that IDECs, in cooperation with other immune cells, may play a pivotal role in spongiosis formation in AD and various skin diseases, although the underlying immunopathological mechanisms differ among these conditions. Full article
Show Figures

Figure 1

17 pages, 902 KiB  
Review
Cancer Stem Cells in Melanoma: Drivers of Tumor Plasticity and Emerging Therapeutic Strategies
by Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Raluca Niculescu, Iuliu Gabriel Cocuz, Andreea Raluca Cozac-Szöke, Bianca Andreea Lazar, Diana Maria Chiorean, Corina Eugenia Budin and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(15), 7419; https://doi.org/10.3390/ijms26157419 - 1 Aug 2025
Viewed by 176
Abstract
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack [...] Read more.
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack of specific markers (CD271, ABCB5, ALDH, Nanog) and the ability of cells to dynamically change their phenotype. Phenotype-maintaining signaling pathways (Wnt/β-catenin, Notch, Hedgehog, HIF-1) promote self-renewal, treatment resistance, and epithelial–mesenchymal transitions. Tumor plasticity reflects the ability of differentiated cells to acquire stem-like traits and phenotypic flexibility under stress conditions. The interaction of CSCs with the tumor microenvironment accelerates disease progression: they induce the formation of cancer-associated fibroblasts (CAFs) and neo-angiogenesis, extracellular matrix remodeling, and recruitment of immunosuppressive cells, facilitating immune evasion. Emerging therapeutic strategies include immunotherapy (immune checkpoint inhibitors), epigenetic inhibitors, and nanotechnologies (targeted nanoparticles) for delivery of chemotherapeutic agents. Understanding the role of CSCs and tumor plasticity paves the way for more effective innovative therapies against melanoma. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Melanoma Immunotherapy)
Show Figures

Figure 1

6 pages, 771 KiB  
Case Report
Sustained Complete Response to Trastuzumab Deruxtecan Beyond Treatment Discontinuation in a Heavily Pretreated HER2-Positive Breast Cancer Patient with Skin Metastases: A Case Report
by Maria Puleo, Sarah Pafumi, Martina Di Pietro, Giuseppina Rosaria Rita Ricciardi and Maria Vita Sanò
Reports 2025, 8(3), 126; https://doi.org/10.3390/reports8030126 - 31 Jul 2025
Viewed by 192
Abstract
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a [...] Read more.
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a novel potent anti-HER2 antibody–drug conjugate (ADC), has revolutionized the therapeutic armamentarium of HER2 mBC with unprecedented evidence of efficacy in pretreated patients. However, the activity of this drug in patients with skin involvement is largely unknown. Case Presentation: Here, we report a case of extensive cutaneous involvement in a heavily pretreated patient who achieved a long-lasting complete response to T-DXd, which, unexpectedly, remained sustained for more than three years following treatment discontinuation. Conclusions: Skin toxicity is not a common adverse event with this agent, and, as demonstrated in the present case, it might not be drug-related, and additional causes might be ruled out before treatment discontinuation. However, the possibility of discontinuing anti-Her2 treatment in a patient who has achieved a complete response could represent a field of research, potentially using liquid biopsy or other new technologies. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 - 30 Jul 2025
Viewed by 210
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

10 pages, 1920 KiB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 301
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 369
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

7 pages, 8022 KiB  
Interesting Images
Multimodal Imaging Detection of Difficult Mammary Paget Disease: Dermoscopy, Reflectance Confocal Microscopy, and Line-Field Confocal–Optical Coherence Tomography
by Carmen Cantisani, Gianluca Caruso, Alberto Taliano, Caterina Longo, Giuseppe Rizzuto, Vito DAndrea, Pawel Pietkiewicz, Giulio Bortone, Luca Gargano, Mariano Suppa and Giovanni Pellacani
Diagnostics 2025, 15(15), 1898; https://doi.org/10.3390/diagnostics15151898 - 29 Jul 2025
Viewed by 190
Abstract
Mammary Paget disease (MPD) is a rare cutaneous malignancy associated with underlying ductal carcinoma in situ (DCIS) or invasive ductal carcinoma (IDC). Clinically, it appears as eczematous changes in the nipple and areola complex (NAC), which may include itching, redness, crusting, and ulceration; [...] Read more.
Mammary Paget disease (MPD) is a rare cutaneous malignancy associated with underlying ductal carcinoma in situ (DCIS) or invasive ductal carcinoma (IDC). Clinically, it appears as eczematous changes in the nipple and areola complex (NAC), which may include itching, redness, crusting, and ulceration; these symptoms can sometimes mimic benign dermatologic conditions such as nipple eczema, making early diagnosis challenging. A 56-year-old woman presented with persistent erythema and scaling of the left nipple, which did not respond to conventional dermatologic treatments: a high degree of suspicion prompted further investigation. Reflectance confocal microscopy (RCM) revealed atypical, enlarged epidermal cells with irregular boundaries, while line-field confocal–optical coherence tomography (LC-OCT) demonstrated thickening of the epidermis, hypo-reflective vacuous spaces and abnormally large round cells (Paget cells). These non-invasive imaging findings were consistent with an aggressive case of Paget disease despite the absence of clear mammographic evidence of underlying carcinoma: in fact, several biopsies were needed, and at the end, massive surgery was necessary. Non-invasive imaging techniques, such as dermoscopy, RCM, and LC-OCT, offer a valuable diagnostic tool in detecting Paget disease, especially in early stages and atypical forms. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

14 pages, 976 KiB  
Article
Characterisation of the Faecal Microbiota in Dogs with Mast Cell Tumours Compared with Healthy Dogs
by Catarina Aluai-Cunha, Diana Oliveira, Hugo Gregório, Gonçalo Petrucci, Alexandra Correia, Cláudia Serra and Andreia Santos
Animals 2025, 15(15), 2208; https://doi.org/10.3390/ani15152208 - 27 Jul 2025
Viewed by 310
Abstract
Mast cell tumours (MCT) are the most common cutaneous neoplasms in dogs, with variable behaviours and patient survival time. Both indolent and aggressive forms have been described, but much remains to be explored regarding prognosis and therapy. Evidence has highlighted the influence of [...] Read more.
Mast cell tumours (MCT) are the most common cutaneous neoplasms in dogs, with variable behaviours and patient survival time. Both indolent and aggressive forms have been described, but much remains to be explored regarding prognosis and therapy. Evidence has highlighted the influence of microbiota on multiple health and disease processes, including certain types of cancer in humans. However, knowledge remains scarce regarding microbiota biology and its interactions in both humans and canine cancer patients. This study aimed to characterise the faecal microbiota of dogs with MCT and compare it with that of healthy individuals. Twenty-eight dogs diagnosed with MCT and twenty-eight healthy dogs were enrolled in the study. Faecal samples were collected and analysed by Illumina sequencing of 16S rRNA genes. Alpha diversity was significantly lower in dogs with cancer, and the species diversity InvSimpson Indexwas reduced (p = 0.019). Principal coordinate analysis showed significant differences in the bacterial profile of the two groups: there was a significant lower abundance of the genera Alloprevotella, Holdemanella, Erysipelotrichaceae_UCG-003, and Anaerobiospirillum and, conversely, a significant increase in the genera Escherichia-Shigella and Clostridium sensu stricto 1 in diseased dogs. At the phylum level, Bacteroidota was significantly reduced in diseased dogs (25% in controls vs. 19% in MCT dogs). In conclusion, sequencing analysis provided an overview of the bacterial profile and showed statistical differences in the microbial communities of dogs with MCT compared with healthy dogs, suggesting a link between the gut microbiota and MCT in this species. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

13 pages, 1388 KiB  
Article
Indazole Derivatives Against Murine Cutaneous Leishmaniasis
by Niurka Mollineda-Diogo, Yunierkis Pérez-Castillo, Sergio Sifontes-Rodríguez, Osmani Marrero-Chang, Alfredo Meneses-Marcel, Alma Reyna Escalona-Montaño, María Magdalena Aguirre-García, Teresa Espinosa-Buitrago, Yeny Morales-Moreno and Vicente Arán-Redó
Pharmaceuticals 2025, 18(8), 1107; https://doi.org/10.3390/ph18081107 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side [...] Read more.
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side effects, remains a priority for the scientific community in this field of research. In previous investigations, 3-alkoxy-1-benzyl-5-nitroindazole derivatives showed remarkable in vitro results against Leishmania species, and predictions of absorption, distribution, metabolism, excretion, and toxicity properties, as well as pharmacological scores, of the compounds classified as active were superior to those of amphotericin B, indicating their potential as candidates for in vivo studies. Therefore, the aim of the present study was to evaluate the in vivo antileishmanial activity of the indazole derivatives NV6 and NV16. Methods: The compounds were administered intralesionally at concentrations of 10 and 5 mg/kg in a BALB/c mouse model of cutaneous leishmaniasis caused by Leishmania amazonensis. To evaluate the efficacy of the compounds, indicators such as lesion size, ulcer area, lesion weight, and parasitic load were determined. Amphotericin B was used as a positive control. Results: The compound NV6 showed leishmanicidal activity comparable to that observed with amphotericin B, with a significant reduction in lesion development and parasite load, while NV16 caused a reduction in ulcer area. Conclusions: These results provide strong evidence for the antileishmanial activity of NV6 and support future studies to improve its pharmacokinetic profile, as well as the investigation of combination therapies with other chemotherapeutic agents currently in use. Full article
Show Figures

Graphical abstract

Back to TopTop