Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review
Abstract
1. Introduction
2. Effects of Physical Exercise on Microbiota
3. Dietary Intervention
3.1. Microbiome and the Mediterranean Diet
3.2. Microbiome and the Dietary Approaches to Stop Hypertension
3.3. Microbiome and the Ketogenic Diet
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | body mass index |
| BP | blood pressure |
| CRP | C-reactive protein |
| CV | cardiovascular |
| CVD | cardiovascular disease |
| DASH | Dietary Approaches to Stop Hypertension |
| DM2 | diabetes mellitus type 2 |
| GLP-1 | glucagon-like peptide-1 |
| HbA1c | glycosylated hemoglobin |
| HDL | high-density lipoprotein |
| HPA | hypothalamic–pituitary–adrenal |
| HRR | heart rate reserve |
| IDF | International Diabetes Federation |
| IR | insulin resistance |
| FBR | Firmicutes-to-Bacteroidetes |
| KD | ketogenic diet |
| LDL | low-density lipoprotein |
| LPS | lipopolysaccharide |
| MetS | metabolic syndrome |
| MGBA | microbiota–gut–brain axis |
| MUFA | monounsaturated fatty acid |
| NCEP | National Cholesterol Education Program |
| NO | nitric oxide |
| OS | oxidative stress |
| PUFAs | polyunsaturated fatty acids |
| ROS | reactive oxygen species |
| SCFA | short-chain fatty acids |
| SNS | sympathetic nervous system |
| VLCKD | very-low-calorie ketogenic diet |
| WHO | World Health Organization |
References
- Cheng, T.O. Cardiac Syndrome X versus Metabolic Syndrome X. Int. J. Cardiol. 2007, 119, 137–138. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, J.; Zhang, H.; Wu, W.; Xue, S.; Zhu, Z.; Ding, C. Inflammatory mechanisms underlying metabolic syndrome-associated and potential treatments. Osteoarthr. Cartil. Open 2025, 7, 100614. [Google Scholar] [CrossRef] [PubMed]
- Tarabeih, N.; Kalinkovich, A.; Ashkenazi, S.; Cherny, S.S.; Shalata, A.; Livshits, G. Relationships between Circulating Biomarkers and Body Composition Parameters in Patients with Metabolic Syndrome: A Community-Based Study. Int. J. Mol. Sci. 2024, 25, 881. [Google Scholar] [CrossRef]
- Morgado, F.; Valado, A.; Metello, J.; Pereira, L. Laboratory markers of metabolic syndrome. Explor. Cardiol. 2024, 2, 114–133. [Google Scholar] [CrossRef]
- Savaş, E.M.; Oğuz, S.H.; Samadi, A.; Yılmaz Işıkhan, S.; Ünlütürk, U.; Lay, İ.; Gürlek, A. Apoptosis Inhibitor of Macrophage, Monocyte Chemotactic Protein-1, and C-Reactive Protein Levels Are Increased in Patients with Metabolic Syndrome: A Pilot Study. Metab. Syndr. Relat. Disord. 2020, 18, 197–205. [Google Scholar] [CrossRef]
- Lent-Schochet, D.; McLaughlin, M.; Ramakrishnan, N.; Jialal, I. Exploratory Metabolomics of Metabolic Syndrome: A Status Report. World J. Diabetes 2019, 10, 23–36. [Google Scholar] [CrossRef]
- Richards, P.; Thornberry, N.A.; Pinto, S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol. Metab. 2021, 46, 101175. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Key Signals Produced by Gut Microbiota Associated with Metabolic Syndrome, Cancer, Cardiovascular Diseases, and Brain Functions. Int. J. Mol. Sci. 2025, 26, 10539. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, I.; Ansari, M.R.; Khan, M.S.; Bari, M.N.; Kamal, M.A.; Poyil, M.M. Beyond Digestion: The Gut Microbiota as an Immune–Metabolic Interface in Disease Modulation. Gastrointest. Disord. 2025, 7, 77. [Google Scholar] [CrossRef]
- Martinez, J.E.; Kahana, D.D.; Ghuman, S.; Wilson, H.P.; Wilson, J.; Kim, S.C.J.; Lagishetty, V.; Jacobs, J.P.; Sinha-Hikim, A.P.; Friedman, T.C. Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Front. Endocrinol. 2021, 12, 667066. [Google Scholar] [CrossRef] [PubMed]
- Myles, I.A.; Fontecilla, N.M.; Janelsins, B.M.; Vithayathil, P.J.; Segre, J.A.; Datta, S.K. Parental dietary fat intake alters offspring microbiome and immunity. J. Immunol. 2013, 191, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Sokal-Dembowska, A.; Polak-Szczybyło, E.; Helma, K.; Musz, P.; Setlik, M.; Fic, W.; Wachowiak, D.; Jarmakiewicz-Czaja, S. Physical Activity and Metabolic Disorders—What Does Gut Microbiota Have to Do with It? Curr. Issues Mol. Biol. 2025, 47, 630. [Google Scholar] [CrossRef]
- Sochacka, K.; Kotowska, A.; Lachowicz-Wiśniewska, S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024, 16, 1039. [Google Scholar] [CrossRef]
- Dasso, N.A. How is exercise different from physical activity? A concept analysis. Nurs. Forum. 2019, 54, 45–52. [Google Scholar] [CrossRef]
- Frese, E.M.; Albert, S.G.; Villareal, D.T. Effects of weight loss on lean mass, strength, bone, and aerobic capacity. Med. Sci. Sports Exerc. 2017, 49, 206–217. [Google Scholar] [CrossRef]
- Blaha, M.J.; Hung, R.K.; Dardari, Z.; I Feldman, D.; Whelton, S.P.; Nasir, K.; Blumenthal, R.S.; A Brawner, C.; Ehrman, J.K.; Keteyian, S.J.; et al. Age-dependent prognostic value of exercise capacity and derivation of fitness-associated biologic age. Heart 2016, 102, 431–437. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishopm, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Gubert, C.; Kong, G.; Renoir, T.; Hannan, A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis. 2020, 134, 104621. [Google Scholar] [CrossRef]
- Hamasaki, H. Exercise and gut microbiota: Clinical implications for the feasibility of Tai Chi. J. Integr. Med. 2017, 15, 270–281. [Google Scholar] [CrossRef]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative Med. Cell. Longev. 2017, 2017, 3831972. [Google Scholar] [CrossRef]
- Sohail, M.U.; Yassine, H.M.; Sohail, A.; Thani, A.A.A. Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders. Rev. Diabet. Stud. RDS 2019, 15, 35–48. [Google Scholar] [CrossRef]
- Bonomini-Gnutzmann, R.; Plaza-Díaz, J.; Jorquera-Aguilera, C.; Rodríguez-Rodríguez, A.; Rodríguez-Rodríguez, F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9518. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wang, X.; Zhang, X. Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat Metabolic Disorders to Maintain Health. Nutrients 2023, 15, 1539. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Seo, Y.; Lee, Y.; Lee, D.T. Gut microbiome related to metabolic diseases after moderate-to-vigorous intensity exercise. J. Exerc. Sci. Fit. 2024, 22, 375–382. [Google Scholar] [CrossRef]
- Quiroga, R.; Nistal, E.; Estébanez, B.; Porras, D.; Juárez-Fernández, M.; Martínez-Flórez, S.; García-Mediavilla, M.V.; de Paz, J.A.; González-Gallego, J.; Sánchez-Campos, S.; et al. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp. Mol. Med. 2020, 52, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.S.C.; Seguro, C.S.; Naves, M.M.V. Gut microbiota and physical exercise in obesity and diabetes—A systematic review. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.M.; Davy, B.M.; Hulver, M.W.; Neilson, A.P.; Bennett, B.J.; Davy, K.P. Does exercise alter gut microbial composition? A systematic review. Med. Sci. Sports Exerc. 2019, 51, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Mermier, C.; Zuhl, M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes 2019, 10, 555–568. [Google Scholar] [CrossRef]
- Allen, J.M.; Mailing, L.J.; Cohrs, J.; Salmonson, C.; Fryer, J.D.; Nehra, V.; Hale, V.L.; Kashyap, P.; White, B.A.; Woods, J.A. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 2018, 9, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Hoffman-Goetz, L.; Quadrilatero, J. Treadmill exercise in mice increases intestinal lymphocyte loss via apoptosis. Acta Physiol. Scand. 2003, 179, 289–297. [Google Scholar] [CrossRef]
- Hoffman-Goetz, L.; Pervaiz, N.; Packer, N.; Guan, J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav. Immun. 2010, 24, 1105–1115. [Google Scholar] [CrossRef]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef]
- Swarup, S.; Ahmed, I.; Grigorova, Y.; Zeltser, R. Metabolic Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hsu, C.N.; Hou, C.Y.; Hsu, W.H.; Tain, Y.L. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int. J. Mol. Sci. 2021, 22, 11872. [Google Scholar] [CrossRef]
- Angelico, F.; Baratta, F.; Coronati, M.; Ferro, D.; Del Ben, M. Diet and metabolic syndrome: A narrative review. Intern. Emerg. Med. 2023, 18, 1007–1017. [Google Scholar] [CrossRef]
- Eed, R.; Helal, H.; Afefy, T.; Shehabeldin, W.; Ismail, M. The Adequacy of Nutrients Intakes among Persons with Metabolic Syndrome, Case-Control Study. J. Home Econ.—Menofia Univ. 2021, 31, 1–19. [Google Scholar]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Hoyas, I.; Leon-Sanz, M. Nutritional Challenges in Metabolic Syndrome. J. Clin. Med. 2019, 8, 1301. [Google Scholar] [CrossRef]
- Rathor, P.; Ch, R. The Impacts of Dietary Intervention on Brain Metabolism and Neurological Disorders: A Narrative Review. Dietetics 2024, 3, 289–307. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Martini, D. Health benefits of Mediterranean diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Reis, J.; Román, A.N.; Toledo, J.B.; Toledo, E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev. Neurol. 2019, 175, 705–723. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Y.; Ren, Z.; Liu, X.; Zhao, J.; Yuan, Y.; Fei, X.; Song, X.; Wang, F.; Liang, B. Mediterranean diet lowers all-cause and cardiovascular mortality for patients with metabolic syndrome. Diabetol. Metab. Syndr. 2023, 15, 107. [Google Scholar] [CrossRef] [PubMed]
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 3, CD009825. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Zúnica-García, S.; Blanquer-Gregori, J.J.; Sánchez-Ortiga, R.; Jiménez-Trujillo, M.I.; Chicharro-Luna, E. Relationship between diabetic peripheral neuropathy and adherence to the Mediterranean diet in patients with type 2 diabetes mellitus: An observational study. J. Endocrinol. Investig. 2024, 47, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; Tamayo-Morales, O.; Lugones-Sánchez, C.; González-Sánchez, S.; Martí-Lluch, R.; Rodríguez-Sánchez, E.; García-Ortiz, L.; Gómez-Marcos, M.A. Relationship between the Mediterranean Diet and Metabolic Syndrome and Each of the Components That Form It in Caucasian Subjects: A Cross-Sectional Trial. Nutrients 2024, 16, 1948. [Google Scholar] [CrossRef]
- Milano, A.; Kabbaha, S.; Thorlund, K. Effects of the mediterranean diet versus low-fat diet on metabolic syndrome outcomes: A systematic review and meta-analysis of randomized controlled trials. Hum. Nutr. Metab. 2022, 30, 200175, ISSN 2666-1497. [Google Scholar] [CrossRef]
- Vázquez-Cuesta, S.; Lozano García, N.; Rodríguez-Fernández, S.; Fernández-Avila, A.I.; Bermejo, J.; Fernández-Avilés, F.; Muñoz, P.; Bouza, E.; Reigadas, E. Impact of the Mediterranean Diet on the Gut Microbiome of a Well-Defined Cohort of Healthy Individuals. Nutrients 2024, 16, 793. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1253–1261. [Google Scholar] [CrossRef]
- Shirani, F.; Salehi-Abargouei, A.; Azadbakht, L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition 2013, 29, 939–947. [Google Scholar] [CrossRef]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef]
- Lv, Y.; Aihemaiti, G.; Guo, H. Effect of Dietary Approaches to Stop Hypertension (DASH) on Patients with Metabolic Syndrome and Its Potential Mechanisms. Diabetes Metab. Syndr. Obes. 2024, 17, 3103–3110. [Google Scholar] [CrossRef]
- Sangouni, A.A.; Hosseinzadeh, M.; Parastouei, K. The effect of dietary approaches to stop hypertension (DASH) diet on fatty liver and cardiovascular risk factors in subjects with metabolic syndrome: A randomized controlled trial. BMC Endocr. Disord. 2024, 24, 126. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Thomopoulos, C.G.; Konstantinidis, D.G.; Dimitriadis, K.S.; Chrysochoou, C.A.; Tatakis, F.A.; Siafi, E.P.; Tousoulis, D.M.; Nihoyannopoulos, P.I.; Panagiotakos, D.B.; et al. Effect of DASH vs. mediterranean diet accompanied by a salt restriction on metabolic syndrome and cardiometabolic risk factors in adults with high normal blood pressure or grade 1 hypertension: Secondary analyses of a randomized controlled trial. Hell. J. Cardiol. 2024, 85, 24–37. [Google Scholar] [CrossRef]
- Valenzuela-Fuenzalida, J.J.; Bravo, V.S.; Valarezo, L.M.; Delgado Retamal, M.F.; Leiva, J.M.; Bruna-Mejías, A.; Nova-Baeza, P.; Orellana-Donoso, M.; Suazo-Santibañez, A.; Oyanedel-Amaro, G.; et al. Effectiveness of DASH Diet versus Other Diet Modalities in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3054. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wallin, A.; Wolk, A. Dietary Approaches to Stop Hypertension Diet and Incidence of Stroke: Results from 2 Prospective Cohorts. Stroke 2016, 47, 4. [Google Scholar] [CrossRef]
- Niknam, M.; Saadatnia, M.; Shakeri, F.; Keshteli, A.H.; Saneei, P.; Esmaillzadeh, A. Adherence to a DASH-Style Diet in Relation to Stroke: A Case-Control Study. J. Am. Coll. Nutr. 2015, 34, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Maifeld, A.; Bartolomaeus, H.; Löber, U.; Avery, E.G.; Steckhan, N.; Markó, L.; Wilck, N.; Hamad, I.; Šušnjar, U.; Mähler, A.; et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 2021, 12, 1970. [Google Scholar] [CrossRef]
- Diao, Z.; Molludi, J.; Latef Fateh, H.; Moradi, S. Comparison of the low-calorie DASH diet and a low-calorie diet on serum TMAO concentrations and gut microbiota composition of adults with overweight/obesity: A randomized control trial. Int. J. Food Sci. Nutr. 2024, 75, 207–220. [Google Scholar] [CrossRef]
- Pourfard, N.R.; Dehkordi, K.J.; Sadeghi, M.; Taghian, F.; Shirvani, E. The impact of DASH diet and concurrent training on cardiometabolic risk factors and gut microbiota in individuals with ischemic heart disease: A study protocol for a randomized controlled trial. Trials 2025. ahead of print. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: A systematic review and meta-analysis. Nutr. Diabetes. 2020, 10, 38. [Google Scholar] [CrossRef]
- Battezzati, A.; Foppiani, A.; Leone, A.; De Amicis, R.; Spadafranca, A.; Mari, A.; Bertoli, S. Acute Insulin Secretory Effects of a Classic Ketogenic Meal in Healthy Subjects: A Randomized Cross-Over Study. Nutrients 2023, 15, 1119. [Google Scholar] [CrossRef]
- Rafiullah, M.; Musambil, M.; David, S.K. Effect of a very low-carbohydrate ketogenic diet vs recommended diets in patients with type 2 diabetes: A meta-analysis. Nutr. Rev. 2022, 80, 488–502. [Google Scholar] [CrossRef]
- Brinkworth, G.D.; Noakes, M.; Buckley, J.D.; Keogh, J.B.; Clifton, P.M. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am. J. Clin. Nutr. 2009, 90, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Brinkworth, G.D.; Noakes, M.; Keogh, J.; Clifton, P.M. Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J. Am. Coll. Cardiol. 2008, 51, 59–67. [Google Scholar] [CrossRef]
- Suarez, R.; Chapela, S.; Llobera, N.D.; Montalván, M.; Vásquez, C.A.; Martinuzzi, A.L.N.; Katsanos, C.S.; Verde, L.; Frias-Toral, E.; Barrea, L.; et al. Very Low Calorie Ketogenic Diet: What Effects on Lipid Metabolism? Curr. Nutr. Rep. 2024, 13, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Yancy, W.S., Jr.; Olsen, M.K.; Guyton, J.R.; Bakst, R.P.; Westman, E.C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: A randomized, controlled trial. Ann. Intern. Med. 2004, 140, 769–777. [Google Scholar] [CrossRef]
- Bueno, N.B.; de Melo, I.S.V.; de Oliveira, S.L.; da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef]
- Forsythe, C.E.; Phinney, S.D.; Fernandez, M.L.; Quann, E.E.; Wood, R.J.; Bibus, D.M.; Kraemer, W.J.; Feinman, R.D.; Volek, J.S. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008, 43, 65–77. [Google Scholar]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter, J.P.; Phinney, S.D.; et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef]
- Wang, S.; Bao, Z.; Li, Z.; Zhao, M.; Wang, X.; Liu, F. The impact of very-low-calorie ketogenic diets on gut microbiota in individuals with obesity: A systematic review and meta-analysis. Gut Microbes. 2025, 17, 2566305. [Google Scholar] [CrossRef] [PubMed]
- Rew, L.; Harris, M.D.; Goldie, J. The ketogenic diet: Its impact on human gut microbiota and potential consequent health outcomes: A systematic literature review. Gastroenterol. Hepatol. Bed Bench 2022, 15, 326–342. [Google Scholar] [PubMed]
- Li, W.; Gong, M.; Wang, Z.; Pan, H.; Li, Y.; Zhang, C. The gut microbiota changed by ketogenic diets contribute to glucose intolerance rather than lipid accumulation. Front. Endocrinol. 2024, 15, 1446287. [Google Scholar] [CrossRef]
- Güzey Akansel, M.; Baş, M.; Gençalp, C.; Kahrıman, M.; Şahin, E.; Öztürk, H.; Gür, G.; Gür, C. Effects of the Ketogenic Diet on Microbiota Composition and Short-Chain Fatty Acids in Women with Overweight/Obesity. Nutrients 2024, 16, 4374. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, X.; Guo, F. Impact of a ketogenic diet on intestinal microbiota, cardiometabolic, and glycemic control parameters in patients with Type 2 diabetes mellitus. Investigación Clínica. 2024, 65, 358–368. [Google Scholar] [CrossRef]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 2020, 181, 1263–1275.e16. [Google Scholar] [CrossRef] [PubMed]
- Gudan, A.; Stachowska, E. The potential impact of the ketogenic diet on gut microbiota in the context of neurological disorders. In Postępy Higieny i Medycyny Doświadczalnej; Hirszfeld Institute of Immunology and Experimental Therapy: Szczecin, Poland, 2022; Volume 76, pp. 234–242. [Google Scholar]
| Study (Year) | Population/Design | Exercise Type & Intensity | Main Microbiota Changes | Key Metabolic/Physiological Effects |
|---|---|---|---|---|
| Gubert et al. (2020) [22] | Narrative review | Exercise, diet, stress (environmental factors) | ↑ microbial diversity; dysbiosis linked to neurodegeneration | Modulation of MGBA; effects on neurons, glia, metabolism |
| Hamasaki (2017) [23] | Human & animal studies | Aerobic, mind–body (Tai Chi) | ↑ diversity; favorable compositional shifts | Reduced gut inflammation; vagal & HPA axis modulation |
| Monda et al. (2017) [24] | Review | Physical exercise (general) | ↑ diversity; improved Bacteroidetes/Firmicutes ratio; ↑ SCFA-producing taxa | Improved gut barrier, immunity, metabolic homeostasis |
| Sohail et al. (2019) [25] | Review (62 studies) | Aerobic & resistance exercise | Exercise-responsive beneficial taxa | ↓ inflammation, ↓ oxidative stress, ↑ insulin sensitivity |
| Bonomini-Gnutzmann et al. (2022) [26] | Systematic review (athletes) | High-intensity endurance vs. moderate aerobic | Endurance: ↑ Prevotella, ↓ diversity; Moderate: ↑ diversity | High intensity: ↑ permeability, GI discomfort; moderate exercise beneficial |
| Zhang et al. (2023) [27] | Review | Moderate exercise + diet | ↑ diversity; ↑ beneficial metabolites | Prevention of DM2, dyslipidemia, and improved gut immune barrier |
| Yun et al. (2024) [28] | Interventional (4 weeks) | Moderate vs. high intensity | Moderate: ↑ Prevotella ↓ Veillonella, Dorea; High: ↑ Bacteroides, Butyricimonas, Odoribacter, Alistipes | ↓ metabolic disease risk; intensity-dependent effects |
| Quiroga et al. (2020) [29] | RCT, obese children | Strength + endurance (12 weeks) | ↓ Proteobacteria; ↑ Blautia, Dialister, Roseburia | ↓ glucose; ↓ NLRP3 inflammasome; ↓ inflammation |
| Silva et al. (2022) [30] | Interventional (4 weeks) | Moderate vs. vigorous | Moderate: ↑ Prevotella; Vigorous: ↑ SCFA-producing taxa | Improved metabolic markers; exercise-specific microbial response |
| Allen et al. (2018) [33] | Lean vs. obese adults | Endurance training (6 weeks) | Lean: ↑ Faecalibacterium, ↑ SCFA; Obese: ↑ Bacteroides, Collinsella | Obesity-dependent microbiota responsiveness |
| Hoffman-Goetz et al. (2003, 2010) [34,35] | Experimental | Physical exercise | Not taxa-specific | ↑ antioxidant enzymes; ↓ pro-inflammatory cytokines |
| Authors (Year) | Study Design/Population | Main Focus of the Study | Gut Microbiota Findings | Clinical/Metabolic Outcomes |
|---|---|---|---|---|
| Merra et al. (2020) [50] | Narrative review | MedDiet and human gut microbiota | ↑ SCFA-producing bacteria; improved microbial balance | Anti-inflammatory and metabolic benefits |
| Dominguez et al. (2023) [52] | Narrative review | MedDiet in obesity prevention and management | Indirect microbiota modulation via fiber and PUFAs | ↓ Obesity risk, improved metabolic health |
| Barber et al. (2023) [58] | Narrative review | MedDiet and gut microbiota | ↑ Faecalibacterium prausnitzii, Eubacterium rectale, Bifidobacterium; ↓ Blautia | ↓ Inflammation and oxidative stress; improved metabolic health |
| Beam et al. (2021) [59] | Narrative review | Diet–microbiota interactions | ↑ Prevotella/Bacteroides ratio with high-fiber diets | Improved gut barrier and metabolic regulation |
| Authors (Year) | Study Design/Population | Main Focus of the Study | Gut Microbiota Findings | Clinical/Metabolic Outcomes |
|---|---|---|---|---|
| Lv et al. (2024) [63] | Narrative review/Mechanistic analysis | DASH diet in MetS and potential mechanisms | Indirect microbiota modulation via fiber and micronutrients | ↓ BP, ↓ glucose, ↓ central obesity, ↓ dyslipidemia; improved insulin sensitivity |
| Maifeld et al. (2021) [69] | RCT; hypertensive patients with MetS | 5-day fasting + DASH vs. DASH alone | ↑ Akkermansia muciniphila; ↑ Ruminococcaceae (Faecalibacterium prausnitzii); ↑ SCFA-related gene modules | Sustained ↓ SBP, ↓ BMI, ↓ antihypertensive medication use |
| Diao et al. (2024) [70] | RCT; obese adults | Low-calorie DASH vs. low-calorie diet | ↓ Firmicutes/Bacteroidetes ratio; ↓ LPS; ↓ TMAO | Improved gut-derived cardiometabolic markers |
| Pourfard et al. (2025) [71] | Observational/interventional | DASH adherence | ↑ Microbial diversity; ↑ Faecalibacterium prausnitzii, Ruminococcaceae, Akkermansia muciniphila, Bifidobacterium, Bacteroides; ↓ Blautia | ↑ Butyrate production; ↓ inflammation and TMAO; improved metabolic profile |
| Authors (Year) | Study Design/Population | Dietary Intervention | Gut Microbiota Findings | Main Metabolic/Clinical Outcomes |
|---|---|---|---|---|
| Wang et al. (2025) [83] | Systematic review & meta-analysis (14 studies; obesity) | VLCKD | ↑ Akkermansia; ↑ Firmicutes/Bacteroidetes ratio; ↓ Bifidobacterium | Microbiota modulation dependent on BMI, age, and duration; strongest effects in middle-aged subjects and short-term interventions |
| Rew et al. (2022) [84] | Systematic review (8 studies; humans) | KD | Persistent ↓ Bifidobacterium; ↓ butyrate-producing Firmicutes; ↓ total SCFAs (acetate, butyrate) | Potential risks for obesity, DM2, depression; impaired fermentative capacity |
| Li et al. (2024) [85] | Experimental animal study (mice) | Two KD formulations (KD1, KD2) | ↓ SCFAs; altered bile acid profiles; KD-induced dysbiosis; glucose effects microbiota-dependent | Glucose intolerance independent of lipid accumulation; antibiotic depletion abolished glucose dysregulation |
| Güzey Akansel et al. (2024) [86] | Interventional clinical study (women with overweight/obesity) | 6-week KD | ↓ β-diversity; ↑ Firmicutes/Bacteroidetes ratio; ↓ Bifidobacterium, Prevotella; ↑ Oscillibacter, Blautia, Akkermansia; ↑ pathogenic genera | ↓ BMI, glucose, insulin, HbA1c; ↓ fecal SCFAs; ↑ serum zonulin → impaired gut barrier |
| Lu et al. (2024) [87] | Clinical interventional study (T2DM patients) | KD vs. standard diet | ↓ Enterococcus faecalis, ↓ Escherichia coli | ↓ FPG, HbA1c, HOMA-IR, lipids; ↑ GLP-1; ↓ body weight and WC |
| Ang et al. (2020) [88] | Human + animal mechanistic study | KD vs. high-fat diet | ↓ Bifidobacterium via β-hydroxybutyrate; KD-specific microbiota signature | ↓ intestinal Th17 cells; immune modulation via ketone bodies |
| Gudan & Stachowska (2022) [89] | Narrative review | KD (animal-fat–based) | ↑ Bilophila, Alistipes, Bacteroides; Bacteroides enterotype | Microbiota-dependent therapeutic effects in epilepsy, potential metabolic risks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Onu, A.; Tutu, A.; Trofin, D.-M.; Onu, I.; Galaction, A.-I.; Onita, C.A.; Iordan, D.-A.; Matei, D.-V. Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review. Life 2026, 16, 98. https://doi.org/10.3390/life16010098
Onu A, Tutu A, Trofin D-M, Onu I, Galaction A-I, Onita CA, Iordan D-A, Matei D-V. Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review. Life. 2026; 16(1):98. https://doi.org/10.3390/life16010098
Chicago/Turabian StyleOnu, Ana, Andrei Tutu, Daniela-Marilena Trofin, Ilie Onu, Anca-Irina Galaction, Cristiana Amalia Onita, Daniel-Andrei Iordan, and Daniela-Viorelia Matei. 2026. "Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review" Life 16, no. 1: 98. https://doi.org/10.3390/life16010098
APA StyleOnu, A., Tutu, A., Trofin, D.-M., Onu, I., Galaction, A.-I., Onita, C. A., Iordan, D.-A., & Matei, D.-V. (2026). Diet, Physical Exercise, and Gut Microbiota Modulation in Metabolic Syndrome: A Narrative Review. Life, 16(1), 98. https://doi.org/10.3390/life16010098

