Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,351)

Search Parameters:
Keywords = current loss reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 25909 KB  
Article
YOLO-Shrimp: A Lightweight Detection Model for Shrimp Feed Residues Fusing Multi-Attention Features
by Tianwen Hou, Xinying Miao, Zhenghan Wang, Yi Zhang, Zhipeng He, Yifei Sun, Wei Wang and Ping Ren
Sensors 2026, 26(3), 791; https://doi.org/10.3390/s26030791 (registering DOI) - 24 Jan 2026
Abstract
Precise control of feeding rates is critically important in intensive shrimp farming for cost reduction, optimization of farming strategies, and protection of the aquatic environment. However, current assessment of residual feed in feeding trays relies predominantly on manual visual inspection, which is inefficient, [...] Read more.
Precise control of feeding rates is critically important in intensive shrimp farming for cost reduction, optimization of farming strategies, and protection of the aquatic environment. However, current assessment of residual feed in feeding trays relies predominantly on manual visual inspection, which is inefficient, highly subjective, and difficult to standardize. The residual feed particles typically exhibit characteristics such as small size, high density, irregular shapes, and mutual occlusion, posing significant challenges for automated visual detection. To address these issues, this study proposes a lightweight detection model named YOLO-Shrimp. To enhance the network’s capability in extracting features from small and dense targets, a novel attention mechanism termed EnSimAM is designed. Building upon the SimAM structure, EnSimAM incorporates local variance and edge response to achieve multi-scale feature perception. Furthermore, to improve localization accuracy for small objects, an enhanced weighted intersection over union loss function, EnWIoU, is introduced. Additionally, the lightweight RepGhost module is adopted as the backbone of the model, significantly reducing both the number of parameters and computational complexity while maintaining detection accuracy. Evaluated on a real-world aquaculture dataset containing 3461 images, YOLO-Shrimp achieves mAP@0.5 and mAP@0.5:0.95 scores of 70.01% and 28.01%, respectively, while reducing the parameter count by 19.7% and GFLOPs by 14.6% compared to the baseline model. Full article
(This article belongs to the Section Smart Agriculture)
30 pages, 1777 KB  
Review
Motor Soft-Start Technology: Intelligent Control, Wide Bandwidth Applications, and Energy Efficiency Optimization
by Peng Li, Li Fang, Pengkun Ji, Shuaiqi Li and Weibo Li
Energies 2026, 19(3), 603; https://doi.org/10.3390/en19030603 (registering DOI) - 23 Jan 2026
Abstract
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs [...] Read more.
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs a highly reliable and low energy consumption solution. Firstly, based on a material–device–algorithm system framework, a comparative study is conducted on the performance breakthroughs of SiC/GaN in replacing silicon-based devices. Secondly, an intelligent control model is established and a highly reliable system architecture is developed. A comprehensive review of recent literature indicates that SiC devices can reduce switching losses by up to 80%, and intelligent algorithms significantly improve control accuracy. System-level solutions reported in the industry demonstrate the capability to limit current to 1.5–3 times the rated current and achieve substantial carbon emission reductions. These technologies provide key technical support for the intelligent upgrading of industrial motor systems and the dual-carbon goal. In the future, development will continue to evolve in the direction of device miniaturization and other directions. Full article
Show Figures

Figure 1

24 pages, 707 KB  
Review
Obesity and Its Clinical Implications in End-Stage Kidney Disease
by Kristina Petruliene, Alanta Zilinskiene, Ruta Vaiciuniene, Kestutis Vaiciunas, Inga Arune Bumblyte and Egle Dalinkeviciene
Medicina 2026, 62(1), 211; https://doi.org/10.3390/medicina62010211 - 20 Jan 2026
Viewed by 175
Abstract
Both obesity and chronic kidney disease (CKD) are increasingly recognized as global epidemics. Their escalating incidence and far-reaching health implications highlight the urgent need for comprehensive prevention and management strategies. This review aims to clarify how obesity interacts with end-stage kidney disease (ESKD) [...] Read more.
Both obesity and chronic kidney disease (CKD) are increasingly recognized as global epidemics. Their escalating incidence and far-reaching health implications highlight the urgent need for comprehensive prevention and management strategies. This review aims to clarify how obesity interacts with end-stage kidney disease (ESKD) and how to improve the management of obese patients receiving kidney replacement therapy. It also explores underlying mechanisms, current treatments, future directions, and ongoing controversies. By highlighting this intricate relationship, the review seeks to enhance clinical practice and promote further research toward more personalized care for this vulnerable population. Obesity is frequent in dialysis patients and creates challenges related to body composition, metabolism, and treatment. While higher body mass index (BMI) may appear to improve survival, this paradox does not offset the cardiovascular and functional risks of visceral and sarcopenic obesity. Obesity also increases post-transplant complications and can limit access to transplantation. Lifestyle changes rarely achieve lasting weight loss, whereas bariatric surgery—especially sleeve gastrectomy—can improve transplant eligibility with fewer complications. Weight-loss medications may be used before transplantation but remain insufficiently studied in ESKD. After transplantation, weight-reduction efforts should continue, with pharmacotherapy preferred over bariatric surgery. Comprehensive assessment strategies and individualized management approaches in ESKD patients are essential to optimize outcomes in this growing patient population. Full article
(This article belongs to the Special Issue End-Stage Kidney Disease (ESKD))
Show Figures

Figure 1

22 pages, 959 KB  
Review
Obesity Phenotyping in Children and Adolescents: Next Steps Towards Precision Medicine in Pediatric Obesity
by Leslie Saba, Andres J. Acosta, Aaron S. Kelly and Seema Kumar
Nutrients 2026, 18(2), 303; https://doi.org/10.3390/nu18020303 - 18 Jan 2026
Viewed by 160
Abstract
Pediatric obesity is an increasingly prevalent, chronic, and multifactorial disease. Achieving successful and sustained weight reduction with current interventions remains challenging due to significant heterogeneity in treatment response. This review summarizes current evidence describing variability in outcomes across lifestyle, pharmacologic, and metabolic/bariatric surgery [...] Read more.
Pediatric obesity is an increasingly prevalent, chronic, and multifactorial disease. Achieving successful and sustained weight reduction with current interventions remains challenging due to significant heterogeneity in treatment response. This review summarizes current evidence describing variability in outcomes across lifestyle, pharmacologic, and metabolic/bariatric surgery interventions in children and adolescents, and examines key biological, metabolic, behavioral, environmental, and psychosocial factors that influence response. In adults, recent findings on energy balance obesity phenotypes (characterized by abnormal satiation, abnormal postprandial satiety, abnormal hedonic eating, and reduced energy expenditure) have demonstrated promise in predicting weight loss outcomes and guiding tailored interventions. However, data on obesity phenotyping within children and adolescents remain limited. Addressing this gap is essential for advancing precision medicine approaches in pediatric obesity, with the potential to improve treatment selection, enhance effectiveness, and optimize long-term clinical outcomes. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

22 pages, 2108 KB  
Article
Comprehensive Parameter Optimization of Composite Harmonic Injection for Capacitor Voltage Fluctuation Suppression of MMC
by Tan Li, Yingxin Wang, Bin Yuan and Yu Meng
Electronics 2026, 15(2), 359; https://doi.org/10.3390/electronics15020359 - 13 Jan 2026
Viewed by 180
Abstract
Modular multilevel converter (MMC) is widely employed in high-voltage direct current (HVDC) systems for the long-distance renewable energy transmission, where the larger submodule (SM) capacitors significantly increase its size, weight and cost. Conventional capacitor voltage fluctuation suppression methods, such as composite harmonic injection [...] Read more.
Modular multilevel converter (MMC) is widely employed in high-voltage direct current (HVDC) systems for the long-distance renewable energy transmission, where the larger submodule (SM) capacitors significantly increase its size, weight and cost. Conventional capacitor voltage fluctuation suppression methods, such as composite harmonic injection (CHI) strategies, can achieve lightweight MMC. However, these approaches often neglect the dynamic constraints between harmonic injection parameters and their coupled effect on modulation wave, which not only leads to suboptimal global solutions but also increases the risk of system overshoot. Therefore, this paper proposes a comprehensive CHI parameters optimization method to minimize capacitor voltage fluctuations, thereby allowing for a smaller SM capacitor. First, the analytical expression of SM average capacitor voltage is developed, incorporating the injected second-order harmonic circulating current and third-order harmonic voltage. On this basis, an objective function is defined to minimize the sum of the fundamental and second-order harmonic components of the average capacitor voltage, with the harmonic injection parameters and modulation index as optimization variables. Then, these parameters are optimized using a particle swarm optimization (PSO) algorithm, where their constraints are set to prevent modulation wave overshoot and additional power loss. Finally, the optimization method is validated through a ±500 kV, 1500 MW MMC-HVDC system under various power conditions in PSCAD/EMTDC (version 4.6.3). In addition, simulation results demonstrate that the proposed method can achieve a 13.33% greater reduction in SM capacitance value compared to conventional strategies. Full article
(This article belongs to the Special Issue Stability Analysis and Optimal Operation in Power Electronic Systems)
Show Figures

Figure 1

20 pages, 1644 KB  
Article
Acoustic and Mechanical Performance of Treated Rubber–Concrete Composites for Soundproofing in Wind Power Applications
by Aleksandrs Korjakins, Ivan Samoilenko, Girts Kolendo, Mihails Pavlovs, Diana Bajare, Sakdirat Kaewunruen and Vjaceslavs Lapkovskis
J. Compos. Sci. 2026, 10(1), 48; https://doi.org/10.3390/jcs10010048 - 13 Jan 2026
Viewed by 225
Abstract
The current study examines the innovative use of rubber–concrete composites as structural solutions that provide significantly higher noise absorption properties compared to traditional concrete. Focusing on their potential for sound insulation in challenging environments such as wind energy infrastructure, the study examines the [...] Read more.
The current study examines the innovative use of rubber–concrete composites as structural solutions that provide significantly higher noise absorption properties compared to traditional concrete. Focusing on their potential for sound insulation in challenging environments such as wind energy infrastructure, the study examines the effect of varying contents of ground tyre rubber (GTR) content (20%, 40%, and 60% by volume) and acetone treatment duration (0, 1, 6, and 24 h) on the characteristics of the composite. The results demonstrate that these rubber–concrete composites significantly improve both sound absorption and sound insulation. An increase in sound absorption coefficients to approximately 0.18 was observed, representing an average improvement of 43.4% compared to the average coefficient of the reference mixture, 0.043. This improvement is particularly effective in the 100–1250 Hz frequency range and maintains stable properties from 50 to 1600 Hz. Sound transmission losses also showed a clear improvement in the mid-frequency ranges. Despite their excellent acoustic characteristics, these structural composites demonstrate a compromise in mechanical properties. Compressive strength decreased from approximately 43–46 MPa (control) to 25–38 MPa at 60% rubber content after 28 days, representing a 40–46% reduction. The reduction in flexural strength was even more pronounced, decreasing by approximately 60% at a rubber content of 35%. However, treatment of GTR with acetone significantly improved interfacial bonding, increasing mechanical integrity at moderate rubber doses (20–40%). The optimal range of rubber content, providing a balance between acoustic benefits and structural integrity, appears to be 15–25%. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

52 pages, 4367 KB  
Review
The Microbiome–Neurodegeneration Interface: Mechanisms, Evidence, and Future Directions
by Lilia Böckels, Daniel Alexa, Dorin Cristian Antal, Cristina Gațcan, Cosmin Alecu, Kristina Kacani, Raul Andrei Crețu, Emanuel Andrei Piseru, Robert Valentin Bîlcu and Dan Iulian Cuciureanu
Cells 2026, 15(2), 135; https://doi.org/10.3390/cells15020135 - 12 Jan 2026
Viewed by 1086
Abstract
The gut microbiota has emerged as a central regulator of the gut–brain axis, profoundly influencing neural, immune, and metabolic homeostasis. Increasing evidence indicates that disturbances in microbial composition and function contribute to the onset and progression of neurodegenerative diseases (NDs) through mechanisms involving [...] Read more.
The gut microbiota has emerged as a central regulator of the gut–brain axis, profoundly influencing neural, immune, and metabolic homeostasis. Increasing evidence indicates that disturbances in microbial composition and function contribute to the onset and progression of neurodegenerative diseases (NDs) through mechanisms involving neuroinflammation, oxidative stress, and impaired neurotransmission. Gut dysbiosis is characterized by a loss of microbial diversity, a reduction in beneficial commensals, and an enrichment of pro-inflammatory taxa. These shifts alter intestinal permeability and systemic immune tone, allowing microbial metabolites and immune mediators to affect central nervous system (CNS) integrity. Metabolites such as short-chain fatty acids (SCFAs), tryptophan derivatives, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO) modulate blood–brain barrier (BBB) function, microglial activation, and neurotransmitter synthesis, linking intestinal imbalance to neuronal dysfunction and cognitive decline. Disruption of this gut–brain communication network promotes chronic inflammation and metabolic dysregulation, key features of neurodegenerative pathology. SCFA-producing and tryptophan-metabolizing bacteria appear to exert neuroprotective effects by modulating immune responses, epigenetic regulation, and neuronal resilience. The aim of this work was to comprehensively explore the current evidence on the bidirectional communication between the gut microbiota and the CNS, with a focus on identifying the principal molecular, immune, and metabolic mechanisms supported by the strongest and most consistent data. By integrating findings from recent human studies, this review sought to clarify how microbial composition and function influence neurochemical balance, immune activation, and BBB integrity, ultimately contributing to the onset and progression of neurodegenerative processes. Collectively, these findings position the gut microbiota as a dynamic interface between the enteric and CNS, capable of influencing neurodegenerative processes through immune and metabolic signaling. Full article
Show Figures

Figure 1

41 pages, 3213 KB  
Review
Generative Adversarial Networks for Modeling Bio-Electric Fields in Medicine: A Review of EEG, ECG, EMG, and EOG Applications
by Jiaqi Liang, Yuheng Zhou, Kai Ma, Yifan Jia, Yadan Zhang, Bangcheng Han and Min Xiang
Bioengineering 2026, 13(1), 84; https://doi.org/10.3390/bioengineering13010084 - 12 Jan 2026
Viewed by 423
Abstract
Bio-electric fields—manifested as Electroencephalogram (EEG), Electrocardiogram (ECG), Electromyogram (EMG), and Electrooculogram (EOG)—are fundamental to modern medical diagnostics but often suffer from severe data imbalance, scarcity, and environmental noise. Generative Adversarial Networks (GANs) offer a powerful, nonlinear solution to these modeling hurdles. This review [...] Read more.
Bio-electric fields—manifested as Electroencephalogram (EEG), Electrocardiogram (ECG), Electromyogram (EMG), and Electrooculogram (EOG)—are fundamental to modern medical diagnostics but often suffer from severe data imbalance, scarcity, and environmental noise. Generative Adversarial Networks (GANs) offer a powerful, nonlinear solution to these modeling hurdles. This review presents a comprehensive survey of GAN methodologies specifically tailored for bio-electric signal processing. We first establish a theoretical foundation by detailing GAN principles, training mechanisms, and critical structural variants, including advancements in loss functions and conditional architectures. Subsequently, the paper extensively analyzes applications ranging from high-fidelity signal synthesis and noise reduction to multi-class classification. Special attention is given to clinical anomaly detection, specifically covering epilepsy, arrhythmia, depression, and sleep apnea. Furthermore, we explore emerging applications such as modal transformation, Brain–Computer Interfaces (BCI), de-identification for privacy, and signal reconstruction. Finally, we critically evaluate the computational trade-offs and stability issues inherent in current models. The study concludes by delineating prospective research avenues, emphasizing the necessity of interdisciplinary synergy to advance personalized medicine and intelligent diagnostic systems. Full article
Show Figures

Graphical abstract

20 pages, 317 KB  
Review
Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review
by Ana Onu, Andrei Tutu, Daniela-Marilena Trofin, Ilie Onu, Anca-Irina Galaction, Cristiana Amalia Onita, Daniel-Andrei Iordan and Daniela-Viorelia Matei
Life 2026, 16(1), 98; https://doi.org/10.3390/life16010098 - 10 Jan 2026
Viewed by 280
Abstract
Background: Metabolic syndrome (MetS) is a multifactorial condition characterized by insulin resistance, dyslipidemia, hypertension, and central obesity, and is strongly influenced by lifestyle factors. Growing evidence highlights the gut microbiota as a key mediator linking diet and physical exercise to cardiometabolic health. Objective: [...] Read more.
Background: Metabolic syndrome (MetS) is a multifactorial condition characterized by insulin resistance, dyslipidemia, hypertension, and central obesity, and is strongly influenced by lifestyle factors. Growing evidence highlights the gut microbiota as a key mediator linking diet and physical exercise to cardiometabolic health. Objective: This narrative review aims to qualitatively synthesize current evidence on the effects of physical exercise and major dietary patterns including the Mediterranean diet (MedDiet), Dietary Approaches to Stop Hypertension (DASH), and ketogenic/very-low-calorie ketogenic diets (KD/VLCKD) on gut microbiota composition and function, and their implications for metabolic health in MetS. Methods: A qualitative narrative synthesis of experimental, observational, and interventional human and animal studies was performed. The reviewed literature examined associations between structured physical exercise or dietary interventions and changes in gut microbiota diversity, key bacterial taxa, microbial metabolites, and cardiometabolic outcomes. Considerable heterogeneity across studies was noted, including differences in populations, intervention duration and intensity, dietary composition, and microbiota assessment methodologies. Results: Across human interventional studies, moderate-intensity physical exercise was most consistently associated with increased gut microbial diversity and enrichment of short-chain fatty acid (SCFA)-producing taxa, contributing to improved insulin sensitivity and reduced inflammation. MedDiet and DASH were generally linked to favorable microbiota profiles, including increased abundance of Faecalibacterium prausnitzii, Akkermansia muciniphila, and Bifidobacterium, alongside reductions in pro-inflammatory metabolites such as lipopolysaccharides and trimethylamine N-oxide. In contrast, KD and VLCKD were associated with rapid weight loss and glycemic improvements but frequently accompanied by reductions in SCFA-producing bacteria, depletion of Bifidobacterium, and markers of impaired gut barrier integrity, raising concerns regarding long-term microbiota resilience. Conclusions: Lifestyle-based interventions exert diet- and exercise-specific effects on the gut microbiota–metabolism axis. While MedDiet, DASH, and regular moderate physical activity appear to promote sustainable microbiota-mediated cardiometabolic benefits, ketogenic approaches require careful personalization, limited duration, and medical supervision. These findings support the integration of dietary quality, exercise prescription, and individual microbiota responsiveness into translational lifestyle strategies for MetS prevention and management. Full article
29 pages, 3003 KB  
Article
Pollutant-Specific Deep Learning Architectures for Multi-Species Air Quality Bias Correction: Application to NO2 and PM10 in California
by Ioannis Stergiou, Nektaria Traka, Dimitrios Melas, Efthimios Tagaris and Rafaella-Eleni P. Sotiropoulou
Forecasting 2026, 8(1), 5; https://doi.org/10.3390/forecast8010005 - 9 Jan 2026
Viewed by 440
Abstract
Accurate air quality forecasting remains challenging due to persistent biases in chemical transport models. Addressing this challenge, the current study develops pollutant-specific deep learning frameworks that correct systematic errors in the Community Multiscale Air Quality (CMAQ) simulations of nitrogen dioxide (NO2) [...] Read more.
Accurate air quality forecasting remains challenging due to persistent biases in chemical transport models. Addressing this challenge, the current study develops pollutant-specific deep learning frameworks that correct systematic errors in the Community Multiscale Air Quality (CMAQ) simulations of nitrogen dioxide (NO2) and coarse particulate matter (PM10) over California. Building upon a previous study on ozone bias correction, a hybrid CNN–Attention–LSTM architecture is adapted, and a weighted Huber loss function is introduced for PM10 to enhance the detection of extreme pollution events through a gated tail-weighting mechanism. Using data from twenty EPA monitoring stations (ten per pollutant) for 2010–2014, the proposed approach achieves substantial performance gains over the CMAQ baseline. For NO2, RMSE decreases by ~51% with an average systematic bias reduction of ~80% and a random error reduction of ~42%. For PM10, RMSE improves by ~49% while the systematic and random errors decrease by ~94% and ~33%, respectively. The PM10 model also shows high consistency with observations (Index of Agreement improvement of ~105%) and a strong ability to capture peak events (F1 score improvement of ~270%), while the NO2 model achieves large gains in explanatory power (R2 improvement averaging ~816%). Both pollutants also demonstrate enhanced temporal agreement between predictions and observations, as confirmed by the Dynamic Time Warping analysis (NO2: ~55%, PM10: ~58%). These results indicate that pollutant-specific loss functions and architectural tuning can significantly improve both accuracy and event sensitivity, offering a transferable framework for bias correction across multiple pollutants and regions. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2025)
Show Figures

Figure 1

13 pages, 2238 KB  
Review
Current Research Status of Fusarium Crown and Root Rot Diseases in Wheat-Growing Countries of North Africa: A Review
by Yassine Tanane, Fatiha Bentata, Abderrakib Zahid, Muamar Al-Jaboobi, Rachid Moussadek and Seid Ahmed Kemal
Pathogens 2026, 15(1), 69; https://doi.org/10.3390/pathogens15010069 - 9 Jan 2026
Viewed by 339
Abstract
Bread and durum wheat are the most important staple crops, providing 55% of the carbohydrates and 20% of the daily caloric intake for nearly 40% of the global population. However, yield losses in durum wheat can reach up to 56% due to reductions [...] Read more.
Bread and durum wheat are the most important staple crops, providing 55% of the carbohydrates and 20% of the daily caloric intake for nearly 40% of the global population. However, yield losses in durum wheat can reach up to 56% due to reductions in grain yield and agronomic traits. Local wheat production is increasingly declining because of biotic and abiotic stress. The severity of Fusarium crown and root rot diseases is influenced by cereal mono-culture, specific agronomic practices, and the cultivation of susceptible wheat cultivars. The review highlights current research on the causal agents, economic importance, and management practices of Fusarium crown and root rot diseases in North African countries. The review will contribute to the study of these diseases in wheat. Full article
(This article belongs to the Special Issue Current Research in the Control of Plant Pathogenic Fusarium Species)
Show Figures

Figure 1

24 pages, 9453 KB  
Article
Study on Electromagnetic–Thermal Coupling Characteristics of Submarine Cable Using Finite Element Method
by Kui Zhu, Yicheng Zhang, Qingyang Duan, Peng Liang, Zhihong Wang, Zeqi Cheng and Enjin Zhao
J. Mar. Sci. Eng. 2026, 14(2), 132; https://doi.org/10.3390/jmse14020132 - 8 Jan 2026
Viewed by 171
Abstract
Low-frequency alternating-current (LFAC) transmission has attracted significant attention for medium- and long-distance offshore wind integration due to its ability to mitigate the substantial charging currents and reactive power burdens associated with long submarine cables. This paper investigates the frequency-dependent electrothermal behaviors of a [...] Read more.
Low-frequency alternating-current (LFAC) transmission has attracted significant attention for medium- and long-distance offshore wind integration due to its ability to mitigate the substantial charging currents and reactive power burdens associated with long submarine cables. This paper investigates the frequency-dependent electrothermal behaviors of a 500 kV three-core XLPE submarine cable using a coupled electromagnetic–thermal finite-element model. The simulation framework evaluates the current distribution, power losses in metallic components, temperature rise, and ampacity across various frequency regimes. To validate the numerical model, a thermal-circuit approach based on the IEC 60287 standard is developed, with comparisons confirming that deviations remain within acceptable engineering margins. The study reveals that operating at lower frequencies effectively mitigates skin and proximity effects, leading to reduced conductor and sheath losses. Quantitative results demonstrate that reducing the operating frequency from 50 Hz to 5 Hz results in a 30.6% reduction in total power losses and a 14.2% increase in current-carrying capability. These findings confirm that LFAC transmission offers a viable pathway to enhance the efficiency and capacity of submarine power transmission systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 11049 KB  
Review
Stray Losses in Structural Components of Power Transformers
by Stipe Mikulić and Damir Žarko
Energies 2026, 19(2), 322; https://doi.org/10.3390/en19020322 - 8 Jan 2026
Viewed by 331
Abstract
The paper provides a comprehensive overview of stray losses in conductive structural parts of power transformers, addressing the effects of stray magnetic fields on simple conductive plates, the distribution of additional losses across structural components and measures for their reduction. It examines the [...] Read more.
The paper provides a comprehensive overview of stray losses in conductive structural parts of power transformers, addressing the effects of stray magnetic fields on simple conductive plates, the distribution of additional losses across structural components and measures for their reduction. It examines the (im)possibility of directly measuring stray losses and presents methods for their indirect measurement, highlighting the generation of fault gases due to thermal faults and the importance of understanding multiphysical (electromagnetic–thermal) coupling in calculating stray losses. A problem rarely mentioned in the literature but confirmed here by measurements, is the excessive heating of the connecting elements of the clamping system caused by circulating currents. Full article
Show Figures

Figure 1

14 pages, 3535 KB  
Article
Reduction Behavior and Melting Characteristics of Blast Furnace Iron Ore Mixed with Carbon-Rich Iron Particles
by Jyun-Ming Shen, Chi-Ming Lin, You-Ren Hong, Shao-Feng Luo, Yu-Yang Chen, Jia-Shyan Shiau and Weite Wu
Materials 2026, 19(2), 248; https://doi.org/10.3390/ma19020248 - 8 Jan 2026
Viewed by 166
Abstract
The currently available hot briquetted iron (HBI) typically contains approximately 1 wt.% carbon. In the CO–CO2 atmosphere of a blast furnace, carbon loss from iron is significant, accompanied by overoxidation. Based on the high metallicity of HBI, this study designed iron particles [...] Read more.
The currently available hot briquetted iron (HBI) typically contains approximately 1 wt.% carbon. In the CO–CO2 atmosphere of a blast furnace, carbon loss from iron is significant, accompanied by overoxidation. Based on the high metallicity of HBI, this study designed iron particles with varying carbon contents. These pellets were mixed with three typical blast furnace iron ores–sinter, pellet, and lump– and subjected to thermogravimetric analysis reduction experiments. The investigation explored the effects of substituting 15 wt.% sinter with HBI containing different carbon contents and assessed the resulting impact on the temperature difference between iron and slag melting, ultimately determining the optimal carbon content for blast furnace operations. The findings showed that the addition of iron particles with carbon contents exceeding 1.6 wt.% achieved reduction rates and iron–slag melting characteristics similar to those of typical blast furnace charges. When iron particles containing 3.6 wt.% carbon were added, the iron oxides of various valence states in the charge and pellets exhibited the highest availability of carbon for both direct and indirect reduction. Consequently, the slag melting temperature rose to 1398 °C. Due to the presence of unreacted carbon, the molten iron melted at approximately 1530 °C, while the iron–slag dripping temperature range narrowed to 132 °C, achieving the optimal temperature range for blast furnace application. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 1480 KB  
Review
Effects of Rapid Weight Loss on the Immune System in Combat Sports Athletes: A Systematic Review
by Hae Sung Lee
Int. J. Mol. Sci. 2026, 27(1), 508; https://doi.org/10.3390/ijms27010508 - 3 Jan 2026
Viewed by 496
Abstract
Rapid weight loss (RWL) is a common strategy among combat sports athletes aiming for a competitive advantage. However, it imposes significant immunological stress that compromises both innate and adaptive immune defenses. This systematic review synthesizes current experimental and mechanistic evidence on the effects [...] Read more.
Rapid weight loss (RWL) is a common strategy among combat sports athletes aiming for a competitive advantage. However, it imposes significant immunological stress that compromises both innate and adaptive immune defenses. This systematic review synthesizes current experimental and mechanistic evidence on the effects of RWL in combat sports, focusing on cellular immunity, neuroendocrine regulation, and inflammatory pathways. Acute RWL activates the hypothalamic–pituitary–adrenal axis, elevating plasma cortisol and suppressing lymphocyte proliferation, T-cell function, and natural killer cell cytotoxicity. Although neutrophil counts increase, their phagocytic and oxidative burst capacities decline, reflecting impaired host defense. Monocyte and macrophage systems shift toward proinflammatory phenotypes, while mucosal immunity is weakened by reductions in secretory immunoglobulin A, leading to increased upper respiratory tract infection risk. The magnitude and speed of weight loss are critical determinants of immune dysfunction, with reductions exceeding 5% of body mass producing particularly severe consequences. Evidence-based intervention strategies—including gradual weight management, nutritional optimization, and biomarker monitoring—are essential to mitigate immunosuppression and safeguard athlete health. This review highlights key gaps in combat sports-specific protocols and proposes integrated approaches to preserve immune competence and optimize performance. Full article
(This article belongs to the Special Issue Molecular Mechanisms Related to Exercise)
Show Figures

Figure 1

Back to TopTop