Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = crystalline organic solutes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2050 KiB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 506
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Antistatic Melt-Electrowritten Biodegradable Mesh Implants for Enhanced Pelvic Organ Prolapse Repair
by Daniela Cruz, Francisca Vaz, Evangelia Antoniadi, Ana Telma Silva, Joana Martins, Fábio Pinheiro, Nuno Miguel Ferreira, Luís B. Bebiano, Rúben F. Pereira, António Fernandes and Elisabete Silva
Appl. Sci. 2025, 15(14), 7763; https://doi.org/10.3390/app15147763 - 10 Jul 2025
Viewed by 346
Abstract
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the [...] Read more.
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the use of biodegradable implantable meshes, which can support the organs, guide tissue regeneration, and be fully absorbed without damaging the surrounding tissues. In this study, biodegradable polycaprolactone (PCL) meshes were fabricated using melt electrowritten (MEW), incorporating the antistatic agent Hostastat® FA 38 (HT) to address these limitations. The goal was to produce microscaffolds with suitable biophysical properties, particularly more stable fiber deposition and reduced fiber diameter. Different HT concentrations (0.03, 0.06, and 0.1 wt%) were investigated to assess their influence on the fiber diameter and mechanical properties of the PCL meshes. Increasing HT concentration significantly reduced fiber diameter by 14–17%, 39–45%, and 65–66%, depending on mesh geometry (square or sinusoidal). At 0.06 wt%, PCL/HT meshes showed a 24.10% increase in tensile strength and a 55.59% increase in Young’s Modulus compared to pure PCL meshes of similar diameter. All formulations demonstrated cell viability >90%. Differential scanning calorimetry (DSC) revealed preserved thermal stability and changes in crystallinity with HT addition. These findings indicate that the antistatic agent yields promising results, enabling the production of thinner, more stable fibers with higher tensile strength and Young’s Modulus than PCL meshes, without adding cellular toxicity. Developing a thinner and more stable mesh that mimics vaginal tissue mechanics could offer an innovative solution for POP repair. Full article
Show Figures

Figure 1

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 302
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

16 pages, 2225 KiB  
Article
Effect of Alkaline Soil Solution on the Material Characteristics and Photocatalytic Activity of Strontium Titanate Nanomaterials
by Badam Ariya, John Chagu, Karolina Solymos, Tamás Gyulavári, Zsejke-Réka Tóth, Ákos Kukovecz, Zoltán Kónya, Gábor Veréb and Zsolt Pap
Catalysts 2025, 15(7), 608; https://doi.org/10.3390/catal15070608 - 20 Jun 2025
Viewed by 739
Abstract
The present study aimed to investigate the interaction between strontium titanate photocatalysts and alkaline soil (solonetz) soil solutions. For this purpose, one commercially available and several synthesized strontium titanates were considered. The photocatalytic activity and material characteristics were assessed before and after immersion [...] Read more.
The present study aimed to investigate the interaction between strontium titanate photocatalysts and alkaline soil (solonetz) soil solutions. For this purpose, one commercially available and several synthesized strontium titanates were considered. The photocatalytic activity and material characteristics were assessed before and after immersion in the soil solutions. All samples were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), diffuse reflectance spectroscopy (DRS), and scanning electron microscopy (SEM). After interaction with the soil solution, most of the samples became more active for phenol degradation. It was found that the crystalline structure of each sample was preserved, while the primary crystallite sizes decreased after both phenol degradation and immersion in solonetz soil solutions. Moreover, the surface of all synthesized nanostructures was covered by organic residues from either the soil solution or the by-products of phenol degradation. This was also visible from the DR spectra, as an intensive color change was observed. The bandgaps of most samples were also changed, except for the commercial material. The results imply that it is important to investigate the ecofriendly nature of any photocatalytic material, as it tends to influence the surrounding environment. This is important, as solar photocatalysis is rising among the possible methods for water purification and disinfection. Full article
Show Figures

Graphical abstract

13 pages, 3247 KiB  
Article
Anisotropic Photoelectric Properties of Aligned P3HT Nanowire Arrays Fabricated via Solution Blade Coating and UV-Induced Molecular Ordering
by Qianxun Gong, Jin Luo, Chen Meng, Zuhong Xiong, Sijie Zhang and Tian Yu
Materials 2025, 18(11), 2649; https://doi.org/10.3390/ma18112649 - 5 Jun 2025
Viewed by 418
Abstract
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This [...] Read more.
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This resistance anisotropy originates from the advantage of directional charge transport. Optimized 5 mg/mL P3HT solutions under 32 min UV irradiation yielded unidirectional π-π*-stacked NWs with enhanced crystallinity. Polarized microscopy and atomic force microscopy confirmed high alignment and dense NW networks. The angular dependence of polarization exhibits a cosine-modulated response, while the angular anisotropy of the measured photocurrent points to structural alignment rather than trap-state control. The scalable fabrication and tunable anisotropy demonstrate potential for polarization-sensitive organic electronics and anisotropic logic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

14 pages, 4888 KiB  
Article
Poloxamer-Driven Drug Delivery System for Anti-Inflammatory Drugs Using Small-Angle Neutron Scattering Approach
by Rodrigo Rhinow, Margareth K. K. D. Franco, Mont Kumpugdee Vollrath, Guinther Kellermann and Fabiano Yokaichiya
Gels 2025, 11(6), 410; https://doi.org/10.3390/gels11060410 - 30 May 2025
Viewed by 639
Abstract
Poloxamer-based drug delivery systems are widely used in the pharmaceutical sector. The structural characterization of these systems is crucial for the development of new drug delivery systems and for the optimization of their properties. In this study, we utilized small-angle neutron scattering (SANS) [...] Read more.
Poloxamer-based drug delivery systems are widely used in the pharmaceutical sector. The structural characterization of these systems is crucial for the development of new drug delivery systems and for the optimization of their properties. In this study, we utilized small-angle neutron scattering (SANS) to investigate the structures of poloxamer-based drug delivery systems. The samples were measured using the SANS technique on the VSANS-V16 instrument at Helmholtz-Zentrum Berlin (HZB), Germany. The samples contained 20% poloxamer (P407) and 0.2% of a drug (ibuprofen, ketoprofen, diclofenac) in deuterated water (D2O) for SANS. The samples varied in terms of temperature analysis (25 °C, common storage temperature; 37 °C, human body temperature; 40 °C, fever temperature). The data analysis involved modeling the data using a Python-based routine. The model used consisted of an isotropic solution of polydisperse spherical micelles. The intensity as a function of the scattering vector was modeled as the product of the form factor and the interparticle structure factor, with the latter described within the local monodisperse approximation regime. Additionally, a scattering contribution was observed, which was associated with the presence of crystalline superstructures formed by micelles that organized into a cubic structure. The data analysis provided important information about the system, such as the average radius, the size distribution, and the thickness of the layer surrounding the micellar core. The results will contribute to the development and optimization of new drug delivery systems that are more effective and safer for medical applications. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Figure 1

28 pages, 59439 KiB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Viewed by 521
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 3727 KiB  
Article
Preparation of Strontium Hydroxystannate by a Hydrothermal Method and Its Photocatalytic Performance
by Qiao Liang, Junke Li, Rui Pan, Xianxu Yang, Yufeng Zeng, Chao Shi, Hao Bao, Peng Li, Min Fu and Shichao Tian
Processes 2025, 13(6), 1654; https://doi.org/10.3390/pr13061654 - 24 May 2025
Viewed by 431
Abstract
To address the challenge of abatement of volatile organic compounds (VOCs) in environmental catalysis, this study developed a temperature-gradient hydrothermal strategy to fabricate SrSn(OH)6 nanocatalysts and systematically investigatd their photocatalytic performance and mechanisms for gaseous toluene degradation. SrSn(OH)6 (SSH) was synthesized [...] Read more.
To address the challenge of abatement of volatile organic compounds (VOCs) in environmental catalysis, this study developed a temperature-gradient hydrothermal strategy to fabricate SrSn(OH)6 nanocatalysts and systematically investigatd their photocatalytic performance and mechanisms for gaseous toluene degradation. SrSn(OH)6 (SSH) was synthesized via a simple hydrothermal method with optimal preparation conditions identified as a reaction temperature of 140 °C and duration of 12 h. The crystallinity of SrSn(OH)6 was modulated by adjusting the pH of the precursor solution, yielding materials with distinct morphologies, specific surface areas, and band gaps. The narrowed band gap of SrSn(OH)6 nanocatalysts facilitated electron excitation to generate additional photogenerated electron-hole pairs. The SSH-10.5 sample with ordered planar and hole-like structures promoted carrier migration, effectively suppressed electron-hole recombination, and enhanced the conversion of abundant surface hydroxyl groups into hydroxyl radicals. Under UV irradiation, SSH-10.5 achieved a toluene degradation efficiency of 69.56% and showed excellent stability after five reuse cycles. Electron spin resonance analysis confirmed the presence of •OH and •O2 radicals in the reaction system, with •OH identified as the dominant active species. In situ FT-IR spectroscopy revealed that •OH and •O2 radicals attacked the methyl group of toluene, converting it into intermediates including benzyl alcohol, benzaldehyde, and benzoic acid. This work provides a novel design of high-efficiency VOC-photocatalytic materials and shows significant implications for advancing industrial exhaust gas purification technologies. Full article
(This article belongs to the Special Issue Metal Oxides in Heterogeneous Oxidation Catalysis)
Show Figures

Figure 1

10 pages, 2270 KiB  
Article
Highly Luminescent and Scintillating Hybrid Halide of (C13H25N)2[MnBr4] Enabled by Rigid Cation
by Renfu Li, Lulu Jiang, Qinghua Zou, Jianlong Bai, Lingkun Wu, Jianrong Li and Jinsheng Liao
Molecules 2025, 30(10), 2157; https://doi.org/10.3390/molecules30102157 - 14 May 2025
Viewed by 457
Abstract
Organic–inorganic hybrid manganese halides (OIMnHs) have attracted significant attention in the field of optoelectronics due to their outstanding optical properties and low toxicity. However, the development of crystalline compounds with scintillating properties and high light yield remains a significant challenge. In this study, [...] Read more.
Organic–inorganic hybrid manganese halides (OIMnHs) have attracted significant attention in the field of optoelectronics due to their outstanding optical properties and low toxicity. However, the development of crystalline compounds with scintillating properties and high light yield remains a significant challenge. In this study, a simple solution method was employed to successfully synthesize a new zero-dimensional (0-D) scintillation crystal, (C13H25N)2[MnBr4] (C13H25N = trimethyladamantan-1-aminium). The introduction of bulky and rigid organic cations not only spatially isolates the [MnBr4]2− tetrahedrons but also effectively expands the Mn···Mn distance, thereby suppressing the concentration quenching and self-absorption effects. This structural design achieves a high photoluminescence quantum yield of about 63.8% at room temperature and a remarkable light yield of 44,300 photons MeV−1. After multiple irradiation cycles, the material retains its stable radiative characteristics. This work highlights the key role of rigid cation engineering in improving luminescence efficiency and scintillation performance and provides new ideas for designing efficient and nontoxic OIMnH-based scintillators. Full article
(This article belongs to the Special Issue Emerging Topics in Luminescent Materials)
Show Figures

Graphical abstract

20 pages, 7168 KiB  
Article
Cellulose Extraction from Soybean Hulls and Hemp Waste by Alkaline and Acidic Treatments: An In-Depth Investigation on the Effects of the Chemical Treatments on Biomass
by Antonella Moramarco, Edoardo Ricca, Elisa Acciardo, Enzo Laurenti and Pierangiola Bracco
Polymers 2025, 17(9), 1220; https://doi.org/10.3390/polym17091220 - 29 Apr 2025
Cited by 1 | Viewed by 795
Abstract
The agri-food supply chain and other industries that convert agricultural raw materials into various consumer goods generate large quantities of by-products, most of which end up in landfills. This waste, rich in cellulose, provides a significant opportunity for the conversion of agricultural residues [...] Read more.
The agri-food supply chain and other industries that convert agricultural raw materials into various consumer goods generate large quantities of by-products, most of which end up in landfills. This waste, rich in cellulose, provides a significant opportunity for the conversion of agricultural residues into valuable products. In this paper, soybean hulls and hemp waste were subjected to chemical treatments with alkaline (NaOH 2% w/v) and acidic solutions (HCl 1 M) to remove non-cellulosic components and isolate cellulose. The biomass was characterized after each chemical process through FTIR, SEM, EDX, elemental analysis, TGA, and XRD. Lignin was determined following two different procedures, a conventional TAPPI protocol and a method recently proposed in the literature (CASA method). The results indicated that the chemical treatments favored the removal of organic compounds and minerals, increasing the cellulose content in biomass after each step. The purified product of soybean hulls consists of fibers 35–50 µm long and 5–11 µm thick, containing nearly pure cellulose arranged in crystalline domains. Fibers of variable sizes, rich in crystalline cellulose, were isolated from hemp waste. These fibers have diameters ranging between 2 and 60 µm and lengths from 40 to 800 µm and contain considerable amounts of lignin (~14%). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

15 pages, 5722 KiB  
Article
Novel MIL-53(Fe)@C Magnetic Composite Electrode for Efficient Dechlorination of Disinfection By-Product Trichloroacetic Acid in Water Treatment
by Xiaoyan Ma, Rongbin Quan, Wenqing Cao, Weijie Zhang, Su Jiang, Jiao Feng, Jiulong Wang and Stefanos Giannakis
Water 2025, 17(9), 1309; https://doi.org/10.3390/w17091309 - 27 Apr 2025
Cited by 1 | Viewed by 508
Abstract
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing [...] Read more.
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing to its high efficiency and simple operation. In this study, trichloroacetic acid (TCAA), a representative DBP, was selected as the target contaminant. A novel composite cathode comprising a metal–organic framework MIL-53(Fe)@C supported on an Nd magnet (MIL-53(Fe)@C-MAG) and its dechlorination performance for TCAA were systematically investigated. The innovative aspect of this study is the magnetic attachment of the MOF catalyst to the carbonized cathode surface treated through carbonization, which fundamentally differs from conventional solvent-based adhesion methods. Compared to the bare electrode, the MIL-53(Fe)@C-MAG achieved a TCAA removal efficiency exceeding 96.03% within 8 h of contact time. The structural characterization revealed that the α-Fe0 crystalline phase serves as the primary active center within the MIL-53(Fe)@C catalyst, facilitating efficient electron transfer and TCAA degradation. The scavenger experiments revealed that TCAA reduction involves a dual pathway: direct electron transfer and atomic hydrogen generation. The modified MIL-53(Fe)@C-MAG electrode exhibited robust electrolytic performance over a broad pH range of 3–7, with TCAA removal efficiency showing a positive correlation with current density within the range of 10–50 mA/cm2. Furthermore, the electrode maintained exceptional stability, retaining more than 90% removal efficiency after five consecutive operational cycles. The versatility of the system was further validated by the rapid and efficient dechlorination of various chlorinated DBPs, demonstrating the broad applicability of the electrode. The innovative magnetic composite electrode demonstrates a significant advancement in electrochemical dechlorination technology, offering a reliable and efficient solution for the purification of drinking water contaminated with diverse halogenated DBPs. These results provide valuable insights into the development of electrolysis for dechlorination in water treatment applications. Full article
Show Figures

Figure 1

23 pages, 4258 KiB  
Article
Box-Behnken Design Assisted Optimization and Characterization of Chitosan Film for Simultaneous Topical Delivery of Ascorbic Acid and Metronidazole
by Bilawal Khan, Pakorn Kraisit, Supaporn Santhan and Namon Hirun
Pharmaceutics 2025, 17(5), 562; https://doi.org/10.3390/pharmaceutics17050562 - 24 Apr 2025
Viewed by 736
Abstract
Background/Objectives: The objective of this study was to develop chitosan films plasticized with glycerol for the topical delivery of ascorbic acid and metronidazole. Methods: The films were prepared using a casting technique in which an aqueous ascorbic acid solution served as the solvent, [...] Read more.
Background/Objectives: The objective of this study was to develop chitosan films plasticized with glycerol for the topical delivery of ascorbic acid and metronidazole. Methods: The films were prepared using a casting technique in which an aqueous ascorbic acid solution served as the solvent, eliminating the need for additional mineral or organic acids. The influence of compositions on film characteristics—specifically mechanical properties and surface pH—was examined, and an optimized formulation was identified using a Box-Behnken design-response surface methodology. Relevant characterization techniques and in vitro evaluations were conducted to assess the properties and performance of the optimized film formulation. Results: Results showed that both glycerol and ascorbic acid contributed to the plasticization of the films. Fourier-transform infrared spectroscopic analysis of the optimized film revealed the formation of chitosan ascorbate and interactions between chitosan and glycerol. In addition, the thermogram and powder X-ray diffractogram demonstrated alterations in the thermal behavior and crystallinity of the embedded bioactive compounds. The developed film possessed the preferred swelling capacity. Moreover, in vitro release studies revealed a co-release pattern, delivering both bioactive compounds simultaneously. Conclusions: These findings suggest that the prepared chitosan-based film could serve as a promising platform for topical delivery. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

17 pages, 4394 KiB  
Article
Green Synthesis and Characterization of Copper Oxide Nanoparticles from Durian (Durio zibethinus) Husk for Environmental Applications
by Yan-Peng Liang, Yu-Bin Chan, Mohammod Aminuzzaman, Mohammad Shahinuzzaman, Sinouvassane Djearamane, Kokila Thiagarajah, Siew-Yoong Leong, Ling-Shing Wong and Lai-Hock Tey
Catalysts 2025, 15(3), 275; https://doi.org/10.3390/catal15030275 - 15 Mar 2025
Cited by 10 | Viewed by 1765
Abstract
Landfill leachate, a complex wastewater generated from municipal solid waste (MSW) landfills, presents significant environmental challenges due to its high organic content and toxic pollutants. This study proposes a sustainable solution by employing the green synthesis of copper oxide nanoparticles (CuO NPs) using [...] Read more.
Landfill leachate, a complex wastewater generated from municipal solid waste (MSW) landfills, presents significant environmental challenges due to its high organic content and toxic pollutants. This study proposes a sustainable solution by employing the green synthesis of copper oxide nanoparticles (CuO NPs) using durian (Durio zibethinus) husk extract, which serves as a natural reducing and stabilizing agent. This approach transforms agricultural waste into a valuable resource for environmental remediation. The synthesis was carried out under mild conditions, avoiding harmful chemicals and reducing energy consumption. The CuO NPs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy to examine their morphology, crystallinity, purity, and optical properties. SEM and HR-TEM analyses revealed mainly spherical nanoparticles with an average size of 35–50 nm and minimal aggregation. XRD analysis confirmed the presence of a highly crystalline monoclinic phase of CuO, while the EDX spectrum showed distinct peaks corresponding to copper (72%) and oxygen (28%) by weight, confirming the high purity of the material. Preliminary tests demonstrated the photocatalytic efficiency of the CuO NPs, achieving up to a 79% reduction in chemical oxygen demand (COD) in landfill leachate. These findings underscore the potential of green-synthesized CuO NPs for environmental applications, offering an innovative, sustainable method for wastewater treatment and supporting the advancement of solid waste management practices. Full article
Show Figures

Figure 1

18 pages, 8753 KiB  
Article
Enhanced Protein Separation Performance of Cellulose Acetate Membranes Modified with Covalent Organic Frameworks
by Shurui Shao, Maoyu Liu, Baifu Tao, Kayode Hassan Lasisi, Wenqiao Meng, Xing Wu and Kaisong Zhang
Membranes 2025, 15(3), 84; https://doi.org/10.3390/membranes15030084 - 6 Mar 2025
Viewed by 1402
Abstract
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate [...] Read more.
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate (CA) to form a casting solution. The TpPa-1 COF/CA ultrafiltration membrane was then prepared using the non-solvent-induced phase inversion (NIPS) method. The influence of TpPa-1 COFs content on the hydrophilicity, stability and filtration performance of the modified membrane was studied. Due to the hydrophilic groups in TpPa-1 COFs and the network structure formed by covalent bonds, the modified CA membranes exhibited higher hydrophilicity and lower protein adsorption compared with the pristine CA membrane. The porous crystalline structure of TpPa-1 COFs increased the water permeation path in the CA membrane, improving the permeability of the modified membrane while maintaining an outstanding bovine serum albumin (BSA) rejection. Furthermore, the addition of TpPa-1 COFs reduced protein adsorption on the CA membrane and overcame the trade-off between permeability and selectivity in CA membrane bioseparation applications. This approach provides a sustainable method for enhancing membrane performance while enhancing the application of membranes in protein purification. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

16 pages, 5965 KiB  
Article
Exploring Selenium-Functionalized Hydroxyapatite Using Organic Selenocystine for Antitumor Applications
by Alessandra Barbanente, Anna Maria Di Cosola, Lorenzo Degli Esposti, Michele Iafisco, Mauro Niso and Nicola Margiotta
Materials 2025, 18(5), 1043; https://doi.org/10.3390/ma18051043 - 26 Feb 2025
Viewed by 1660
Abstract
Selenium (Se) is an essential micronutrient, recognized for its role in cellular redox systems and its therapeutic potential in cancer treatment. Organic selenium compounds, particularly selenocystine (SeCys), have demonstrated anticancer efficacy due to the ability to induce apoptosis and enhance the effects of [...] Read more.
Selenium (Se) is an essential micronutrient, recognized for its role in cellular redox systems and its therapeutic potential in cancer treatment. Organic selenium compounds, particularly selenocystine (SeCys), have demonstrated anticancer efficacy due to the ability to induce apoptosis and enhance the effects of chemotherapy agents. Recent studies have shown that SeCys exhibits selective toxicity against cancer cells while sparing normal cells. Unfortunately, its clinical application is limited by stability and solubility concerns. A possible solution to overcome these hurdles comes from recent advances in functionalized nanomaterials. In this study, we investigate the possible incorporation of SeCys with hydroxyapatite nanoparticles (HASeCys) via various methods (adsorption, co-precipitation, and co-precipitation through thermal decomplexation), resulting in the formation of nanocomposites with elemental selenium. The highest elemental selenium yield was achieved with a thermal decomplexing co-precipitation, highlighting the influence of synthesis parameters on Se allotrope formation. Finally, as a preliminary investigation, the HASeCys samples were tested on a panel of cancer cell lines, showing an interesting activity when the hydroxyapatite nanocrystals were functionalized with both crystalline gray and amorphous red selenium. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop