Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = cruciform structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14492 KB  
Article
Experimental and Numerical Study of a Towing Test for a Barge-Type Floating Offshore Wind Turbine
by Samuel Davis, Anthony Viselli and Amrit Verma
Energies 2025, 18(19), 5228; https://doi.org/10.3390/en18195228 - 1 Oct 2025
Abstract
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type [...] Read more.
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type FOWT with distinctive hydrodynamic properties that have not been characterized in previous research. This study presents basin-scale experiments that characterize the hydrodynamic drag properties of the VolturnUS+ platform, as well as observing the motion behavior of the platform and added resistance during towing in calm water and waves. The towing experiments are conducted in two towing configurations, with differing platform orientations and towline designs. The basin experiments are supplemented with a numerical study using computational fluid dynamic (CFD) simulations to explore flow-induced motion (FIM) on the platform during towing. In both the experiments and the CFD simulations, it was determined that the towing configuration significantly impacted the drag and motion characteristics of the platform, with the cruciform shape producing FIM phenomena. Observations from the towing tests confirmed the feasibility of towing the VolturnUS+ platform in the two orientations. The results and observations developed from the experimental and numerical towing studies will be used to inform numerical models for planning towing operations, as well as develop informed recommendations for towing similar cruciform-shaped structures in the future. Full article
Show Figures

Figure 1

22 pages, 8772 KB  
Article
Compact Turbine Last Stage-Exhaust Hood: Aerodynamic Performance and Structural Optimization Under Coupled Variable Working Conditions
by Yuang Shi, Lei Zhang, Yujin Zhou, Luotao Xie and Zichun Yang
Machines 2025, 13(9), 801; https://doi.org/10.3390/machines13090801 - 3 Sep 2025
Viewed by 407
Abstract
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of [...] Read more.
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of the last-stage moving blade shrouds and exhaust hood stiffeners on steam flow loss, static pressure recovery, and vibrational excitation. The research methodology includes the following: employing a hybrid structured-unstructured meshing technique, conducting numerical simulations based on the Shear Stress Transport (SST) turbulence model, and utilizing the static pressure recovery coefficient, total pressure loss coefficient, and cross-sectional flow velocity non-uniformity as performance evaluation metrics. The principal findings are as follows: (1) After installing self-locking shrouds on the moving blades, steam flow loss is reduced by 4.7%, and the outlet pressure non-uniformity decreases by 12.3%. (2) Although the addition of cruciform stiffeners in the diffuser section of the exhaust hood enhances structural rigidity, it results in an 8.4% decrease in the static pressure recovery coefficient, necessitating further optimization of geometric parameters. (3) The coupled model exhibits optimal aerodynamic performance at a 50% design flow rate and 100% design exhaust pressure. The results provide a theoretical basis for the structural optimization of low-noise compact steam turbines. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

11 pages, 1351 KB  
Article
Improving the Enrichment of Submicron-Sized Particles by Size Decreasing of Cruciform Cross-Sectional Microchannel in Viscoelastic Microfluidics
by Jaekyeong Jang, Eunjin Kim, Sungdong Kim, Ok-Chan Jeong, Sangwook Lee and Younghak Cho
Biosensors 2025, 15(6), 370; https://doi.org/10.3390/bios15060370 - 9 Jun 2025
Viewed by 888
Abstract
The manipulation of cells and bioparticles has garnered significant interest in the field of viscoelastic microfluidics, particularly regarding its capacity for single-stream focusing within a three-dimensional and simple microchannel structure. The inherent simplicity of this method enables the effective manipulation of particles, facilitating [...] Read more.
The manipulation of cells and bioparticles has garnered significant interest in the field of viscoelastic microfluidics, particularly regarding its capacity for single-stream focusing within a three-dimensional and simple microchannel structure. The inherent simplicity of this method enables the effective manipulation of particles, facilitating the separation and focusing of various cell types, including blood cells, circulating tumor cells (CTCs), and microalgae. However, the viscoelastic nature of the particles imposes limitations in the handling of submicron-sized particles, due to a significant decrease in the viscoelastic force acting on the particle. In this study, we propose a microfluidic device featuring a cruciform cross-sectional microchannel with 45 µm and 45 µm of its vertical and horizontal size, respectively. The cruciform microchannel, which has a 270° reflex angle on four corners, can increase the viscoelastic force on the particles, allowing the device to focus submicron-sized particles down to 180 nm in a single-stream manner. It is important to note that the single-stream formation was maintained, while the channel width at the outlet region was drastically increased, allowing for the enrichment of submicron-sized particles. For biological feasibility, the proposed device also demonstrates the single-stream focusing on biological particles such as bacteria. The presented microfluidic device would have great potential for the focusing and enrichment of nanoparticles including bacteria in a highly robust manner, expecting its use in the various fields such as diverse biological analysis and biomedical research. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

15 pages, 20734 KB  
Article
Biaxial Very High Cycle Fatigue Testing and Failure Mechanism of Welded Joints in Structural Steel Q345
by Bing Xue, Yongbo Li, Wanshuang Yi, Shoucheng Shi, Yajun Dai, Chang Liu, Maojia Ren and Chao He
Crystals 2024, 14(10), 850; https://doi.org/10.3390/cryst14100850 - 28 Sep 2024
Cited by 4 | Viewed by 1752
Abstract
The very high cycle fatigue (VHCF) strength of welded joints made of high-strength structural materials is generally poor, which poses a serious threat to the long life and reliability of the structural components. This work employs an ultrasonic vibration fatigue testing system to [...] Read more.
The very high cycle fatigue (VHCF) strength of welded joints made of high-strength structural materials is generally poor, which poses a serious threat to the long life and reliability of the structural components. This work employs an ultrasonic vibration fatigue testing system to investigate the biaxial fatigue failure mechanism of the welded joints. The results revealed that under uniaxial loading conditions, the propensity for fatigue failure in plate specimens was predominantly observed at the specimen surface. Regardless of whether under uniaxial or biaxial loading, the initiation of fatigue cracks in cruciform joints was consistently traced back to unfused flaws, which were primarily located at the interface between the solder and the base material. Concurrently, it was noted that the fatigue strength of cruciform joints under biaxial loading was merely 44.4% of that under uniaxial loading. The geometric peculiarities of the unfused defects led to severe stress concentrations, which significantly reduced the fatigue life of the material under biaxial loading conditions. Full article
(This article belongs to the Special Issue Advanced High-Strength Steel)
Show Figures

Figure 1

16 pages, 9531 KB  
Article
Optimization of Welded Joints under Fatigue Loadings
by Paolo Livieri and Roberto Tovo
Metals 2024, 14(6), 613; https://doi.org/10.3390/met14060613 - 23 May 2024
Cited by 4 | Viewed by 1965
Abstract
In this paper, the notch effect in weldments has been investigated, and the optimal configuration of different types of welded joints has been analysed using the implicit gradient approach. By considering this implicit gradient method, it is possible to calculate the effective stress [...] Read more.
In this paper, the notch effect in weldments has been investigated, and the optimal configuration of different types of welded joints has been analysed using the implicit gradient approach. By considering this implicit gradient method, it is possible to calculate the effective stress related to fatigue damage, with the effective stress being a continuous scalar function of the real stress tensor components, even in the presence of sharp edges. Hence, the search for the optimal configuration that maximises fatigue life can be tackled as the condition of minimum effective stress obtained by changing the weld shape and geometrical parameters. Both load-carrying cruciform joints and spot welds made of steel have been considered. The structural details have been studied by modelling actual shapes without any geometric simplification. Moreover, the same numerical procedure has been considered independently of the size, shape or load condition without imposing restrictive rules on the FE mesh. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology)
Show Figures

Figure 1

16 pages, 4007 KB  
Article
Fiber Bragg Gratings Sensor Strain–Optic Behavior with Different Polymeric Coatings Subjected to Transverse Strain
by Manuel González-Gallego, Félix Terroba Ramírez, Juan Luis Martínez-Vicente, Miguel González del Val, Juan José López-Cela and Malte Frövel
Polymers 2024, 16(9), 1223; https://doi.org/10.3390/polym16091223 - 27 Apr 2024
Cited by 3 | Viewed by 2076
Abstract
This research work is based on a previous study by the authors that characterized the behavior of FBG sensors with a polyimide coating in a structural monitoring system. Sensors applied to structural health monitoring are affected by the presence of simultaneous multidirectional strains. [...] Read more.
This research work is based on a previous study by the authors that characterized the behavior of FBG sensors with a polyimide coating in a structural monitoring system. Sensors applied to structural health monitoring are affected by the presence of simultaneous multidirectional strains. The previous study observed the influence of the transverse strain (εy) while keeping the longitudinal strain constant (εx), where the x direction is the direction of the optical fiber. The present study develops an experimental methodology consisting of a biaxial test plan on cruciform specimens with three embedded FBG sensors coated with polyimide, acrylate, and ORMOCER®. Applying the Strain–Optic Theory as a reference, a comparison of the experimental values obtained with the different coatings was studied. This experimental work made it possible to study the influence of the transverse strain (εy) on the longitudinal measurements of each FBGS and the influence of the coating material. Finally, the calibration procedure was defined as well as K (strain sensitivity factor) for each sensor. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

13 pages, 2596 KB  
Brief Report
Exploring the Roles of Different DNA Repair Proteins in Short Inverted Repeat Mediated Genomic Instability: A Pilot Study
by Pooja Mandke and Karen M. Vasquez
DNA 2024, 4(2), 141-153; https://doi.org/10.3390/dna4020008 - 5 Apr 2024
Cited by 1 | Viewed by 2762
Abstract
Repetitive DNA sequences are abundant in the human genome and can adopt alternative (i.e., non-B) DNA structures. These sequences contribute to diverse biological functions, including genomic instability. Previously, we found that Z-DNA-, H-DNA- and cruciform DNA-forming sequences are mutagenic, implicating them in cancer [...] Read more.
Repetitive DNA sequences are abundant in the human genome and can adopt alternative (i.e., non-B) DNA structures. These sequences contribute to diverse biological functions, including genomic instability. Previously, we found that Z-DNA-, H-DNA- and cruciform DNA-forming sequences are mutagenic, implicating them in cancer etiology. These sequences can stimulate the formation of DNA double-strand breaks (DSBs), causing deletions via cleavage by the endonuclease ERCC1-XPF. Interestingly, the activity of ERCC1-XPF in H-DNA-induced mutagenesis is nucleotide excision repair (NER)-dependent, but its role in Z-DNA-induced mutagenesis is NER-independent. Instead, Z-DNA is processed by ERCC1-XPF in a mechanism dependent on the mismatch repair (MMR) complex, MSH2-MSH3. These observations indicate distinct mechanisms of non-B-induced genomic instability. However, the roles of NER and MMR proteins, as well as additional nucleases (CtIP and MRE11), in the processing of cruciform DNA remain unknown. Here, we present data on the processing of cruciform-forming short inverted repeats (IRs) by DNA repair proteins using mammalian cell-based systems. From this pilot study, we show that, in contrast to H-DNA and Z-DNA, short IRs are processed in a NER- and MMR-independent manner, and the nucleases CtIP and MRE11 suppress short IR-induced genomic instability in mammalian cells. Full article
Show Figures

Graphical abstract

30 pages, 15008 KB  
Article
Stress Concentration Factors for Non-Load-Carrying Welded Cruciform Joints Subjected to Tension, Bending, and Shear
by Krzysztof L. Molski and Piotr Tarasiuk
Materials 2024, 17(3), 609; https://doi.org/10.3390/ma17030609 - 26 Jan 2024
Viewed by 2362
Abstract
This paper deals with the problem of stress concentration at the weld toe of non-load-carrying-type plate cruciform joints under tension, bending, and shear. Theoretical stress concentration factors were derived using the finite element method. Five of the most important geometrical parameters: the thickness [...] Read more.
This paper deals with the problem of stress concentration at the weld toe of non-load-carrying-type plate cruciform joints under tension, bending, and shear. Theoretical stress concentration factors were derived using the finite element method. Five of the most important geometrical parameters: the thickness of the main plate and the attachments, the weld throat thickness, the weld toe radius, and the weld face inclination angle were treated as independent variables. For each loading mode—tension, bending, and shear—parametric expression of high accuracy was obtained, covering the range used in real structures for cruciform connections. The maximum percentage error was lower than 2.5% as compared to numerical values. The presented solutions proved to be valid for the toe radius ρ tending to zero. Full article
Show Figures

Graphical abstract

10 pages, 3880 KB  
Article
Through the Forming Process of Femtosecond-Laser Nanotextured Sheets for Production of Complex 3D Parts
by Girolamo Mincuzzi, Alexandra Bourtereau, Laura Gemini, Sergi Parareda, Sylwia Rzepa, Martina Koukolíková, Pavel Konopík and Rainer Kling
Appl. Sci. 2023, 13(22), 12500; https://doi.org/10.3390/app132212500 - 20 Nov 2023
Cited by 4 | Viewed by 1488
Abstract
The use of ultra-short pulse lasers in the kW range, combined with an appropriate beam engineering approach, enables the achievement of high-throughput production of laser-functionalised surfaces. However, the manufacturing of complex parts still faces various challenges, such as difficulties in accessing regions with [...] Read more.
The use of ultra-short pulse lasers in the kW range, combined with an appropriate beam engineering approach, enables the achievement of high-throughput production of laser-functionalised surfaces. However, the manufacturing of complex parts still faces various challenges, such as difficulties in accessing regions with high aspect ratio shapes or intricate profiles, which often leads to the necessity of adapting the laser processing workstation to specific geometries. The forming process is a well-established technique for producing parts of any shape from metallic foils by imposing specific constraints. In this study, we aimed to assess the feasibility of producing laser-functionalised 3D complex products by the forming of laser-treated flat thin metallic sheets. Two-hundred micrometre-thick stainless-steel foils were textured with laser-induced periodic surface structures (LIPSS) through a roll-to-roll pilot line. First, we optimized the morphology of LIPSS. Subsequently, we conducted three types of mechanical tests on both laser-treated and untreated foils: standard tensile tests, fatigue tests, and cruciform specimen tests. We measured and compared parameters such as ultimate tensile strength, breaking strength, maximum elongation, and area reduction between specimens with and without LIPSS, all obtained from the same foil. Additionally, we utilized scanning electron microscopy (SEM) to compare the LIPSS morphology of laser-treated samples before and after mechanical tests. Full article
(This article belongs to the Special Issue Current Technologies in Laser Fabrication)
Show Figures

Figure 1

12 pages, 7484 KB  
Article
Study on the Properties of a 2219 Aluminum Alloy Friction Stir-Welded Joint under the Biaxial Stress State
by Minghao Shao, Di Wang, Cheng Huang and Xin Chang
Metals 2023, 13(11), 1838; https://doi.org/10.3390/met13111838 - 1 Nov 2023
Cited by 3 | Viewed by 2117
Abstract
Friction stir welding (FSW) has been considered ideal for aluminum alloy structures. The performance of FSW joints under unidirectional stress state has been widely tested, but there is still a lack of experimental data under a biaxial stress state. For accurate characterization of [...] Read more.
Friction stir welding (FSW) has been considered ideal for aluminum alloy structures. The performance of FSW joints under unidirectional stress state has been widely tested, but there is still a lack of experimental data under a biaxial stress state. For accurate characterization of the mechanical properties of 2219 aluminum alloy FSW joints under a biaxial stress state, this article conducted biaxial tests. The FSW joint was tested using scanning electron microscopy (SEM) to obtain its microscopic properties and obtain the partition results of the welded joint. The stress–strain relationship and yield characteristics of welded joints under different loading ratios were studied using biaxial tensile tests of cruciform specimens combined with digital image correlation technology. By comparing it with the existing yield criteria, the yield criterion suitable for FSW joints of 2219 aluminum alloy under a biaxial tensile load was determined. Full article
Show Figures

Figure 1

16 pages, 12497 KB  
Article
Fatigue Analysis of Welded Joints Using a Thin-Walled Al/Fe Explosive Welded Transition Joints
by Dominika Płaczek, Paweł Maćkowiak and Dariusz Boroński
Materials 2023, 16(18), 6259; https://doi.org/10.3390/ma16186259 - 18 Sep 2023
Cited by 8 | Viewed by 2044
Abstract
The study presents an analysis of S355J2+N steel and AA5083 aluminum alloy welded structural joints using explosion welded transition joints of reduced thickness. The transition joint thickness reduction significantly hinders the welding of the joints due to the risk of damage to the [...] Read more.
The study presents an analysis of S355J2+N steel and AA5083 aluminum alloy welded structural joints using explosion welded transition joints of reduced thickness. The transition joint thickness reduction significantly hinders the welding of the joints due to the risk of damage to the Al/steel interface as a result of the high temperatures during welding. In the previous article, the strength of the transition joint was analyzed but ship structures, apart from static loads, are subjected to many different cyclical loads. Welded structural joints are analyzed to determine the welding influence on the fatigue life and fracture type of the transition joints. The results of the fatigue tests show that the fatigue damage in the specimens occurs in the aluminum welded joint, and not in the explosively welded joint. The damage obtained was characteristic of cruciform welded joint specimens and both types of root and toe damage occurred. Based on the obtained results, fatigue curves for the joint were determined and compared to the fatigue curves for the AA5083 base material. The experimental fatigue curve was also compared with the design curve for welded aluminum structures from Eurocode. The conducted analysis showed the possibility of using Al/steel explosion welded transition joints of reduced thickness to transfer cyclical loads. Full article
Show Figures

Figure 1

12 pages, 11455 KB  
Article
Reconfigurable Transmitarray Based on Frequency Selective Surface for 2D Wide-Angle Beam Steering
by Maolin Sun, Haowei Xi, Xiaokang Qi, Kuiwen Xu, Huan Li, Qinyi Lv, Shaoqing Hu, Shichang Chen, Wensheng Zhao, Xungen Li and Wenjun Li
Electronics 2023, 12(18), 3854; https://doi.org/10.3390/electronics12183854 - 12 Sep 2023
Cited by 3 | Viewed by 2761
Abstract
A novel reconfigurable transmitarray (RTA) with two-dimensional (2D) wide beam steering capability is presented herein. Different from the traditional RTA with the discrete phase compensation (one-bit or multi-bits phase shift), a second order parallel bandpass filter model is used to realize the RTA [...] Read more.
A novel reconfigurable transmitarray (RTA) with two-dimensional (2D) wide beam steering capability is presented herein. Different from the traditional RTA with the discrete phase compensation (one-bit or multi-bits phase shift), a second order parallel bandpass filter model is used to realize the RTA elements with a 180° continuous phase compensation. A sandwich structure composed of the two patches with rectangular slots and the middle ground sheet with the cruciform slot is constructed for the phase shift characteristics of the frequency selective surface (FSS), and two varactor diodes are loaded across the rectangular slots on the two top and bottom patches. The simulated results show that the proposed elements could achieve continuous transmission phase compensation from 0° to 180° with a 3 dB insert loss within the operating band of 11.8–12.6 GHz. The RTA prototype with 16×16 elements and an aperture size of 6λ0×6λ0 at 12.2 GHz is fabricated and measured for experimental verification. The measured results show that its beam scanning range can reach ±50° in both horizontal and vertical planes with a peak gain of 22.76 dBi and a aperture efficiency of 24.65%. Furthermore, the sidelobe levels (SLLs) are lower than −17.8 dB, which is much better than most RTAs. The proposed RTA has potential applications in radar, microwave imaging and wireless communication systems with low-cost fabrication and a stable performance. Full article
(This article belongs to the Special Issue Smart Electromagnetic Skins and Their Applications)
Show Figures

Figure 1

28 pages, 23885 KB  
Article
Plastic Response and Failure of the Cruciform Structure under In-Plane Load
by Xiufei Wang, Kun Liu, Mingcai Xu and Hewei Liu
J. Mar. Sci. Eng. 2023, 11(7), 1478; https://doi.org/10.3390/jmse11071478 - 24 Jul 2023
Cited by 1 | Viewed by 1748
Abstract
In this study, a common cruciform structure in ship hulls was designed and experimented with in order to analyze its deformation characteristics under planar collision and quasi-static loading. The mechanical parameters of the materials were determined by performing tensile tests on the plates [...] Read more.
In this study, a common cruciform structure in ship hulls was designed and experimented with in order to analyze its deformation characteristics under planar collision and quasi-static loading. The mechanical parameters of the materials were determined by performing tensile tests on the plates used in the specimens. The applicability of the EPS, BWH, and RTCL failure criteria in the simulation of compressive structures was investigated by finite element simulation of quasi-static tests and falling weight impact tests. The effects of mesh size on the deformation and impact force of the cruciform structure under plane loading were comparatively analyzed. The results show that under plane loading, the cruciform structure undergoes axial compression deformation first, followed by buckling and wrinkling deformation. Compared with the quasi-static test, the drop hammer impact test showed higher deformation concentration and smaller wrinkle height. Under the same axial deformation condition, the structural resistance of the drop hammer impact test was about 13% higher than that of the quasi-static test. It is worth noting that the RTCL failure criterion is effective in modeling the failure of compressive structures in simulations with structures with different compressive deformations. Full article
(This article belongs to the Special Issue Advances in Marine Mechanical and Structural Engineering)
Show Figures

Figure 1

18 pages, 3975 KB  
Article
Damage Distribution Map Based Damage Accumulation Calculation Approach for Welded Joints
by Haochun Duan, Zhang Dang and Guoqian Wei
Metals 2023, 13(7), 1203; https://doi.org/10.3390/met13071203 - 28 Jun 2023
Cited by 1 | Viewed by 1340
Abstract
Fatigue damage accumulation under variable amplitude loadings is vital for the life prediction of welded structures. An approach based on damage distribution mapping is presented. S-N curves of welded joints are utilized to construct fatigue damage zones, and a corresponding polynomial fitting function [...] Read more.
Fatigue damage accumulation under variable amplitude loadings is vital for the life prediction of welded structures. An approach based on damage distribution mapping is presented. S-N curves of welded joints are utilized to construct fatigue damage zones, and a corresponding polynomial fitting function is derived from the heat transfer FEA solution. Experimental results for cruciform and T joints under tensile and three-point bending are employed for validation. Compared with four existing damage models, the proposed approach shows greater accuracy and provides a better description for the early stage of fatigue. Full article
Show Figures

Figure 1

12 pages, 4802 KB  
Article
Biaxial Deformation Behavior of AZ31 Magnesium Alloy along RD and Diagonal Direction Degree between TD and ND
by Jiale Mao, Yuanjie Fu, Yao Cheng, Qiuju He, Lingyu Zhao, Yunchang Xin, Gang Chen, Peidong Wu and Qing Liu
Metals 2023, 13(5), 845; https://doi.org/10.3390/met13050845 - 25 Apr 2023
Cited by 1 | Viewed by 1928
Abstract
The multiaxial deformation behavior of magnesium alloys is an important factor in understanding the service performance of structures. In the present research, the deformation mechanism of a Mg AZ31 sheet under biaxial tension with various stress ratios (σRD:σ45 [...] Read more.
The multiaxial deformation behavior of magnesium alloys is an important factor in understanding the service performance of structures. In the present research, the deformation mechanism of a Mg AZ31 sheet under biaxial tension with various stress ratios (σRD:σ45) along the rolling direction (RD) and the diagonal direction (45° direction) between the normal direction (ND) and transverse direction (TD) was systematically studied for the first time using cruciform specimens. The impacts of the stress ratio, σRD:σ45, on the mechanical response, twinning behavior, texture and slip behavior were investigated. The results showed that the contribution of twinning to plastic deformation was limited and governed by the Schmid law. The activation of twinning induced a twin texture component with c-axes largely parallel to the 45° between ND and TD. The deformation induced by biaxial tension was accommodated mainly by prismatic and basal slips under the stress ratio of σRD:σ45=4:1, and the fraction of grains favoring basal slip increased with lower stress ratio along the RD. The characteristics of flow stress can be effectively explained by the relative activities of twinning and slip with stress ratio. Full article
(This article belongs to the Special Issue Mechanical Behaviors and Damage Mechanisms of Metallic Materials)
Show Figures

Figure 1

Back to TopTop