Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = current carrier concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3666 KiB  
Article
A Sensitive Sandwich-Type Electrochemical Immunosensor for Carbohydrate Antigen 19-9 Based on Covalent Organic Frameworks
by Ting Wu, Rongfang Chen, Yaqin Duan, Longfei Miao, Yongmei Zhu and Li Wang
Biosensors 2025, 15(8), 492; https://doi.org/10.3390/bios15080492 - 1 Aug 2025
Viewed by 174
Abstract
Since carbohydrate antigen 19-9 (CA 19-9) is a significant biomarker for the clinical diagnosis and treatment of pancreatic cancer, a sensitive sandwich-type immunosensor was proposed with an epoxy functionalized covalent organic framework (EP-COFTTA-DHTA) as the antibody carrier and an electroactive COF [...] Read more.
Since carbohydrate antigen 19-9 (CA 19-9) is a significant biomarker for the clinical diagnosis and treatment of pancreatic cancer, a sensitive sandwich-type immunosensor was proposed with an epoxy functionalized covalent organic framework (EP-COFTTA-DHTA) as the antibody carrier and an electroactive COFTTA-2,6-NA(OH)2 as the signal amplification probe for the sensitive detection of CA 19-9. The flexible covalent linkage between the epoxy-functionalized EP-COFTTA-DHTA and the antibodies was employed to improve the dynamics of the antigen–antibody interaction significantly. Meanwhile, AuNPs@COFTTA-2,6-NA(OH)2 with abundant electroactive sites enhanced the current response of the immunoreaction significantly. After optimizing the incubation time and concentration of the antibody, CA 19-9 was quantitatively detected by differential pulse voltammetry (DPV) based on the sensitive sandwich-type immunosensor with a low detection limit of 0.0003 U/mL and a wide linear range of 0.0009–100 U/mL. The electrochemical immunosensor exhibits high specificity, stability and repeatability, and it provides a feasible and efficient method for the pathologic analysis and treatment of tumor markers. Full article
(This article belongs to the Special Issue Advances in Biosensors Based on Framework Materials)
Show Figures

Figure 1

11 pages, 2025 KiB  
Communication
Iodide Salt Surface Etching Reduces Energy Loss in CdTe Nanocrystal Solar Cells
by Jielin Huang, Xuyang Wang, Yilin Chen, Zhenyu Chen, Qiaochu Lin, Qichuan Huang and Donghuan Qin
Nanomaterials 2025, 15(15), 1180; https://doi.org/10.3390/nano15151180 - 31 Jul 2025
Viewed by 142
Abstract
CdTe nanocrystals (NCs) have emerged as a promising active layer for efficient thin-film solar cells due to their outstanding optical properties and simple processing techniques. However, the low hole concentration and high resistance in the CdTe NC active layer lead to high carrier [...] Read more.
CdTe nanocrystals (NCs) have emerged as a promising active layer for efficient thin-film solar cells due to their outstanding optical properties and simple processing techniques. However, the low hole concentration and high resistance in the CdTe NC active layer lead to high carrier recombination in the back contact. Herein, we developed a novel 2-iodothiophene as a wet etching solution to treat the surface of CdTe NC. We found that surface treatment using 2-iodothiophene leads to reduced interface defects and improves carrier mobility simultaneously. The surface properties of CdTe NC thin films after iodide salt treatment are revealed through surface element analysis, space charge limited current (SCLC) studies, and energy level investigations. The CdTe NC solar cells with 2-iodothiophene treatment achieved power conversion efficiency (PCE) of 4.31% coupled with a higher voltage than in controlled devices (with NH4I-treated ones, 3.08% PCE). Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design: 2nd Edition)
Show Figures

Figure 1

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 244
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 253
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

24 pages, 7332 KiB  
Article
High-Performance Natural Dye-Sensitized Solar Cells Employing a New Semiconductor: Gd2Ru2O7 Pyrochlore Oxide
by Assohoun F. Kraidy, Abé S. Yapi, Joseph K. Datte, Michel Voue, Mimoun El Marssi, Anthony Ferri and Yaovi Gagou
Condens. Matter 2025, 10(3), 38; https://doi.org/10.3390/condmat10030038 - 14 Jul 2025
Viewed by 623
Abstract
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films [...] Read more.
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films were fabricated using the spin-coating technique, resulting in spherical grains with an estimated mean diameter of 0.2 µm, as observed via scanning electron microscopy (SEM). This innovative photoactive gadolinium ruthenate pyrochlore oxide demonstrated strong absorption in the visible range and excellent dye adhesion after just one hour of exposure to natural dye. X-ray diffraction confirmed the presence of the pyrochlore phase, where Raman spectroscopy identified various vibration modes characteristic of the pyrochlore structure. Incorporating Gd2Ru2O7 as the photoanode significantly enhanced the overall efficiency of the DSSCs. The device configuration FTO/compact-layer/Gd2Ru2O7/Hibiscus-sabdariffa/electrolyte(I/I3)/Pt achieved a high efficiency of 9.65%, an open-circuit voltage (Voc) of approximately 3.82 V, and a current density of 4.35 mA/cm2 for an active surface area of 0.38 cm2. A mesoporous TiO2-based DSSC was fabricated under the same conditions for comparison. Using impedance spectroscopy and cyclic voltammetry measurements, we provided evidence of the mechanism of conductivity and the charge carrier’s contribution or defect contributions in the DSSC cells to explain the obtained Voc value. Through cyclic voltammetry measurements, we highlight the redox activities of hibiscus dye and electrolyte (I/I3), which confirmed electrochemical processes in addition to a photovoltaic response. The high and unusual obtained Voc value was also attributed to the presence in the photoanode of active dipoles, the layer thickness, dye concentration, and the nature of the electrolyte. Full article
Show Figures

Figure 1

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 622
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

26 pages, 808 KiB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 941
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

16 pages, 5631 KiB  
Article
Comprehensive Study of Proton and Heavy Ion-Induced Damages for Cascode GaN-Based HEMTs
by Huixiang Huang, Zhipeng Wu, Chao Peng, Hanxin Shen, Xiaoqiang Wu, Jianqun Yang, Zhifeng Lei, Xiuhai Cui, Teng Ma, Zhangang Zhang, Yujuan He, Yiqiang Chen and Guoguang Lu
Electronics 2025, 14(13), 2653; https://doi.org/10.3390/electronics14132653 - 30 Jun 2025
Viewed by 274
Abstract
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable [...] Read more.
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable increase in internal defect density, reducing channel carrier concentration and mobility, and causing electrical performance degradation. Under heavy ion irradiation, devices suffered from single-event burnout (SEB) and exhibited increased leakage current. Failure analysis of post-irradiation devices showed that those with leakage current increase had conductive channels without morphological changes, while burned out devices showed obvious damage between the gate and drain regions. SRIM simulation indicated that ionization energy loss-induced electron–hole pairs and displacement damage from nuclear energy loss were the main causes of degradation. Sentaurus TCAD simulation of heavy ion irradiated GaN HEMT devices confirmed the mechanisms of leakage current increase and SEB. Full article
Show Figures

Figure 1

11 pages, 2536 KiB  
Article
Electrical Performance of ZTO Thin-Film Transistors and Inverters
by Jieyang Wang, Liang Guo, Xuefeng Chu, Fan Yang, Hansong Gao, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2025, 16(7), 751; https://doi.org/10.3390/mi16070751 - 25 Jun 2025
Viewed by 328
Abstract
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution [...] Read more.
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution of oxygen vacancies (VO), which directly affect carrier density and interface trap density, ultimately determining the electrical behavior of inverters. At the optimal annealing temperature of 600 °C, the VO concentration was effectively moderated, resulting in a TFT with a mobility of 12.39 cm2 V−1 s−1, a threshold voltage of 6.13 V, an on/off current ratio of 1.09 × 108, and a voltage gain of 11.77 in the corresponding inverter. However, when the VO concentration deviated from this optimal range, whether in excess or deficiency, the gain was reduced and power consumption increased. This VO engineering strategy enables the simultaneous optimization of both TFT and inverter performance without relying on rare elements, offering a promising pathway toward the development of low-cost, large-area, flexible, and transparent electronic devices. Full article
Show Figures

Figure 1

16 pages, 2642 KiB  
Article
Enhanced Optoelectronic Synaptic Performance in Sol–Gel Derived Al-Doped ZnO Thin Film Devices
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Materials 2025, 18(13), 2931; https://doi.org/10.3390/ma18132931 - 20 Jun 2025
Viewed by 707
Abstract
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of [...] Read more.
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of ZnO films. Notably, 2.0 wt% Al doping yields the widest bandgap (3.31 eV), stable PL emission, and uniform deep-level absorption without inducing significant lattice disorder. Synaptic performance, including learning–forgetting dynamics and persistent photoconductivity (PPC), is strongly dependent on Al concentration. The 2.0 wt% AZO device exhibits the lowest forgetting rate and longest memory retention due to optimized trap formation, particularly Al–oxygen vacancy complexes that enhance carrier lifetime. Visual memory simulations using a 3 × 3 pixel array under patterned UV illumination further confirm superior long-term memory (LTM) behavior at 2.0 wt%, with stronger excitatory postsynaptic current (EPSC) retention during repeated stimulation. These results demonstrate that precise doping control via the sol–gel method enables defect engineering in oxide-based neuromorphic devices. Our findings provide an effective strategy for designing low-cost, scalable optoelectronic synapses with tunable memory characteristics suitable for future in-sensor computing and neuromorphic vision systems. Full article
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 383
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

12 pages, 2301 KiB  
Article
Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells
by MyeongSeob Sim, Yejin Gu, Donghwan Kim and Yoonmook Kang
Energies 2025, 18(12), 3090; https://doi.org/10.3390/en18123090 - 12 Jun 2025
Viewed by 394
Abstract
We investigated monocrystalline passivated emitter rear contact cells for light- and elevated-temperature-induced degradation. Among the cell performance factors, a short current density results in a significant decrease in the short term. The quantum efficiency is also affected by carrier recombination-active defects, especially in [...] Read more.
We investigated monocrystalline passivated emitter rear contact cells for light- and elevated-temperature-induced degradation. Among the cell performance factors, a short current density results in a significant decrease in the short term. The quantum efficiency is also affected by carrier recombination-active defects, especially in the case of the reference cell, which has a decreased quantum efficiency across the wavelength, unlike the commercial cell. The front side of the cell has a diffuse hydrogen distribution, and it is related to LeTID. We observe how the hydrogen changes during each process and the changes in the profile during the degradation. The hydrogen appears to redistribute within the silicon wafer and saturate at a certain equilibrium state. The hydrogen distribution is correlated with the changes in the lifetime and, finally, short current density. Regeneration occurs depending on the hydrogen concentration within the emitter, and the closer the concentration is to saturation, the less degradation occurs. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

30 pages, 842 KiB  
Review
Crossing the Blood–Brain Barrier: Innovations in Receptor- and Transporter-Mediated Transcytosis Strategies
by Ling Ding, Pratiksha Kshirsagar, Prachi Agrawal and Daryl J. Murry
Pharmaceutics 2025, 17(6), 706; https://doi.org/10.3390/pharmaceutics17060706 - 28 May 2025
Viewed by 1806
Abstract
The blood–brain barrier (BBB) is a highly selective and natural protective membrane that restricts the entry of therapeutic agents into the central nervous system (CNS). This restrictive nature poses a major challenge for pharmacological treatment of a wide range of CNS disorders, including [...] Read more.
The blood–brain barrier (BBB) is a highly selective and natural protective membrane that restricts the entry of therapeutic agents into the central nervous system (CNS). This restrictive nature poses a major challenge for pharmacological treatment of a wide range of CNS disorders, including neurodegenerative disorders, brain tumors, and psychiatric conditions. Many chemical drugs and biopharmaceuticals are unable to cross the BBB, and conventional drug delivery methods often fail to achieve sufficient brain concentrations, leading to reduced therapeutic efficacy and increased risk of systemic toxicity. In recent years, targeted drug delivery strategies have emerged as promising approaches to overcome the BBB and enhance the delivery of therapeutic agents to the brain. Among these, receptor-mediated transcytosis (RMT) and transporter-mediated transcytosis (TMT) are two of the most extensively studied mechanisms for transporting drugs across brain endothelial cells into the brain parenchyma. Advances in materials science and nanotechnology have facilitated the development of multifunctional carriers with optimized properties, improving drug targeting, stability, and release profiles within the brain. This review summarizes the physiological structure of the BBB and highlights recent innovations in RMT- and TMT-mediated brain drug delivery systems, emphasizing their potential not only to overcome current challenges in CNS drug development, but also to pave the way for next-generation therapies that enable more precise, effective, and personalized treatment of brain-related diseases. Full article
(This article belongs to the Special Issue Targeted Drug Delivery for Diagnostic and Therapeutic Applications)
Show Figures

Figure 1

19 pages, 9140 KiB  
Article
Synchronized Carrier-Wave and High-Frequency Square-Wave Periodic Modulation Strategy for Acoustic Noise Reduction in Sensorless PMSM Drives
by Wentao Zhang, Sizhe Cheng, Pengcheng Zhu, Yiwei Liu and Jiming Zou
Energies 2025, 18(11), 2729; https://doi.org/10.3390/en18112729 - 24 May 2025
Viewed by 539
Abstract
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency [...] Read more.
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency motor vibrations and noise. To mitigate this issue, this paper proposes a noise suppression strategy based on synchronized periodic frequency modulation (PFM) of both the carrier and high-frequency square-wave signals. By innovatively synchronizing the periodic modulation of the triangular carrier in space vector pulse width modulation (SVPWM) with the injected high-frequency square wave, harmonic energy dispersion and noise reduction are achieved, substantially lowering peak acoustic emissions. First, the harmonic characteristics of the voltage-source inverter output under symmetric triangular carrier SVPWM are analyzed within a sawtooth-wave PFM framework. Concurrently, a harmonic current model is developed for the high-frequency square-wave injection method, enabling the precise derivation of harmonic components. A frequency-synchronized modulation strategy between the carrier and injection signals is proposed, with a rigorous analysis of its harmonic suppression mechanism. The rotor position is then estimated via high-frequency signal extraction and a normalized phase-locked loop (PLL). Comparative simulations and experiments confirm significant noise peak attenuation compared to conventional methods, while position estimation accuracy remains unaffected. This work provides both theoretical and practical advancements for noise-sensitive sensorless motor control applications. Full article
(This article belongs to the Special Issue Advances in Control of Electrical Drives and Power Electronics)
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Effects of Deposition Power and Annealing Temperature on Indium Zinc Oxide (IZO) Film’s Properties and Their Applications to the Source–Drain Electrodes of Amorphous Indium Gallium Zinc Oxide (a-IGZO) Thin-Film Transistors (TFTs)
by Yih-Shing Lee, Chih-Hsiang Chang, Bing-Shin Le, Vo-Truong Thao Nguyen, Tsung-Cheng Tien and Horng-Chih Lin
Nanomaterials 2025, 15(11), 780; https://doi.org/10.3390/nano15110780 - 22 May 2025
Viewed by 838
Abstract
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), [...] Read more.
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), highest mobility (11.12 cm2/V·s), and highest carrier concentration (4.61 × 1020 cm−3). The average transmittance and optical energy gap were 82.57% and 3.372 eV, respectively. The electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) using IZO source-drain (S–D) electrodes with various sputtering powers and annealing temperatures were investigated. The optimal sputtering power of 125 W and annealing temperature of 300 °C for the IZO S–D electrodes resulted in the highest field-effect mobility (~12.31 cm2/V·s) and on current (~2.09 × 10−6 A). This improvement is attributed to enhanced carrier concentration and mobility, which result from the high In/Zn ratio, the larger grain size, and low RMS roughness in the IZO films. The parasitic contact resistance (RSD) and channel resistance (RCH) were analyzed using the total resistance method. RSD decreased with increasing IZO S–D sputtering power, while RCH reached a minimum at 125 W. Both resistances decreased significantly as the annealing temperature increased from 200 °C to 300 °C. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

Back to TopTop