Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = crystalline phases distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6137 KiB  
Article
Synergistic Optimization of High-Temperature Mechanical Properties and Thermal Conductivity in B4C/Al Composites Through Nano-Al2O3 Phase Transformation and Process Engineering
by Chunfa Huang, Lingmin Li and Qiulin Li
Metals 2025, 15(8), 874; https://doi.org/10.3390/met15080874 (registering DOI) - 4 Aug 2025
Abstract
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al [...] Read more.
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al2O3 within an aluminum matrix. By combining plastic deformation and heat treatment, we aim to achieve a structurally integrated functional design. A systematic investigation was conducted on the microstructural evolution of Al2O3/10 wt.% B4C/Al composites in their forged, extruded, and heat-treated states. We also examined how these states affect high-temperature mechanical properties and thermal conductivity. The results indicate that applying hot extrusion deformation along with optimized heat treatment parameters (500 °C for 24 h) allows for a lamellar dispersion of nano-Al2O3 and a crystallographic transition from amorphous to γ-phase. As a result, the composite demonstrates a tensile strength of 144 MPa and an enhanced thermal conductivity of 181 W/(m·K) at 350 °C. These findings provide theoretical insights and technical support for ensuring the high density and long-term safety of spent fuel storage materials. Full article
Show Figures

Figure 1

19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 247
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 311
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

22 pages, 29514 KiB  
Article
Desert Sand in Alkali-Activated Fly Ash–Slag Mortar: Fluidity, Mechanical Properties, and Microstructure
by Wei Wang, Di Li, Duotian Xia, Ruilin Chen and Jianjun Cheng
Materials 2025, 18(14), 3410; https://doi.org/10.3390/ma18143410 - 21 Jul 2025
Viewed by 376
Abstract
The role and performance of desert sand in alkali-activated mortar remain insufficiently understood. To address this knowledge gap, this study systematically investigates the fluidity, mechanical properties, and microscopic morphology of alkali-activated mortar with varying desert sand substitution rates (DSRR, 0–100%). The key findings [...] Read more.
The role and performance of desert sand in alkali-activated mortar remain insufficiently understood. To address this knowledge gap, this study systematically investigates the fluidity, mechanical properties, and microscopic morphology of alkali-activated mortar with varying desert sand substitution rates (DSRR, 0–100%). The key findings reveal that a low DSRR (10–20%) enhances mortar fluidity and reduces drying shrinkage, though at the cost of reduced compressive strength. At 40% DSRR, the mortar exhibits elevated porosity (12.3%) and diminished compressive strength (63 MPa). Notably, complete substitution (100% DSRR) yields a well-structured matrix with optimized pore distribution, characterized by abundant gel micropores, and achieves a compressive strength of 76 MPa. These results demonstrate that desert sand can fully replace river sand in alkali-activated mortar formulations without compromising performance. Microstructural analysis confirms that desert sand actively participates in the alkali activation process. Specifically, the increased Ca2+ content facilitates the transformation of amorphous gels into crystalline phases. It also found that desert sand could make the fly ash more soluble, affecting the alkali activation reaction. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 769
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 321
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

23 pages, 3592 KiB  
Article
Enhancing Optical Properties and Cost-Effectiveness of Sol–Gel TiO2 Nanomaterials Through Experimental Design
by Felipe Anchieta e Silva, Timóteo Adorno de Almeida, Argimiro R. Secchi, José Carlos Pinto and Thenner Silva Rodrigues
Processes 2025, 13(7), 1988; https://doi.org/10.3390/pr13071988 - 24 Jun 2025
Viewed by 493
Abstract
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental [...] Read more.
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental applications due to its high stability, tunable band gap, and strong light absorption. The sol–gel method offers a scalable, cost-effective route for producing nanostructured TiO2, although the precise control over particle morphology remains challenging. For this reason, in the present work, a statistical design of experiments (DOE) approach is employed to systematically refine reaction conditions through the manipulation of precursor concentrations, solvent ratios, and reaction volume. The experimental results obtained indicate that acetic acid is a key catalyst and stabilizing agent, significantly improving nucleation control and particle formation. Moreover, it is also shown that solvent dilution, particularly with acetic acid, leads to the formation of TiO2 nanorods with enhanced optical properties. Additionally, scanning electron micrographs revealed that controlled synthesis conditions can reduce the particle size distribution and improve structural uniformity. Moreover, X-ray diffraction analyses confirmed the formation of a pure anatase crystalline phase, while ultraviolet–visible spectroscopy analyses indicated the existence of an optimal band gap for photocatalytic applications. Finally, the cost analysis showed that acetic acid-assisted synthesis can reduce production costs and simultaneously maintain high optical properties. Therefore, the present study highlights that proper manipulation and control of reaction conditions during sol–gel syntheses can allow the manufacture of high-performance TiO2 nanomaterials for advanced technological applications, also providing a foundation for the development of cost-effective materials. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Figure 1

19 pages, 3763 KiB  
Article
Elaboration of Conductive Hydrogels by 3D Printer for the Development of Strain Sensors
by Lucas Carravero Costa, Isabelle Pochard, Cédric C. Buron and Florian E. Jurin
Gels 2025, 11(7), 474; https://doi.org/10.3390/gels11070474 - 20 Jun 2025
Viewed by 444
Abstract
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver [...] Read more.
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver nanoparticles (AgNPs) to impart piezoelectric properties. The ink formulation was optimized to achieve shear-thinning and thixotropic recovery behavior, ensuring printability through extrusion-based 3D printing. The resulting hydrogels exhibited high water uptake (~280–300%) and retained mechanical integrity. Rheological assessments showed that increasing PVDF content improved stiffness without compromising printability. Electrical characterization demonstrated that AgNPs were essential for generating piezoelectric signals under mechanical stress, as PVDF alone was insufficient. While AgNPs did not significantly alter the crystalline phase distribution of PVDF, they enhanced conductivity and signal responsiveness. XRD and SEM-EDX analyses confirmed the presence and uneven distribution of AgNPs within the hydrogel. The optimized ink formulation (5% PVA, 0.94% KC, 6% PVDF) enabled the successful fabrication of functional sensors, highlighting the material’s strong potential for use in wearable or biomedical strain-sensing applications. Full article
(This article belongs to the Special Issue Hydrogel-Based Flexible Electronics and Devices)
Show Figures

Figure 1

13 pages, 2786 KiB  
Article
Effect of Cu Doping on Synthesis, Composition and Sensor Properties of In2O3 Nanostructures
by Mariya I. Ikim, Elena Yu. Spiridonova, Olusegun Johnson Ilegbusi and Leonid I. Trakhtenberg
Nanomaterials 2025, 15(12), 925; https://doi.org/10.3390/nano15120925 - 14 Jun 2025
Viewed by 390
Abstract
Cu-doped In2O3 nanocomposites with copper compositions of 1–3 wt.% are synthesized by a hydrothermal method using water or alcohol as a solvent. Cubic In2O3 is formed when water is used for synthesis, while composites synthesized in alcohol [...] Read more.
Cu-doped In2O3 nanocomposites with copper compositions of 1–3 wt.% are synthesized by a hydrothermal method using water or alcohol as a solvent. Cubic In2O3 is formed when water is used for synthesis, while composites synthesized in alcohol contain rhombohedral In2O3. This trend is independent of the amount of copper introduced. The Cu ions are shown to be uniformly distributed in the In2O3 nanoparticles without significant destruction of the indium oxide structure. All the composites exhibit a porous structure that depends on the solvent used for the synthesis. The addition of copper to both crystalline forms of indium oxide increases the resistance of the films and reduces the operating temperature. The phase state of indium oxide also affects the conductivity of the composites. There is an increase in sensory response to H2 and CO with the introduction of Cu into samples with cubic structure, but a reduction in response in samples with the rhombohedral phase of indium oxide. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 3942 KiB  
Article
Utilization of Coal Ash for Production of Refractory Bricks
by Saniya Kaskataevna Arinova, Svetlana Sergeevna Kvon, Vitaly Yurevich Kulikov, Aristotel Zeynullinovich Issagulov and Asem Erikovna Altynova
J. Compos. Sci. 2025, 9(6), 275; https://doi.org/10.3390/jcs9060275 - 29 May 2025
Viewed by 452
Abstract
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component [...] Read more.
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component in the fabrication of refractory bricks and to investigate the fundamental properties of the resulting experimental products. Ash was incorporated into the batch composition at concentrations ranging from 10% to 40% by weight, blended with clay and water, then shaped through pressing and subjected to firing at 1000 °C and 1100 °C in an air atmosphere for 2 h. After complete cooling, the samples were subjected to compressive strength testing. Samples containing 40 wt% coal ash exhibited insufficient compressive strength and were therefore excluded from subsequent investigations. For the remaining samples, apparent density, open porosity and slag resistance were determined. The microstructural characterization was performed, and the phase composition of the samples was analyzed. The results revealed that the phase composition of the experimental samples differs significantly from that of the reference sample (ShA-grade chamotte brick in accordance with GOST 390-96, currently used as lining in metallurgical furnaces across the country), exhibiting a higher mullite content and the absence of muscovite. A small amount of kaolinite was detected in the experimental samples even after a 2-h firing process. This observation may be attributed to the effect of kaolinite crystallinity on the transformation process from kaolinite to metakaolinite. The mechanical strength of the experimental samples meets the relevant standards, while slag resistance demonstrated an improvement of approximately 15%. Open porosity was found to decrease in the experimental samples. In addition, a change in the pore size distribution was observed. Notably, the proportion of pores larger than 10,000 nm was significantly reduced. These findings confirm the feasibility of incorporating coal ash as a viable raw material component in the formulation of refractory materials. Full article
Show Figures

Figure 1

28 pages, 7859 KiB  
Article
Tailoring the Luminescence Properties of Strontium Aluminate Phosphors for Unique Smartphone Detectable Optical Tags
by Virginija Vitola, Milena Dile, Katrina Krizmane, Ernests Einbergs, Tinko Eftimov, Kristian Nikolov and Samia Fouzar
Crystals 2025, 15(5), 474; https://doi.org/10.3390/cryst15050474 - 17 May 2025
Viewed by 612
Abstract
In this work, a precursor-driven tailoring of strontium aluminate phosphors doped with Eu2+ and Dy3+ to generate unique, batch-specific luminescent signatures suitable for smartphone-detectable anti-counterfeiting tags was developed. A microwave-assisted hydrothermal synthesis approach was employed to explore the impact of a [...] Read more.
In this work, a precursor-driven tailoring of strontium aluminate phosphors doped with Eu2+ and Dy3+ to generate unique, batch-specific luminescent signatures suitable for smartphone-detectable anti-counterfeiting tags was developed. A microwave-assisted hydrothermal synthesis approach was employed to explore the impact of a wide range of alkaline hydroxide and carbonate precursors on the structure of strontium aluminate. The resulting materials exhibited distinct differences in crystalline phase composition, morphology, and trap depth distribution. A smartphone-based detection system was developed, enabling rapid identification of spectral fingerprints. This study demonstrates a viable strategy for embedding unique luminescent identifiers, offering a scalable solution for robust, low-cost anti-counterfeiting applications in both the spectral and the time domain. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

23 pages, 2454 KiB  
Article
Rheological Behavior and Mechanical Performance of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Natural Rubber Blends Modified with Coffee Oil Epoxide for Sustainable Packaging Applications
by Rinky Ghosh, Xiaoying Zhao and Yael Vodovotz
Polymers 2025, 17(10), 1324; https://doi.org/10.3390/polym17101324 - 13 May 2025
Viewed by 653
Abstract
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based [...] Read more.
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based plasticizer for PHBV/natural rubber (NR) blends in sustainable packaging applications. COE, derived from spent coffee grounds, was incorporated into PHBV/NR/peroxide/coagent composites via twin-screw extrusion. FTIR spectroscopy with chemometric analysis confirmed successful COE incorporation (intensified CH2 stretching: 2847, 2920 cm−1; reduced crystallinity), with PCA and PLS-DA accounting for 67.9% and 54.4% of spectral variance. COE incorporation improved optical properties (7.73% increased lightness; 21.9% reduced yellowness). Rheological characterization through Cole–Cole and Han plots demonstrated enhanced phase compatibility in the PHBV/NR/COE blends. Mechanical testing showed characteristic reductions in flexural properties: strength decreased by 16.5% and modulus by 36.8%. Dynamic mechanical analysis revealed PHBV/NR/COE blends exhibited a single relaxation transition at 32 °C versus distinct glass transition temperatures in PHBV/NR blends. Tan δ deconvolution confirmed the transformation from bimodal distribution to a single broadened peak, indicating enhanced interfacial interactions and improved miscibility. These findings demonstrated COE’s potential as a sustainable additive for biodegradable PHBV-based packaging while valorizing food waste. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Figure 1

18 pages, 12290 KiB  
Article
Structural Pattern Analysis in Patella vulgata Shells Using Raman Imaging
by María Gabriela Fernández-Manteca, Borja García García, Celia Gómez-Galdós, Jesús Mirapeix, Rosa Arniz-Mateos, Asier García-Escárzaga, Igor Gutiérrez-Zugasti, José Francisco Algorri, José Miguel López-Higuera, Alain A. Ocampo-Sosa, Luis Rodríguez-Cobo and Adolfo Cobo
Appl. Sci. 2025, 15(9), 5180; https://doi.org/10.3390/app15095180 - 7 May 2025
Cited by 1 | Viewed by 647
Abstract
Patella vulgata shells preserve geochemical and structural variations that can provide insights into past environmental conditions. Their composition, primarily calcium carbonate with organic residues from the biomineralization process, is influenced by external factors, such as sea surface temperature. Raman spectroscopy has emerged as [...] Read more.
Patella vulgata shells preserve geochemical and structural variations that can provide insights into past environmental conditions. Their composition, primarily calcium carbonate with organic residues from the biomineralization process, is influenced by external factors, such as sea surface temperature. Raman spectroscopy has emerged as a rapid, non-destructive tool for studying biogenic carbonates, enabling the identification of crystalline phases, organic components, and ion distribution. In this study, Raman imaging was applied to six shell sections of P. vulgata live-collected from Langre Beach in Cantabria, Spain. Spectral data were acquired using a Raman probe with a 532 nm excitation laser, providing high-resolution mapping of structural and compositional features. The analysis revealed spatial variations in mineralogy, organic matrix distribution, and ion incorporation in the calcium carbonate lattice, suggesting patterns originating during shell formation. Notably, the results suggest a consistent relationship between the organic and mineral components of the shells, with carotenoid distribution and carbonate ion substitution in the calcium carbonate lattice following similar growth patterns. These findings highlight the potential of Raman spectroscopy for studying biomineralization processes and the environmental records preserved in marine mollusk shells. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

19 pages, 7736 KiB  
Article
An Analysis of Foams Produced from Recycled Polyolefins and Low-Cost Foaming Agents: Benchmarking Using Pore Size, Distribution, Shear Effects, and Thermal Properties
by Krishnamurthy Prasad, Fareed Tamaddoni Jahromi, Shammi Sultana Nisha, John Stehle, Emad Gad and Mostafa Nikzad
Polymers 2025, 17(9), 1270; https://doi.org/10.3390/polym17091270 - 6 May 2025
Viewed by 551
Abstract
Foamed specimens were fabricated from virgin and recycled polyethylenes (linear low-density polyethylene, LLDPE, and low-density polyethylene, LDPE) using low-cost citric acid and sodium bicarbonate foaming agents. The foaming agents chosen showed decomposition behaviour either without phase change (sodium bicarbonate, NaB) or liquefaction followed [...] Read more.
Foamed specimens were fabricated from virgin and recycled polyethylenes (linear low-density polyethylene, LLDPE, and low-density polyethylene, LDPE) using low-cost citric acid and sodium bicarbonate foaming agents. The foaming agents chosen showed decomposition behaviour either without phase change (sodium bicarbonate, NaB) or liquefaction followed by decomposition (citric acid, CA). The manufactured polyethylene foams were then benchmarked against a polyurethane foam. Two types of mixing were used prior to foaming, viz., solid-state pulverisation or high-shear internal mixing, and the effect of mixing on properties critical for foam viability were analysed. These properties included density, pore size, shape and distribution, crystallinity, and porosity. It was found that the virgin LLDPE and recycled LDPE showed similar trends in terms of narrow pore size distribution and reduced crystallinity, while the recycled LLDPE tended towards more pore coalescence. This difference in behaviour was attributed to the more mixed phase nature of the recycled LLDPE as opposed to the majorly single-phase virgin LLDPE and recycled LDPE. Lowered densities obtained for the NaB foaming compared to CA can be speculated to be because of the ionic and simple NaB decomposition as opposed to the complex radical pathway for the CA decomposition. Full article
(This article belongs to the Special Issue Polymer Manufacturing Processes)
Show Figures

Figure 1

Back to TopTop