Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Measurement
3. Results and Discussion
3.1. Commercial Cell Degradation
3.2. Quantitative Hydrogen Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration of generative AI and AI-assisted technologies in the writing process
References
- Walburga Hemetsberger, M.S. Sonia Dunlop. In Global Market Outlook; Intersolar Europe, Global Solar Council (GSC): Munich, Germany, 2025; pp. 6–12. [Google Scholar]
- Fischer, M. International Technology Roadmap for Photovoltaics, 15th ed.; VDMA: Frankfurt, Germany, 2024. [Google Scholar]
- NREL Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency (accessed on 12 May 2025).
- Chan, C.E.; Payne, D.N.R.; Hallam, B.J.; Abbott, M.D.; Fung, T.H.; Wenham, A.M. Rapid Stabilization of High-Performance Multicrystalline P-type Silicon PERC Cells. IEEE J. Photovolt. 2016, 6, 1473–1479. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.D.; Bae, S.; Kang, Y.; Kim, D.; Lee, H.-S. Prevention of potential-induced degradation using a moisture barrier in crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2024, 32, 390–398. [Google Scholar] [CrossRef]
- Lindroos, J.; Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 115–126. [Google Scholar] [CrossRef]
- Petter, K.; Hubener, K.; Kersten, F.; Bartzsch, M.; Fertig, F.; Kloter, B.; Muller, J. Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants. Int. Work. Cryst. Silicon Sol. Cells 2016, 6, 1–17. [Google Scholar]
- Chen, D.; Hamer, P.; Kim, M.; Chan, C.; nee Wenham, A.C.; Rougieux, F.; Zhang, Y.; Abbott, M.; Hallam, B. Hydrogen-induced degradation: Explaining the mechanism behind light- and elevated temperature-induced degradation in n- and p-type silicon. Sol. Energy Mater. Sol. Cells 2020, 207, 110353. [Google Scholar] [CrossRef]
- Winter, M.; Bordihn, S.; Peibst, R.; Brendel, R.; Schmidt, J. Degradation and Regeneration of n+-Doped Poly-Si Surface Passivation on p-Type and n-Type Cz-Si Under Illumination and Dark Annealing. IEEE J. Photovolt. 2020, 10, 423–430. [Google Scholar] [CrossRef]
- Zerfaß, R.; Simon, J.; Herguth, A.; Hahn, G. Impact of Hydrogen in Ga-Doped Silicon on Maximum LeTID Defect Density. Sol. RRL 2023, 7, 2300501. [Google Scholar] [CrossRef]
- Kersten, F.; Engelhart, P.; Ploigt, H.-C.; Stekolnikov, A.; Lindner, T.; Stenzel, F.; Bartzsch, M.; Szpeth, A.; Petter, K.; Heitmann, J.; et al. Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. Sol. Energy Mater. Sol. Cells 2015, 142, 83–86. [Google Scholar] [CrossRef]
- Niewelt, T.; Selinger, M.; Grant, N.E.; Kwapil, W.; Murphy, J.D.; Schubert, M.C. Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon. J. Appl. Phys. 2017, 121, 185702. [Google Scholar] [CrossRef]
- Varshney, U.; Abbott, M.; Ciesla, A.; Chen, D.; Liu, S.; Sen, C. Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon. IEEE J. Photovolt. 2019, 9, 601–607. [Google Scholar] [CrossRef]
- nee Wenham, A.C.; Wenham, S.; Chen, R.; Chan, C.; Chen, D.; Hallam, B. Hydrogen-Induced Degradation. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018. [Google Scholar]
- Sio, H.C.; Wang, H.; Wang, Q.; Sun, C.; Chen, W.; Jin, H.; Macdonald, D. Light and elevated temperature induced degradation in p-type and n-type cast-grown multicrystalline and mono-like silicon. Sol. Energy Mater. Sol. Cells 2018, 182, 98–104. [Google Scholar] [CrossRef]
- Hammann, B.; Rodrigues, P.V.; Aßmann, N.; Kwapil, W.; Schindler, F.; Schubert, M.C.; Glunz, S.W. Deciphering the Role of Hydrogen in the Degradation of Silicon Solar Cells under Light and Elevated Temperature. Sol. RRL 2024, 8, 2400457. [Google Scholar] [CrossRef]
- Schön, J.; Hamer, P.; Hammann, B.; Zechner, C.; Kwapil, W.; Schubert, M.C. Hydrogen in Silicon Solar Cells: The Role of Diffusion. Sol. RRL 2025, 9, 2400668. [Google Scholar] [CrossRef]
- Jordan, D.; Sulas-Kern, D.B.; Jonhston, S.; Moutinho, H.R.; Xiao, C.; Jiang, C.S.; Young, M.; Norman, A.G.; Deline, C.; Repins, I.; et al. High Efficiency Silicon Module Degradation—From Atoms to Systems: Preprint; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Ma, S.; Gao, P.; Xu, J.; Li, W.; Guo, Y.; Qiao, D.; Ma, B.; Yuan, W.; Ye, T. Light and elevated temperature induced degradation (LeTID) of N-type TOPCon solar cells. Solar Energy 2025, 296, 113573. [Google Scholar] [CrossRef]
- Bredemeier, D.; Walter, D.C.; Schmidt, J. Possible Candidates for Impurities in mc-Si Wafers Responsible for Light-Induced Lifetime Degradation and Regeneration. Sol. RRL 2018, 2, 1700159. [Google Scholar] [CrossRef]
- Maischner, F.; Maus, S.; Greulich, J.; Lohmuller, S.; Lohmuller, E.; Saint-Cast, P.; Ourinson, D.; Vahlman, H.; Hergert, K.; Riepe, S. LeTID mitigation via an adapted firing process in p-type PERC cells from SMART cast-monocrystalline, Czochralski and high-performance multicrystalline silicon. Prog. Photovolt. Res. Appl. 2022, 30, 123–131. [Google Scholar] [CrossRef]
- Chakraborty, S.; Huang, Y.; Wilson, M.; Aberle, A.G.; Li, J.B. Mitigating Light and Elevated Temperature Induced Degradation in Multicrystalline Silicon Wafers and PERC Solar Cells Using Phosphorus Diffusion Gettering. Phys. Status Solidi A 2018, 215, 1800160. [Google Scholar] [CrossRef]
- Zuschlag, A.; Skorka, D.; Hahn, G. Degradation and regeneration in mc-Si after different gettering steps. Prog. Photovolt. Res. Appl. 2017, 25, 545–552. [Google Scholar] [CrossRef]
- Sharma, R.; Chong, A.P.; Li, J.B.; Aberle, A.G.; Huang, Y. Role of post-metallization anneal sequence and forming gas anneal to mitigate light and elevated temperature induced degradation of multicrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2019, 195, 160–167. [Google Scholar] [CrossRef]
- Wang, L.; Koh, D.; Hamer, P.; Pollard, M.; Chan, C. Suppression of LeTID in p-Type Multi-Crystalline PERC Silicon Solar Cells by Biased Annealing Process; AIP Publishing: Melville, NY, USA, 2022. [Google Scholar]
- Varshney, U.; Hallam, B.; Hamer, P.; Ciesla, A.; Chen, D.; Liu, S. Controlling Light- and Elevated-Temperature-Induced Degradation With Thin Film Barrier Layers. IEEE J. Photovolt. 2020, 10, 19–27. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, H.; Hu, D.; Wei, Q.; Ni, Z.; Li, Y.; Sun, L.; Qian, H. Influence of double current injection annealing on anti-LID effect in mono-like cast silicon PERC solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 3221–3227. [Google Scholar] [CrossRef]
- Sen, C.; Chan, C.; Hamer, P.; Wright, M.; Varshney, U.; Liu, S.; Chen, D.; Samadi, A.; Ciesla, A.; Chong, C.; et al. Annealing prior to contact firing: A potential new approach to suppress LeTID. Sol. Energy Mater. Sol. Cells 2019, 200, 109938. [Google Scholar] [CrossRef]
- Eberle, R.; Kwapil, W.; Schindler, F.; Schubert, M.C.; Glunz, S.W. Impact of the firing temperature profile on light induced degradation of multicrystalline silicon. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2016, 10, 861–865. [Google Scholar] [CrossRef]
- Hammann, B.; Schindler, F.; Schon, J.; Kwapil, W.; Schubert, M.C.; Glunz, S.W. Review on hydrogen in silicon solar cells: From its origin to its detrimental effects. Solar Energy Mater. Sol. Cells 2025, 282, 113432. [Google Scholar]
- Ramspeck, K.; Zimmermann, S.; Nagel, H.; Metz, A.; Gassenbauer, Y.; Birkmann, B.; Seidl, A. Light induced degradation of rear passivated mc-Si solar cells. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- Resmi, E.; KSreejith, P.; Kottantharayil, A. Analysis of variation in recombination characteristics due to light and heat in industrial silicon solar cells. Sol. Energy 2023, 252, 127–133. [Google Scholar]
- Fokuhl, E.; Naeem, T.; Schmid, A.; Gebhardt, P.; Geipel, T.; Philipp, D. LeTID—A comparison of test methods on module level. In Proceedings of the In 36th European PV Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019. [Google Scholar]
- Chan, C.; Fung, T.H.; Abbott, M.; Payne, D.; Wenham, A.; Hallam, B.; Chen, R.; Wenham, S. Modulation of Carrier-Induced Defect Kinetics in Multi-Crystalline Silicon PERC Cells Through Dark Annealing. Sol. RRL 2017, 1, 1600028. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, Z.; Wu, J.; Jiang, F. Application of current injection to LeTID monitoring in industrial PERC cell production. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020. [Google Scholar]
- Sperber, D.; Graf, A.; Skorka, D.; Herguth, A.; Hahn, G. Degradation of Surface Passivation on Crystalline Silicon and Its Impact on Light-Induced Degradation Experiments. IEEE J. Photovolt. 2017, 7, 1627–1634. [Google Scholar] [CrossRef]
- Choi, D.; Park, H.; Bae, S.; Shin, S.H.; Han, H.; Kloter, B.; Kim, D.; Lee, H.-S.; Kang, Y. Lowering firing temperature of a p-type passivated emitter rear contact Si solar cell via current injection. Sol. Energy Mater. Sol. Cells 2022, 239, 111587. [Google Scholar] [CrossRef]
Applied Bias (V) | 0 | 0.2 | 0.4 | 0.5 | 0.6 |
---|---|---|---|---|---|
Before Commercial | 39.01 | 39.19 | 35.51 | 26.26 | 15.44 |
After Commercial | 39.01 | 39.04 | 37.77 | 28.85 | 14.78 |
Difference | 0 | −0.15 | −2.26 | −2.59 | −0.66 |
Before Reference | 37.46 | 38.68 | 35.69 | 28.70 | 16.85 |
After Reference | 34.68 | 34.69 | 30.67 | 25.27 | 14.71 |
Difference | −2.78 | −3.99 | −5.02 | −3.43 | −2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, M.; Gu, Y.; Kim, D.; Kang, Y. Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells. Energies 2025, 18, 3090. https://doi.org/10.3390/en18123090
Sim M, Gu Y, Kim D, Kang Y. Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells. Energies. 2025; 18(12):3090. https://doi.org/10.3390/en18123090
Chicago/Turabian StyleSim, MyeongSeob, Yejin Gu, Donghwan Kim, and Yoonmook Kang. 2025. "Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells" Energies 18, no. 12: 3090. https://doi.org/10.3390/en18123090
APA StyleSim, M., Gu, Y., Kim, D., & Kang, Y. (2025). Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells. Energies, 18(12), 3090. https://doi.org/10.3390/en18123090