Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = cross-ply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6282 KiB  
Article
Influence of Jointing Methods on the Mechanical Properties of CFRTP Structure Under Bending Load
by Yi Wan, Linshu Meng, Hirokuni Wataki and Jun Takahashi
J. Compos. Sci. 2025, 9(6), 291; https://doi.org/10.3390/jcs9060291 - 6 Jun 2025
Viewed by 519
Abstract
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types [...] Read more.
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types of CFRTP materials, conventional cross-ply, ultra-thin prepreg cross-ply, and sheet molding compounds, were selected. The influence of the jointing methods on mechanical properties and damage patterns under bending load has been investigated. The finite element models were developed to predict the hazardous area and structural stiffness of jointed structures; the simulation results showed good agreement with experimental ones. The results indicate that the ultrasonic welding could reach similar bending stiffness compared to adhesive joining, whereas the stiffness of bolt jointed structures is relatively lower due to the contact separation induced by the bending deformation. Overall, the finite element model results correlated well with the experimental data. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

28 pages, 5048 KiB  
Article
Voxel-Based Finite Element Investigation of Micromechanics Models for Stiffness Prediction of Cross-Ply Laminates
by Darya Forooghi and Yunhua Luo
J. Compos. Sci. 2025, 9(6), 288; https://doi.org/10.3390/jcs9060288 - 4 Jun 2025
Viewed by 438
Abstract
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics [...] Read more.
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics models with First-Order Shear Deformation Theory (FSDT), and comparing the results against voxel-based finite element modeling (VB-FEM), which serves as a high-fidelity numerical reference. A range of models—including Voigt–Reuss, Chamis, Halpin–Tsai, Bridging, and two iterative isotropized formulations—are assessed for unidirectional laminae with fiber volume fractions from 40% to 73%. Quantitative comparison reveals that while all models predict the longitudinal modulus accurately, significant deviations arise in predicting transverse and shear properties. The Bridging Model consistently yields the closest agreement with VB-FEM across all five elastic constants, maintaining accuracy even at high volume fractions where the modified Halpin–Tsai model begins to fail. Discrepancies in micromechanics-based lamina properties propagate to laminate-level stiffness predictions, highlighting the critical role of model selection. These findings establish VB-FEM as a valuable tool for validating analytical models and guide improved modeling strategies for laminated composite design. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

18 pages, 13278 KiB  
Article
Novel Classification of Inclusion Defects in Glass Fiber-Reinforced Polymer Based on THz-TDS and One-Dimensional Neural Network Sequential Models
by Yue Shi, Xuanhui Li, Jianwei Ao, Keju Liu, Yuan Li and Hui Cheng
Photonics 2025, 12(3), 250; https://doi.org/10.3390/photonics12030250 - 11 Mar 2025
Viewed by 654
Abstract
Fiber-reinforced composites, such as glass fiber-reinforced polymer (GFRP), are widely used across industries but are susceptible to inclusion defects during manufacturing. Detecting and classifying these defects is crucial for ensuring material integrity. This study classifies four common inclusion defects—metal, peel ply, release paper, [...] Read more.
Fiber-reinforced composites, such as glass fiber-reinforced polymer (GFRP), are widely used across industries but are susceptible to inclusion defects during manufacturing. Detecting and classifying these defects is crucial for ensuring material integrity. This study classifies four common inclusion defects—metal, peel ply, release paper, and PTFE film—in GFRP using terahertz technology and machine learning. Two GFRP sheets with inclusion defects at different depths were fabricated. Terahertz time-domain signals were acquired, and a cross-correlation-based deconvolution algorithm extracted impulse responses. LSTM-RNN, Bi-LSTM RNN, and 1D-CNN models were trained and tested on time-domain, frequency-domain, and impulse response signals. The defect-free region exhibited the highest classification accuracy. Bi-LSTM RNN achieved the best recall and macro F1-score, followed by 1D-CNN, while LSTM-RNN performed worse. Training with impulse response signals improved classification while maintaining accuracy. Full article
(This article belongs to the Section Data-Science Based Techniques in Photonics)
Show Figures

Figure 1

18 pages, 4043 KiB  
Article
Numerical Simulation of Fatigue Damage in Cross-Ply CFRP Laminates: Exploring Frequency Dependence and Internal Heat Generation Effects
by Natsuko Kudo, M. J. Mohammad Fikry, Shinji Ogihara and Jun Koyanagi
Polymers 2025, 17(3), 432; https://doi.org/10.3390/polym17030432 - 6 Feb 2025
Viewed by 1190
Abstract
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable [...] Read more.
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable Hashin failure model that was originally developed by the authors in 2022. The results obtained from the numerical simulation in the present study, which employs adjusted numerical values for the purpose of damage acceleration, indicate that the number of cycles required for the formation of three transverse cracks was 174 cycles at 0.1 Hz, 209 cycles at 1 Hz, and 165 cycles at 10 Hz. Based on these results, it is demonstrated that under high-frequency cyclic loading, internal heat generation caused by dissipated energy from mechanical deformation, attributed to the viscoelastic and/or plastic behavior of the material, exceeds thermal dissipation to the environment, leading to an increase in specimen temperature. Consequently, damage progression accelerates under high-frequency fatigue. In contrast, under low-frequency fatigue, viscoelastic dissipation becomes more pronounced, reducing the number of cycles required to reach a similar damage state. The rate of damage accumulation initially increases with test frequency but subsequently decreases. This observation underscores the importance of incorporating these findings into discussions on the fatigue damage of real structural components. Full article
Show Figures

Figure 1

21 pages, 3236 KiB  
Article
A Mathematical Approach to the Buckling Problem of Axially Loaded Laminated Nanocomposite Cylindrical Shells in Various Environments
by Abdullah H. Sofiyev, Mahmure Avey and Nigar M. Aslanova
Math. Comput. Appl. 2025, 30(1), 10; https://doi.org/10.3390/mca30010010 - 14 Jan 2025
Cited by 1 | Viewed by 908
Abstract
In this study, the solution of the buckling problem of axially loaded laminated cylindrical shells consisting of functionally graded (FG) nanocomposites in elastic and thermal environments is presented within extended first-order shear deformation theory (FOST) for the first time. The effective material properties [...] Read more.
In this study, the solution of the buckling problem of axially loaded laminated cylindrical shells consisting of functionally graded (FG) nanocomposites in elastic and thermal environments is presented within extended first-order shear deformation theory (FOST) for the first time. The effective material properties and thermal expansion coefficients of nanocomposites in the layers are computed using the extended rule of mixture method and molecular dynamics simulation techniques. The governing relations and equations for laminated cylindrical shells consisting of FG nanocomposites on the two-parameter elastic foundation and in thermal environments are mathematically modeled and solved to find the expression for the axial buckling load. The numerical results of the current analytical approach agree well with the existing literature results obtained using a different methodology. Finally, some new results and interpretations are provided by investigating the influences of different parameters such as elastic foundations, thermal environments, FG nanocomposite models, shear stress, and stacking sequences on the axial buckling load. Full article
Show Figures

Figure 1

21 pages, 8114 KiB  
Article
Investigation of the Flexural Behavior and Damage Mechanisms of Flax/Cork Sandwich Panels Manufactured by Liquid Thermoplastic Resin
by Anas Ait Talaoul, Mustapha Assarar, Wajdi Zouari, Rezak Ayad, Brahim Mazian and Karim Behlouli
J. Compos. Sci. 2024, 8(12), 539; https://doi.org/10.3390/jcs8120539 - 17 Dec 2024
Cited by 1 | Viewed by 984
Abstract
This study investigates the flexural behavior of three sandwich panels composed of an agglomerated cork core and skins made up of cross-ply [0,90]2 flax or glass layers with areal densities of 100 and 300 g/m2. They are designated by SF100, [...] Read more.
This study investigates the flexural behavior of three sandwich panels composed of an agglomerated cork core and skins made up of cross-ply [0,90]2 flax or glass layers with areal densities of 100 and 300 g/m2. They are designated by SF100, SF300, and SG300, where S, F, and G stand for sandwich material, flax fiber, and glass fiber, respectively. The three sandwich materials were fabricated in a single step using vacuum infusion with the liquid thermoplastic resin Elium®. Specimens of these sandwich materials were subjected to three-point bending tests at five span lengths (80, 100, 150, 200, and 250 mm). Each specimen was equipped with two piezoelectric sensors to record acoustic activity during the bending, facilitating the identification of the main damage mechanisms leading to flexural failure. The acoustic signals were analyzed to first track the initiation and propagation of damage and, second, to correlate these signals with the mechanical behavior of the sandwich materials. The obtained results indicate that SF300 exhibits 60% and 49% higher flexural and shear stiffness, respectively, than SG300. Moreover, a comparison of the specific mechanical properties reveals that SF300 offers the best compromise in terms of the flexural properties. Moreover, the acoustic emission (AE) analysis allowed the identification of the main damage mechanisms, including matrix cracking, fiber failure, fiber/matrix, and core/skin debonding, as well as their chronology during the flexural tests. Three-dimensional micro-tomography reconstructions and scanning electron microscope (SEM) observations were performed to confirm the identified damage mechanisms. Finally, a correlation between these observations and the AE signals is proposed to classify the damage mechanisms according to their corresponding amplitude ranges. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

19 pages, 7232 KiB  
Article
Finite Element Simulation of Acoustic Emissions from Different Failure Mechanisms in Composite Materials
by Manoj Rijal, David Amoateng-Mensah and Mannur J. Sundaresan
Materials 2024, 17(24), 6085; https://doi.org/10.3390/ma17246085 - 12 Dec 2024
Cited by 2 | Viewed by 1476
Abstract
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure [...] Read more.
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished. However, directly observing crack growth and related AE signals is challenging, making numerical simulations a useful alternative. AE signals generated by the three failure modes were simulated using modified step impulses of appropriate durations based on incremental crack growth. Linear elastic finite element analysis (FEA) was applied to model the AE signal propagating as Lamb waves. Experimental attenuation data were used to modify the simulated AE waveforms by designing arbitrary magnitude response filters. The propagating waves can be detected as surface displacements or surface strains depending upon the type of sensor employed. This paper presents the signals corresponding to surface strains measured by surface-bonded piezoelectric sensors. Fiber break events showed higher-order Lamb wave modes with frequencies over 2 MHz, while matrix cracks primarily exhibited the fundamental S0 and A0 modes with frequencies ranging up to 650 kHz, with delaminations having a dominant A0 mode and frequency content less than 250 kHz. The amplitude and frequency content of signals from these failure modes are seen to change significantly with source–sensor distance, hence requiring an array of dense sensors to acquire the signals effectively. Furthermore, the reasonable correlation between the simulated waveforms and experimental acoustic emission signals obtained during quasi-static tensile test highlights the effectiveness of FEA in accurately modeling these failure modes in composite materials. Full article
Show Figures

Figure 1

23 pages, 8761 KiB  
Article
Structural Optimization of a High-Performance Green Sandwich Made of Sisal Reinforced Epoxy Facings and Balsa Core
by Bernardo Zuccarello, Francesco Bongiorno and Carmelo Militello
Polymers 2024, 16(23), 3341; https://doi.org/10.3390/polym16233341 - 28 Nov 2024
Cited by 3 | Viewed by 1104
Abstract
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins [...] Read more.
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins of very strong material, to which the flexural strength is delegated, between which an inner layer (core) of light material with sufficient shear strength is interposed. As an example, a sandwich configuration widely used in civil, naval, and mechanical engineering is that obtained with fiberglass skins and a core of various materials, such as polyurethane foam or another lightweight material, depending on the application. Increasingly stringent regulations aimed at protecting the environment by reducing harmful emissions of carbon dioxide and carbon monoxide have directed recent research towards the development of new composites and new sandwiches characterized by low environmental impact. Among the various green composite solutions proposed in the literature, a very promising category is that of high-performance biocomposites, which use bio-based matrices reinforced by fiber reinforcements. This approach can also be used to develop green sandwiches for structural applications, consisting of biocomposite skins and cores made by low-environmental impact or renewable materials. In order to make a contribution to this field, a structural sandwich consisting of high-performance sisal–epoxy biocomposite skins and an innovative renewable core made of balsa wood laminates with appropriate lay-ups has been developed and then properly characterized in this work. Through a systematic theoretical–experimental analysis of three distinct core configurations, the unidirectional natural core, the cross-ply type, and the angle-ply type, it has been shown how the use of natural balsa gives rise to inefficient sandwiches, whereas performance optimization is fully achieved by considering the angle-ply core type [±45/90]. Finally, the subsequent comparison with literature data of similar sandwiches has shown how the optimal configuration proposed can be advantageously used to replace synthetic glass–resin sandwiches widely used in various industrial sectors (mechanical engineering, shipbuilding, etc.) and in civil engineering. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

17 pages, 594 KiB  
Article
Using Collocation with Radial Basis Functions in a Pseudospectral Framework for a New Layerwise Shallow Shell Theory
by Susana C. F. Fernandes, Jesus Cuartero and Antonio J. M. Ferreira
J. Compos. Sci. 2024, 8(11), 448; https://doi.org/10.3390/jcs8110448 - 1 Nov 2024
Cited by 1 | Viewed by 884
Abstract
This work presents radial basis function collocation methods in pseudospectral form for forecasting the static deformations and free vibration characteristics of thin and thick cross-ply laminated shells. This method utilizes an innovative layerwise shallow shell theory that integrates both translational and rotational degrees [...] Read more.
This work presents radial basis function collocation methods in pseudospectral form for forecasting the static deformations and free vibration characteristics of thin and thick cross-ply laminated shells. This method utilizes an innovative layerwise shallow shell theory that integrates both translational and rotational degrees of freedom. A collection of numerical examples illustrates the precision and efficacy of the suggested numerical method, highlighting its capability in resolving static and vibrational issues. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

16 pages, 6339 KiB  
Article
Low-Velocity Impact Resistance and Compression After Impact Strength of Thermoplastic Nanofiber Toughened Carbon/Epoxy Composites with Different Layups
by Timo Meireman, Erik Verboven, Mathias Kersemans, Wim Van Paepegem, Karen De Clerck and Lode Daelemans
Polymers 2024, 16(21), 3060; https://doi.org/10.3390/polym16213060 - 30 Oct 2024
Cited by 2 | Viewed by 1005
Abstract
This study investigates the effectiveness of polyether block amide (PEBA) thermoplastic elastomeric nanofibers in reducing low-velocity impact damage across three carbon fiber composite lay-up configurations: a cross-ply [0°/90°]2s (CP) and a quasi-isotropic [0°/45°/90°/−45°]s (QI) lay-up utilizing unidirectional plies, and a stacked woven [(0°,90°)]4s [...] Read more.
This study investigates the effectiveness of polyether block amide (PEBA) thermoplastic elastomeric nanofibers in reducing low-velocity impact damage across three carbon fiber composite lay-up configurations: a cross-ply [0°/90°]2s (CP) and a quasi-isotropic [0°/45°/90°/−45°]s (QI) lay-up utilizing unidirectional plies, and a stacked woven [(0°,90°)]4s (W) lay-up using twill woven fabric plies. The flexural strength and interlaminar shear strength of the composites remained unaffected by the addition of nanofibers: around 750 MPa and 63 MPa for CP, 550 MPa and 58 MPa for QI, and 650 MPa and 50 MPa for W, respectively. The incorporation of nanofibers in the interlaminar regions resulted in a substantial reduction in projected damage area, ranging from 30% to 50% reduction over an impact energy range of 5–20 J. Microscopic analysis showed that especially the delamination damage decreased in toughened composites, while intralaminar damage remained similar for the cross-ply and quasi-isotropic lay-ups and decreased only in the woven lay-up. This agrees with the broad body of research that shows that interleaved nanofibers result in a higher delamination resistance due to toughening mechanisms related to nanofiber bridging of cracks. Despite their ability to mitigate delamination during impact, nanofibers showed limited positive effects on Compression After Impact (CAI) strength in quasi-isotropic and cross-ply composites. Interestingly, only the woven fabric composites demonstrated improved CAI strength, with a 12% improvement on average over the impact energy range, attributed to a reduction in both interlaminar and intralaminar damage. This study indicates the critical role of fiber integrity over delamination size in determining CAI performance, suggesting that the delaminations are not sufficiently large to induce buckling of sub-layers, thereby minimizing the effect of nanofiber toughening on the CAI strength. Full article
(This article belongs to the Special Issue Functionalization of Composite Materials by Polymeric Nanofibers)
Show Figures

Figure 1

19 pages, 6257 KiB  
Article
In Situ Microscopy of Fatigue-Loaded Embedded Transverse Layers of Cross-Ply Laminates: The Role of an Inhomogeneous Fiber Distribution
by Andreas Baumann, Miro Duhovic and Joachim Hausmann
J. Compos. Sci. 2024, 8(9), 366; https://doi.org/10.3390/jcs8090366 - 18 Sep 2024
Cited by 1 | Viewed by 1273
Abstract
Composites with continuous fiber reinforcement offer excellent fatigue properties but are tedious to characterize due to anisotropy and the interplay of fatigue properties, processing conditions, and the constituents. The global fiber volume content can affect both monotonic and fatigue strength. This dependence can [...] Read more.
Composites with continuous fiber reinforcement offer excellent fatigue properties but are tedious to characterize due to anisotropy and the interplay of fatigue properties, processing conditions, and the constituents. The global fiber volume content can affect both monotonic and fatigue strength. This dependence can increase the necessary testing effort even when processing conditions and constituents remain identical. This work presents an in situ edge observation method, enabling light microscopy during loading. As a result, digital image correlation can be employed to study local strains at cracking sites on the scale of fiber bundles. The geometric influence on fatigue damage is examined in non-crimp fabrics of glass and carbon fibers. Two epoxy resins (one modified by irradiation) are investigated to verify the geometric influence under changed polymer properties. The microscopy-based image correlation revealed that damage forms at very low global strains of only 0.2–0.3% in glass fiber-reinforced epoxy laminates. For carbon fiber-reinforced epoxy, laminate cracking was found to emanate mainly from regions containing stitching fibers. Across both reinforcements, irradiation treatment led to delayed cracks, emanating from interfaces. This detailed analysis of the damage formation is used as a basis for proposed applications of the in situ strain information. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Graphical abstract

19 pages, 6946 KiB  
Article
Fatigue Behaviour of High-Performance Green Epoxy Biocomposite Laminates Reinforced by Optimized Long Sisal Fibers
by B. Zuccarello, C. Militello and F. Bongiorno
Polymers 2024, 16(18), 2630; https://doi.org/10.3390/polym16182630 - 18 Sep 2024
Cited by 5 | Viewed by 1617
Abstract
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: [...] Read more.
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: random short fiber biocomposites characterized by low mechanical strength, used for non-structural applications such as covering panels, etc., and high-performance biocomposites reinforced by long fibers that can be used for semi-structural and structural applications by replacing traditional materials such as metal (carbon steel and aluminum) or synthetic composites such as fiberglass. The present research work focuses on the high-performance biocomposites reinforced by optimized sisal fibers. In detail, in order to contribute to the extension of their application under fatigue loading, a systematic experimental fatigue test campaign has been accomplished by considering four different lay-up configurations (unidirectional, cross-ply, angle-ply and quasi-isotropic) with volume fraction Vf = 70%. The results analysis found that such laminates exhibit good fatigue performance, with fatigue ratios close to 0.5 for unidirectional and angle-ply (±7.5°) laminates. However, by passing from isotropic to unidirectional lay-up, the fatigue strength increases significantly by about four times; higher increases are revealed in terms of fatigue life. In terms of damage, it has been observed that, thanks to the high quality of the proposed laminates, in any case, the fatigue failure involves the fiber failure, although secondary debonding and delamination can occur, especially in orthotropic and cross-ply lay-up. The comparison with classical synthetic composites and other similar biocomposite has shown that in terms of fatigue ratio, the examined biocomposites exhibit performance comparable with the biocomposites reinforced by the more expensive flax and with common fiberglass. Finally, appropriate models, that can be advantageously used at the design stage, have also been proposed to predict the fatigue behavior of the laminates analyzed. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

18 pages, 5114 KiB  
Article
Comparison of Radial Ply and Cross Ply Tire in Terms of Achieved Rolling Resistance and Soil Compaction in a Soil Test Channel
by Milan Helexa, Jozef Krilek, Ján Kováč, Tomáš Kuvik, Vladimír Mancel, Rudolf Abrahám and Radoslav Majdan
Forests 2024, 15(8), 1397; https://doi.org/10.3390/f15081397 - 10 Aug 2024
Viewed by 1239
Abstract
Many literature sources state that radial ply tires achieve lower rolling resistance values than cross ply tires. From a certain point of view, radial ply tires are gentler on the ground than cross ply tires. The effort was therefore to experimentally verify this [...] Read more.
Many literature sources state that radial ply tires achieve lower rolling resistance values than cross ply tires. From a certain point of view, radial ply tires are gentler on the ground than cross ply tires. The effort was therefore to experimentally verify this statement for two radial ply and cross ply tires similar in shape and size. The work deals with the diagnostics of rolling resistance levels achieved by radial ply and cross ply tires on selected forest soil under the laboratory conditions of a soil test channel. BKT 210/95 R16 Agrimax RT 855 and Özka 7.50-16 8PR KNK 50 were chosen as radial ply and cross ply tires, respectively, and had approximately the same dimensions. The soil in the soil test channel can be characterized as a loamy sand with an average moisture content of 30% and an initial bulk density of 1445.07 kg·m−3. Another monitored parameter was the diagnostics of changes in soil density caused by tire movement in order to assess the degree of soil compaction. From the results of the work, it follows that there is no statistically significant difference between radial ply and cross ply tires in terms of the achieved levels of rolling resistance on the soil. The observed tires also caused intense compaction of the soil in the soil test channel, especially at higher tire pressures and higher vertical loads. The analysis of the results also shows that changes in tire pressure in both tires cause more energy loss and soil compaction than changes in the vertical load. Full article
(This article belongs to the Special Issue Forest Machinery and Mechanization—2nd Edition)
Show Figures

Figure 1

23 pages, 5143 KiB  
Article
Assessing the Environmental Impact of Biobased Exterior Insulation Panel: A Focus on Carbon Uptake and Embodied Emissions
by Md Sahadat Hossain, Obste Therasme, Paul Crovella and Timothy A. Volk
Energies 2024, 17(14), 3406; https://doi.org/10.3390/en17143406 - 11 Jul 2024
Cited by 3 | Viewed by 1869
Abstract
There are millions of older buildings in the colder climate regions of the world where envelope upgrades are needed to improve the indoor quality of buildings, reduce energy costs, and lower greenhouse gas (GHG) emissions. This study assessed the global warming potential (GWP) [...] Read more.
There are millions of older buildings in the colder climate regions of the world where envelope upgrades are needed to improve the indoor quality of buildings, reduce energy costs, and lower greenhouse gas (GHG) emissions. This study assessed the global warming potential (GWP) with and without accounting for CO2 uptake in trees (biogenic carbon) for 20- and 100-year timespans of an exterior insulation panel. The panels consisted of six different materials with three-ply cross-laminated timber (CLT) as its main component. The net GWP100-Uptake impact when explicitly accounting for biogenic CO2 uptake over a 100-year time period was 7.2 kgCO2-eq/m2 which was 92.7% lower than if it was not included (GWP100-Fossil of 98.7 kgCO2-eq/m2). Using a 20-year GWP increased the impact of the GWP fossil by 21.7% and the CO2 uptake scenario by 298%. The major contributor was the energy used for manufacturing panel’s materials (53%), with embodied carbon in bio-products primarily responsible for offsetting emissions. The findings will be helpful for policymakers in setting net-zero carbon emission goals for embodied and operational impacts of building materials. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

17 pages, 8487 KiB  
Article
Strength Optimisation of Hybrid Bolted/Bonded Composite Joints Based on Finite Element Analysis
by Raphael Blier, Leila Monajati, Masoud Mehrabian and Rachid Boukhili
Materials 2024, 17(13), 3354; https://doi.org/10.3390/ma17133354 - 6 Jul 2024
Cited by 2 | Viewed by 1594
Abstract
A finite element analysis (FEA) was conducted to examine the behaviour of single-lap quasi-isotropic (QI) and cross-ply (CP) hybrid bolted/bonded (HBB) configurations subjected to tensile shear loading. Several critical design factors influencing the composite joint strength, failure conditions, and load-sharing mechanisms that would [...] Read more.
A finite element analysis (FEA) was conducted to examine the behaviour of single-lap quasi-isotropic (QI) and cross-ply (CP) hybrid bolted/bonded (HBB) configurations subjected to tensile shear loading. Several critical design factors influencing the composite joint strength, failure conditions, and load-sharing mechanisms that would optimise the joining performance were assessed. The study of the stress concentration around the holes and along the adhesive layer highlights the fact that the HBB joints benefit from significantly lower stresses compared to only bolted joints, especially for CP configurations. The simulation results confirmed the redundancy of the middle bolt in a three-bolt HBB joint. The stiffness and plastic behaviour of the adhesive were found to be important factors that define the transition of the behaviour of the joint from a bolted type, where load sharing is predominant, to a bonded joint. The load-sharing potential, known as an indicator of the joint’s performance, is improved by reducing the overlap length, using a low-stiffness, high-plasticity adhesive, and using thicker laminates in the QI layup configuration. Enhancing both the ratio of the edge distance to the hole diameter and washer size proves advantageous in reducing stresses within the adhesive layer, thereby improving the joint strength. Full article
(This article belongs to the Special Issue Manufacturing and Mechanics of Materials, Volume II)
Show Figures

Figure 1

Back to TopTop