Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = cryogenic refrigeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3035 KiB  
Article
Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
by Matthew P. Shenton, Jacob W. Leachman and Konstantin I. Matveev
Energies 2025, 18(15), 4114; https://doi.org/10.3390/en18154114 - 2 Aug 2025
Viewed by 287
Abstract
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is [...] Read more.
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is developed using the thermoacoustic software DeltaEC, version v6.4b2.7, to predict system performance, and an experimental apparatus is constructed for engine characterization. The low-amplitude thermoacoustic model predicts the pressure amplitude, frequency, and temperature gradient required for excitation of the standing-wave system. Experimental measurements, including the onset temperature ratio, acoustic pressure amplitudes, and frequencies, are recorded for different stack materials and geometries. The findings indicate that, independent of stack, hydrogen systems excite at smaller temperature differentials than helium (because of different properties such as lower viscosity for hydrogen), and the stack geometry and material affect the onset temperature ratio. However, pressure amplitude in the excited states varies minimally. Initial measurements are also conducted in a cooling setup with an added regenerator. The configuration with stainless-steel mesh screens produces a small cryogenic refrigeration effect with a decrease in temperature of about 1 K. The reported characterization of a Taconis-based thermoacoustic engine can be useful for the development of novel thermal management systems for cryogenic storage vessels, including refrigeration and pressurization. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

17 pages, 3371 KiB  
Article
Thermodynamic Analysis of Refrigerant Systems for Ethane Recovery and Helium Extraction in Medium-Pressure Natural Gas Processing
by Hong Jiang, Wentang Huang and Xiang Cheng
Energies 2025, 18(13), 3406; https://doi.org/10.3390/en18133406 - 28 Jun 2025
Viewed by 303
Abstract
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy [...] Read more.
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy efficiency in terms of comprehensive energy consumption, heat exchange performance in the cryogenic cold box, and exergy analysis. Adaptability analysis indicated that this Scheme exhibits strong tolerance to variations in feed gas temperature as well as N2 and CO2 content. The ethylene–propane cascade refrigeration process demonstrates significant energy-saving advantages and exhibits robust operational performance. Full article
Show Figures

Figure 1

28 pages, 9864 KiB  
Article
Guarded Hot Cylinder Apparatus for Characterization of Thermal Insulation Systems and Materials at Liquid Hydrogen Temperatures
by Adam Swanger, David Creech, Casimir Van Doorne and Andrew Kelly
Energies 2025, 18(10), 2547; https://doi.org/10.3390/en18102547 - 14 May 2025
Viewed by 553
Abstract
As interest in liquid hydrogen (LH2) continues to grow within the energy and mobility sectors, so does the demand for testing capabilities at deep cryogenics temperatures. However, cost-, complexity-, and safety-related challenges associated with handling LH2 effectively limit the landscape [...] Read more.
As interest in liquid hydrogen (LH2) continues to grow within the energy and mobility sectors, so does the demand for testing capabilities at deep cryogenics temperatures. However, cost-, complexity-, and safety-related challenges associated with handling LH2 effectively limit the landscape of possible options. As an alternative, LH2 temperatures can be accessed via a helium-based cryogenic refrigerator, or “cryocooler”. Recently, NASA and its partners CB&I and Shell began the development of a cryocooler-based calorimeter to characterize the thermal performance of insulations and other materials down to 20 K. Deemed the Guarded Hot Cylinder (GHC), the apparatus utilizes a small vacuum chamber in conjunction with a GM cryocooler and trim heater to control the cold boundary temperature. A sealed, cylindrical copper cup bolts to the cryocooler and houses the material specimen, with an internal, cylindrical test heater assembly to maintain the warm boundary. The steady-state heat load, traveling radially through the specimen, is measured via the electrical input power to the test heater and then used to evaluate the material’s absolute thermal performance. Initial checkout and validation of the GHC using a common bulk-fill insulation material showed close agreement with published data from standardized LN2 boiloff calorimetry testing. The instrument is now considered a lab standard, with the goal of incorporating it into the ASTM C1774 standard in the future, and it is in continuous use, examining insulation materials for next-generation LH2 applications. Full article
Show Figures

Figure 1

33 pages, 13813 KiB  
Review
Advances in Thermal Management for Liquid Hydrogen Storage: The Lunar Perspective
by Jing Li, Fulin Fan, Jingkai Xu, Heran Li, Jian Mei, Teng Fei, Chuanyu Sun, Jinhai Jiang, Rui Xue, Wenying Yang and Kai Song
Energies 2025, 18(9), 2220; https://doi.org/10.3390/en18092220 - 27 Apr 2025
Viewed by 852
Abstract
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage [...] Read more.
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage and management under the extreme lunar environment characterized by wide temperature variations, low pressure, and low gravity. This paper reviews the strategies for siting and deployment of liquid hydrogen storage systems on the Moon and the technical challenges posed by the lunar environment, with particular attention for thermal management technologies. Passive technologies include advanced insulation materials, thermal shielding, gas-cooled shielding layers, ortho-para hydrogen conversion, and passive venting, which optimize insulation performance and structural design to effectively reduce evaporation losses and maintain storage stability. Active technologies, such as cryogenic fluid mixing, thermodynamic venting, and refrigeration systems, dynamically regulate heat transfer and pressure variations within storage tanks, further enhancing storage efficiency and system reliability. In addition, this paper explores boil-off hydrogen recovery and reutilization strategies for liquid hydrogen, including hydrogen reliquefaction, mechanical, and non-mechanical compression. By recycling vaporized hydrogen, these strategies reduce resource waste and support the sustainable development of energy systems for lunar bases. In conclusion, this paper systematically evaluates passive and active thermal management technologies as well as vapor recovery strategies along with their technical adaptability, and then proposes feasible storage designs for the lunar environment. These efforts provide critical theoretical foundations and technical references for achieving safe and efficient storage of liquid hydrogen and energy self-sufficiency in lunar bases. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 2921 KiB  
Article
Thermodynamics Analysis of Cryogenic Supercritical Hydrogen Storage System Based on Multi-Stage Joule–Brayton Cycle
by Ruiqi Wan, Tenglong Yue, Jingxuan Xu, Wenjie Wu, Xi Chen and Binlin Dou
Cryo 2025, 1(2), 6; https://doi.org/10.3390/cryo1020006 - 25 Apr 2025
Cited by 1 | Viewed by 426
Abstract
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is [...] Read more.
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is presented, analyzed, and optimized. The proposed system employs a five-stage cascade cycle, each stage utilizes a distinct refrigerant, including propane, ethylene, methane, and hydrogen, facilitated by Joule–Brayton cycles, with expanders employed for mechanical work recovery, which is capable of effectively cooling hydrogen from ambient temperature and atmospheric pressure to a cryogenic supercritical state of −223.15 °C (50 K), 18,000 kPa, exhibiting a density of 73.46 kg/m3 and a hydrogen processing capacity of 2 kgH2/s. The genetic algorithm is applied to optimize 25 key parameters in the system, encompassing temperature, pressure, and flow rate, with the objective function is specific energy consumption. Consequently, the specific energy consumption of the system is 5.71 kWh/kgH2 with an exergy efficiency of 56.2%. Comprehensive energy analysis, heat transfer analysis, and exergy analysis are conducted based on the optimized system parameters, yielding insights crucial for the development of medium- and large-scale supercritical hydrogen storage systems. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

10 pages, 2905 KiB  
Article
Magnetism and Low-Temperature Magnetocaloric Effect in Gd7(BO3)(PO4)2O6 Compound with Monoclinic Lattice
by Lu Tian, Xuetong He, Zhiwen Shen, Xinqiang Gao and Zhaojun Mo
Appl. Sci. 2025, 15(7), 3802; https://doi.org/10.3390/app15073802 - 31 Mar 2025
Cited by 1 | Viewed by 527
Abstract
The development of magnetic refrigerants with both low-field responsiveness and a large magnetic entropy change in the sub-Kelvin temperature range remains a critical challenge for advancing cryogenic technologies. This study focuses on the monoclinic compound Gd7(BO3)(PO4)2 [...] Read more.
The development of magnetic refrigerants with both low-field responsiveness and a large magnetic entropy change in the sub-Kelvin temperature range remains a critical challenge for advancing cryogenic technologies. This study focuses on the monoclinic compound Gd7(BO3)(PO4)2O6, in which high-density Gd3+ ions form magnetic frustrated structures within the bc-plane and stack along the a-axis direction. The combination of a high magnetic ion density and frustrated magnetic configuration enables the coexistence of a low magnetic transition temperature and excellent magnetocaloric effects. Magnetic susceptibility measurements reveal an antiferromagnetic-to-paramagnetic phase transition below 2 K. The maximum magnetic entropy change reaches 35.2 J kg−1 K−1 under a varying magnetic field of 0–7 T. This study highlights the potential of frustrated magnetic interactions in monoclinic lattices with a high Gd3+ content for achieving superior cryogenic magnetocaloric performance. Full article
Show Figures

Figure 1

87 pages, 11054 KiB  
Review
Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
by Bahram Ghorbani, Sohrab Zendehboudi and Noori M. Cata Saady
Energies 2025, 18(6), 1443; https://doi.org/10.3390/en18061443 - 14 Mar 2025
Cited by 2 | Viewed by 2805
Abstract
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase [...] Read more.
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase investment costs. This review investigates the thermodynamic parameters of various natural gas (NG) liquefaction technologies. It examines the cryogenic NG processes, including integrating NG liquid recovery plants, nitrogen rejection cycles, helium recovery units, and LNG facilities. It explores various approaches to improve hybrid NG liquefaction performance, including the application of optimization algorithms, mixed refrigerant units, absorption refrigeration cycles, diffusion–absorption refrigeration systems, auto-cascade absorption refrigeration processes, thermoelectric generator plants, liquid air cold recovery units, ejector refrigeration cycles, and the integration of renewable energy sources and waste heat. The review evaluates the economic aspects of hybrid LNG systems, focusing on specific capital costs, LNG pricing, and capacity. LNG capital cost estimates from academic sources (173.2–1184 USD/TPA) are lower than those in technical reports (486.7–3839 USD/TPA). LNG prices in research studies (0.2–0.45 USD/kg, 2024) are lower than in technical reports (0.3–0.7 USD/kg), based on 2024 data. Also, this review investigates LNG accidents in detail and provides valuable insights into safety protocols, risk management strategies, and the overall resilience of LNG operations in the face of potential hazards. A detailed evaluation of LNG plants built in recent years is provided, focusing on technological advancements, operational efficiency, and safety measures. Moreover, this study investigates LNG ports in the United States, examining their infrastructures, regulatory compliance, and strategic role in the global LNG supply chain. In addition, it outlines LNG’s current status and future outlook, focusing on key industry trends. Finally, it presents a market share analysis that examines LNG distribution by export, import, re-loading, and receiving markets. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 3571 KiB  
Article
Preassembly Cryogenic Drilling in Carbon Fiber Sandwich Sheets with Inner Foam Core
by Rosario Domingo, Marta M. Marín, Néstor Rodríguez-Padial and Roberto Álvarez-Fernández
Appl. Sci. 2025, 15(5), 2719; https://doi.org/10.3390/app15052719 - 4 Mar 2025
Viewed by 804
Abstract
A study of cryogenic drilling in sandwich composites was carried out. The materials used were carbon-fiber-reinforced polymer sandwich sheets with an inner foamed polyvinyl chloride core, composites with applications including protection structures of polar engineering equipment. The purpose of this study was to [...] Read more.
A study of cryogenic drilling in sandwich composites was carried out. The materials used were carbon-fiber-reinforced polymer sandwich sheets with an inner foamed polyvinyl chloride core, composites with applications including protection structures of polar engineering equipment. The purpose of this study was to determine the feasibility of drilling at low temperatures using this composite by analyzing the thrust forces and the inlet and outlet diameters of the hole due to their influence on hole quality and their importance in a preassembly operation. Experimental tests were performed in laminates with thicknesses of 12 mm and 6 mm, drilling with liquid nitrogen (LN2) as a refrigerant to reach temperatures below −120 °C under cutting conditions of 2000–6000 rpm for drill bit rotation speeds and 200–600 mm/min for feed rates. Variables such as thrust forces and circularity error were measured, and a design of experiments, analysis of variance, and regression models allowed us to identify the influence of cutting conditions and foam thickness. Optimal cutting conditions were identified and contrasted: 2100–3100 rpm for drill bit rotation speeds and 200–320 mm/min for feed rates. The diameters achieved low deviations, H7 and H8 tolerances for inlet and outlet diameters, respectively, which allows for avoiding additional preassembly operations, which can be important during plate assembly using LN2 and in maintenance operations. Although good results have been obtained with other materials such as glass-fiber- and carbon-fiber-reinforced polymers, this sandwich material is lighter. Full article
(This article belongs to the Special Issue Recent Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

9 pages, 5236 KiB  
Article
Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework
by Fang-Wen Lv, Mei-Xin Hong, Xue-Ting Wang, Haiquan Tian, Chun-Chang Wang and Xiu-Ying Zheng
Nanomaterials 2025, 15(1), 32; https://doi.org/10.3390/nano15010032 - 28 Dec 2024
Cited by 1 | Viewed by 907
Abstract
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = [...] Read more.
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid). Structural analysis shows that the Ln-3D is a neutral 3D framework with one-dimensional channels connected by [Ln(H2O)3]3+ as nodes and C2O42− as linkers. Magnetic measurements show that Gd-3D exhibits very weak antiferromagnetic interactions with a maximum −ΔSm value of 36.6 J kg−1 K−1 (−ΔSv = 74.47 mJ cm−3 K−1) at 2 K and 7 T. The −ΔSm value is 28.4 J kg−1 K−1 at 2 K and 3 T, which is much larger than that of commercial Gd3Ga5O12 (GGG), indicating its potential as a low-temperature magnetic refrigerant. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

16 pages, 6468 KiB  
Article
Enhancing Semiconductor Chiller Performance: Investigating the Performance Characteristics of Ultra-Low-Temperature Chillers Applying a Liquid Receiver
by Joon-Hyuk Lee, Hye-In Jung, Su-Been Lee and Chang-Hyo Son
Energies 2024, 17(20), 5144; https://doi.org/10.3390/en17205144 - 16 Oct 2024
Cited by 1 | Viewed by 1155
Abstract
This study investigates the implementation of a cryogenic chiller utilizing a mixed-refrigerant cascade refrigeration cycle (MRCRC). In this setup, R-404A is employed in the high-temperature circuit (HTC), while a mixture of refrigerants is utilized in the low-temperature circuit (LTC). Unlike a conventional MRCRC [...] Read more.
This study investigates the implementation of a cryogenic chiller utilizing a mixed-refrigerant cascade refrigeration cycle (MRCRC). In this setup, R-404A is employed in the high-temperature circuit (HTC), while a mixture of refrigerants is utilized in the low-temperature circuit (LTC). Unlike a conventional MRCRC that operates without a receiver to maintain the composition ratio, this research explores the impact of receiver installation on system performance. Experiments were conducted with and without a receiver to assess performance improvements and device behavior. With a fixed refrigerant charge of 4 kg, the suction and discharge pressures of the LTC compressor remained low and stable after the receiver’s installation. The addition of a receiver significantly reduced the cooling time, with further reductions observed as the refrigerant charge increased. The system achieved evaporative heat capacities of 0.59, 1.76, and 2 kW for refrigerant charges of 4, 7, and 9 kg, respectively. Notably, at the maximum refrigerant charge of 11 kg, the evaporative heat capacity peaked at 3.3 kW. These findings indicate that incorporating a receiver is crucial for enhancing the cooling performance of cryogenic coolers using mixed refrigerants and stabilizing device operation. This contrasts with previous studies that omitted receivers due to concerns over potential alterations in the composition ratio of the mixed refrigerant. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

25 pages, 5478 KiB  
Article
Proposals for Next-Generation Eco-Friendly Non-Flammable Refrigerants for a −100 °C Semiconductor Etching Chiller Based on 4E (Energy, Exergy, Environmental, and Exergoeconomic) Analysis
by Hye-In Jung, Chang-Hyo Son and Joon-Hyuk Lee
Energies 2024, 17(19), 4969; https://doi.org/10.3390/en17194969 - 4 Oct 2024
Viewed by 1228
Abstract
Recent advancements in cryogenic etching, characterized by high aspect ratios and etching rates, address the growing demand for enhanced performance and reduced power consumption in electronics. To precisely maintain the temperature under high loads, the cascade mixed-refrigerant cycle (CMRC) is predominantly used. However, [...] Read more.
Recent advancements in cryogenic etching, characterized by high aspect ratios and etching rates, address the growing demand for enhanced performance and reduced power consumption in electronics. To precisely maintain the temperature under high loads, the cascade mixed-refrigerant cycle (CMRC) is predominantly used. However, most refrigerants currently used in semiconductor cryogenic etching have high global warming potential (GWP). This study introduces a −100 °C chiller using a mixed refrigerant (MR) with a GWP of 150 or less, aiming to comply with stricter environmental standards and contribute to environmental preservation. The optimal configuration for the CMRC was determined based on a previously established methodology for selecting the best MR configuration. Comprehensive analyses—energy, exergy, environmental, and exergoeconomic—were conducted on the data obtained using Matlab simulations to evaluate the feasibility of replacing conventional refrigerants. The results reveal that using eco-friendly MRs increases the coefficient of performance by 52%, enabling a reduction in compressor size due to significantly decreased discharge volumes. The exergy analysis indicated a 16.41% improvement in efficiency and a substantial decrease in exergy destruction. The environmental analysis demonstrated that eco-friendly MRs could reduce carbon emissions by 60%. Economically, the evaporator and condenser accounted for over 70% of the total exergy costs in all cases, with a 52.44% reduction in exergy costs when using eco-friendly MRs. This study highlights the potential for eco-friendly refrigerants to be integrated into semiconductor cryogenic etching processes, responding effectively to environmental regulations in the cryogenic sector. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 6492 KiB  
Article
Comparative Analysis of Heat Transfer in a Type B LNG Tank Pre-Cooling Process Using Various Refrigerants
by Qiang Sun, Yanli Zhang, Yan Lv, Dongsheng Peng, Siyu Zhang, Zhaokuan Lu and Jun Yan
Energies 2024, 17(16), 4013; https://doi.org/10.3390/en17164013 - 13 Aug 2024
Cited by 2 | Viewed by 1551
Abstract
This study presents a comprehensive three-dimensional Computational Fluid Dynamics (CFD) analysis of the pre-cooling process of a Type B LNG tank using various refrigerants, including liquid nitrogen (LN), nitrogen gas (NG), liquefied natural gas (LNG), boil-off gas (BOG), and their combinations. The simulation [...] Read more.
This study presents a comprehensive three-dimensional Computational Fluid Dynamics (CFD) analysis of the pre-cooling process of a Type B LNG tank using various refrigerants, including liquid nitrogen (LN), nitrogen gas (NG), liquefied natural gas (LNG), boil-off gas (BOG), and their combinations. The simulation model accounts for phase change (through the mixture multiphase model), convective heat transfer, and conjugate heat exchange between the fluid and the tank structure. The results indicate that liquid nitrogen is the most efficient refrigerant, achieving the highest cooling rate through both latent and sensible heat. LNG also demonstrated a relatively high cooling rate, 79% of that of liquid nitrogen. Gas-only pre-cooling schemes relying solely on sensible heat exhibited slower cooling rates, with BOG achieved 79.4% of the cooling rate of NG. Mixed refrigerants such as NG + LN and BOG + LNG can achieve comparable, while slightly slower, cooling than the pure liquid refrigerants, outperforming gas-only strategies. A further assessment of the heat transfer coefficient suggests the mixed cooling schemes have almost identical heat transfer coefficient on the inner tank surface to the liquid cooling scheme, over 5% higher than the gas refrigerants. The study also highlighted the uneven temperature distribution within the tank due to the bulkhead’s blockage effect, which can induce significant thermal stress and potentially compromise structural integrity. Mixed schemes exhibit thermal gradients higher than those of gas schemes but lower than those of liquid schemes, while achieving cooling speeds comparable to liquid schemes if the inlet velocity of the refrigerants is properly configured. These findings offer valuable insights for developing safer and more efficient pre-cooling procedures for Type B LNG tanks and similar cryogenic storage tanks. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics: Heat and Mass Transfer in Energy Systems)
Show Figures

Figure 1

20 pages, 9760 KiB  
Review
Application and Challenge of High-Speed Pumps with Low-Temperature Thermosensitive Fluids
by Beile Zhang, Ben Niu, Ze Zhang, Shuangtao Chen, Rong Xue and Yu Hou
Energies 2024, 17(15), 3732; https://doi.org/10.3390/en17153732 - 29 Jul 2024
Viewed by 1994
Abstract
The rapid development of industrial and information technology is driving the demand to improve the applicability and hydraulic performance of centrifugal pumps in various applications. Enhancing the rotational speed of pumps can simultaneously increase the head and reduce the impeller diameter, thereby reducing [...] Read more.
The rapid development of industrial and information technology is driving the demand to improve the applicability and hydraulic performance of centrifugal pumps in various applications. Enhancing the rotational speed of pumps can simultaneously increase the head and reduce the impeller diameter, thereby reducing the pump size and weight and also improving pump efficiency. This paper reviews the current application status of high-speed pumps using low-temperature thermosensitive fluids, which have been applied in fields such as novel energy-saving cooling technologies, aerospace, chemical industries, and cryogenic engineering. Due to operational constraints and thermal effects, there are inherent challenges that still need to be addressed for high-speed pumps. Based on numerical simulation and experimental research for different working fluids, the results regarding cavitation within the inducer have been categorized and summarized. Improvements to cavitation models, the mechanism of unsteady cavity shedding, vortex generation and cavitation suppression, and the impact of cavitation on pump performance were examined. Subsequently, the thermal properties and cavitation thermal effects of low-temperature thermosensitive fluids were analyzed. In response to the application requirements of pump-driven two-phase cooling systems in data centers, a high-speed refrigerant pump employing hydrodynamic bearings has been proposed. Experimental results indicate that the prototype achieves a head of 56.5 m and an efficiency of 36.1% at design conditions (n = 7000 rpm, Q = 1.5 m3/h). The prototype features a variable frequency motor, allowing for a wider operational range, and has successfully passed both on/off and continuous operation tests. These findings provide valuable insights for improving the performance of high-speed refrigerant pumps in relevant applications. Full article
Show Figures

Figure 1

14 pages, 2575 KiB  
Article
Development of a Refrigerant-Free Cryotrap Unit for Pre-Concentration of Biogenic Volatile Organic Compounds in Air
by Xiaoxiao Ding, Daocheng Gong, Qinqin Li, Shiwei Liu, Shuo Deng, Hao Wang, Hongjie Li and Boguang Wang
Atmosphere 2024, 15(5), 587; https://doi.org/10.3390/atmos15050587 - 11 May 2024
Cited by 3 | Viewed by 1458
Abstract
Biogenic volatile organic compounds (BVOCs) are key compounds in atmospheric chemistries, but difficult to measure directly. In this study, a pre-concentration unit combined with gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative analysis of 18 BVOCs in ambient air. The analytes are [...] Read more.
Biogenic volatile organic compounds (BVOCs) are key compounds in atmospheric chemistries, but difficult to measure directly. In this study, a pre-concentration unit combined with gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative analysis of 18 BVOCs in ambient air. The analytes are trapped on an empty silonite-coated tube, which is cooled by a thermoacoustic cooler to cryotrap at −150 °C, and then desorbed by rapid heating to 200 °C. The set-up involves neither the exchange of solid adsorbents nor any further condensation or refocusing steps. Reliable operation is ensured by the thermoacoustic cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. The pre-concentration unit parameters such as water removal temperature, desorption temperature and desorption time were optimized. All compounds had correlation coefficients that were better than 0.95, and the detection limits were 0.005–0.009 ppbv when the injection volume is 400 mL. The repeatability ranges were 0.9–5.8%. The recoveries were ranged from 81.8% to 93.2%. This new method was applied for the first time to measure ambient BVOCs in suburb Guangzhou in summer 2022. Isoprene concentrations ranged from 0.375 ppbv to 2.98 ppbv. In addition, several extremely low-level monoterpenes (e.g., α-pinene, β-pinene, and D-limonene) were also detected by the method. Full article
Show Figures

Figure 1

12 pages, 4677 KiB  
Article
A Liquid Nitrogen Cooling Circulation Unit: Its Design and a Performance Study
by Jianjie Yao, Xiangyou Lu, Yuanlai Xie, Qianxu Wang and Xiao Liu
Machines 2024, 12(4), 271; https://doi.org/10.3390/machines12040271 - 18 Apr 2024
Viewed by 4929
Abstract
A liquid nitrogen cooling circulating unit is a necessary condition for the stable operation of a cryogenic oscillator, which can provide a stable working environment for the oscillator. In this paper, according to the user’s functional requirements and performance parameters, a closed cooling [...] Read more.
A liquid nitrogen cooling circulating unit is a necessary condition for the stable operation of a cryogenic oscillator, which can provide a stable working environment for the oscillator. In this paper, according to the user’s functional requirements and performance parameters, a closed cooling system with supercooled liquid nitrogen as the medium was designed using SOLIDWORKS 2021 software, which can provide a suitable working environment for the cryogenic oscillator. Combined with the system heat load analysis, theoretical calculation for and the design of the coil heat exchanger, one of the core pieces of equipment of the unit, were carried out. The performance of the designed nitrogen exhaust heater was studied using FLUENT 2021 software, and the velocity field and temperature field of the nitrogen exhaust heater were analyzed. The results show that the outlet temperature of the nitrogen exhaust heating device can reach up to 310 K, and the outlet flow rate of the heating device is 0.01528 kg/s. The experiments on the liquid nitrogen circulating unit using the simulated load equipment show that the refrigeration power of the unit can reach a design index of 600 W, and the temperature of the liquid nitrogen at the liquid outlet of the unit can reach 77.8 K. The experiments also show that the unit meets the design requirements. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

Back to TopTop