Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (556)

Search Parameters:
Keywords = crop analytics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1243 KiB  
Article
Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize
by Sara Astolfi, Francesca Buiarelli, Francesca Debegnach, Barbara De Santis, Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi and Giulia Simonetti
Foods 2025, 14(15), 2623; https://doi.org/10.3390/foods14152623 - 26 Jul 2025
Viewed by 138
Abstract
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well [...] Read more.
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well studied, emerging mycotoxins remain underexplored and insufficiently investigated. Among these, moniliformin (MON) is frequently detected in maize-based food and feed; however, the absence of regulatory limits and standardized detection methods limits effective monitoring and comprehensive risk assessment. The European Food Safety Authority highlights insufficient occurrence and toxicological data as challenges to regulatory development. This study compares three analytical methods—CE-DAD, HPLC-DAD, and HPLC-MS/MS—for moniliformin detection and quantification in maize, evaluating linear range, correlation coefficients, detection and quantification limits, accuracy, and precision. Results show that CE-DAD and HPLC-MS/MS provide reliable and comparable sensitivity and selectivity, while HPLC-DAD is less sensitive. Application to real samples enabled deterministic dietary exposure estimation based on consumption, supporting preliminary risk characterization. This research provides a critical comparison that supports the advancement of improved monitoring and risk assessment frameworks, representing a key step toward innovating the detection of under-monitored mycotoxins and laying the groundwork for future regulatory and preventive measures targeting MON. Full article
(This article belongs to the Special Issue Recent Advances in the Detection of Food Contaminants and Pollutants)
Show Figures

Figure 1

29 pages, 4438 KiB  
Review
Microfluidic Sensors Integrated with Smartphones for Applications in Forensics, Agriculture, and Environmental Monitoring
by Tadsakamon Loima, Jeong-Yeol Yoon and Kattika Kaarj
Micromachines 2025, 16(7), 835; https://doi.org/10.3390/mi16070835 - 21 Jul 2025
Viewed by 490
Abstract
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated [...] Read more.
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated microfluidic sensors, focusing on their design, fabrication, smartphone integration, and analytical functions with the applications in forensic science, agriculture, and environmental monitoring. In forensic science, these sensors provide fast, field-based alternatives to traditional lab methods for detecting substances like DNA, drugs, and explosives, improving investigation efficiency. In agriculture, they support precision farming by enabling on-demand analysis of soil nutrients, water quality, and plant health, enhancing crop management. In environmental monitoring, these sensors allow the timely detection of pollutants in air, water, and soil, enabling quicker responses to hazards. Their portability and user-friendliness make them particularly valuable in resource-limited settings. Overall, this review highlights the transformative potential of smartphone-based microfluidic sensors in enabling accessible, real-time diagnostics across multiple disciplines. Full article
(This article belongs to the Special Issue Microfluidic-Based Sensing)
Show Figures

Figure 1

35 pages, 13218 KiB  
Review
Research Advances in Nanosensor for Pesticide Detection in Agricultural Products
by Li Feng, Xiaofei Yue, Junhao Li, Fangyao Zhao, Xiaoping Yu and Ke Yang
Nanomaterials 2025, 15(14), 1132; https://doi.org/10.3390/nano15141132 - 21 Jul 2025
Viewed by 404
Abstract
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and [...] Read more.
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and health concerns worldwide due to its chemical persistence and high toxicity to organisms, including humans. Therefore, there is an urgent need to develop rapid and reliable analytical procedures for the quantification of trace pesticide residues to support public health management. Traditional methods, such as chromatography-based detection techniques, cannot simultaneously achieve high sensitivity, selectivity, cost-effectiveness, and portability, which limits their practical application. Nanomaterial-based sensing techniques are increasingly being adopted due to their rapid, efficient, user-friendly, and on-site detection capabilities. In this review, we summarize recent advances and emerging trends in commonly used nanosensing technologies, such as optical and electrochemical sensing, with a focus on recognition elements including enzymes, antibodies, aptamers, and molecularly imprinted polymers (MIPs). We discuss the types of nanomaterials used, preparation methods, performance, characteristics, advantages and limitations, and applications of these nanosensors in detecting pesticide residues in agricultural products. Furthermore, we highlight current challenges, ongoing efforts, and future directions in the development of pesticide detection nanosensors. Full article
(This article belongs to the Special Issue Nanosensors for the Rapid Detection of Agricultural Products)
Show Figures

Figure 1

26 pages, 2178 KiB  
Article
Optimizing Agri-PV System: Systematic Methodology to Assess Key Design Parameters
by Kedar Mehta and Wilfried Zörner
Energies 2025, 18(14), 3877; https://doi.org/10.3390/en18143877 - 21 Jul 2025
Viewed by 364
Abstract
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, [...] Read more.
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, shading factor, land equivalent ratio, photosynthetically active radiation (PAR) utilization, crop yield stability index, water use efficiency, and return on investment. We introduce a novel dual matrix Analytic Hierarchy Process (AHP) to evaluate their relative significance. An international panel of eighteen Agri-PV experts, encompassing academia, industry, and policy, provided pairwise comparisons of these indicators under two objectives: maximizing annual energy yield and sustaining crop output. The high consistency observed in expert responses allowed for the derivation of normalized weight vectors, which form the basis of two Weighted Influence Matrices. Analysis of Total Weighted Influence scores from these matrices reveal distinct priority sets: panel tilt, coverage ratio, and elevation are most influential for energy optimization, while PAR utilization, yield stability, and elevation are prioritized for crop productivity. This methodology translates qualitative expert knowledge into quantitative, actionable guidance, clearly delineating both synergies, such as the mutual benefit of increased elevation for energy and crop outcomes, and trade-offs, exemplified by the negative impact of high photovoltaic coverage on crop yield despite gains in energy output. By offering a transparent, expert-driven decision-support tool, this framework enables practitioners to customize Agri-PV system configurations according to local climatic, agronomic, and economic contexts. Ultimately, this approach advances the optimization of the food energy nexus and supports integrated sustainability outcomes in Agri-PV deployment. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment
by Bożena Łozowicka, Piotr Kaczyński, Magdalena Jankowska, Ewa Rutkowska, Piotr Iwaniuk, Rafał Konecki, Weronika Rogowska, Aida Zhagyparova, Damira Absatarova, Stanisław Łuniewski, Marcin Pietkun and Izabela Hrynko
Foods 2025, 14(14), 2528; https://doi.org/10.3390/foods14142528 - 18 Jul 2025
Viewed by 380
Abstract
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples [...] Read more.
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples of fruits and vegetables. A unified multi-analytical protocol was used composed of primary–secondary amine/graphitized carbon black/magnesium sulfate to purify samples with diversified profile of interfering substances. Moreover, the obtained analytical data were used to evaluate the critical acute health risk in subpopulations of children and adults within European limits criteria. Out of 550 pesticides analyzed, 38 and 69 compounds were noted in 58.6% of fruits and 44.2% of vegetables, respectively. Acetamiprid (14.1% of all detections) and captan (11.3%) occurred the most frequently in fruits, while pendimethalin (10.6%) and azoxystrobin (8.6%) occurred the most frequently in vegetables. A total of 28% of vegetable and 43% of fruit samples were multiresidues with up to 13 pesticides in dill, reaching a final concentration of 0.562 mg kg−1. Maximum residue level (MRL) was exceeded in 7.9% of fruits and 7.3% of vegetables, up to 7900% MRL for chlorpyrifos in dill (0.79 mg kg−1). Notably, 8 out of 38 pesticides found in fruits (21%; 1.2% for carbendazim) and 24 out of 69 compounds in vegetables (35%, 7.4% for chlorpyrifos) were not approved in the EU. Concentrations of pesticides exceeding MRL were used to assess acute health risk for children and adults. Moreover, the incidence of acute health risk was proved for children consuming parsnip with linuron (156%). In other cases, it was below 100%, indicating that Polish food is safe. The work provides reliable and representative scientific data on the contamination of fruits and vegetables with pesticides. It highlights the importance of legislative changes to avoid the occurrence of not approved pesticides in the EU, increasing food and health safety. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

28 pages, 1706 KiB  
Article
Adaptive Grazing and Land Use Coupling in Arid Pastoral China: Insights from Sunan County
by Bo Lan, Yue Zhang, Zhaofan Wu and Haifei Wang
Land 2025, 14(7), 1451; https://doi.org/10.3390/land14071451 - 11 Jul 2025
Viewed by 384
Abstract
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to [...] Read more.
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to alleviate local grassland pressure and adapt their livelihoods. However, the interplay between the evolving land use system (L) and this emergent borrowed pasture system (B) remains under-explored. This study introduces a coupled analytical framework linking L and B. We employ multi-temporal remote sensing imagery (2018–2023) and official statistical data to derive land use dynamic degree (LUDD) metrics and 14 indicators for the borrowed pasture system. Through entropy weighting and a coupling coordination degree model (CCDM), we quantify subsystem performance, interaction intensity, and coordination over time. The results show that 2017 was a turning point in grassland–bare land dynamics: grassland trends shifted from positive to negative, whereas bare land trends turned from negative to positive; strong coupling but low early coordination (C > 0.95; D < 0.54) were present due to institutional lags, infrastructural gaps, and rising rental costs; resilient grassroots networks bolstered coordination during COVID-19 (D ≈ 0.78 in 2023); and institutional voids limited scalability, highlighting the need for integrated subsidy, insurance, and management frameworks. In addition, among those interviewed, 75% (15/20) observed significant grassland degradation before adopting off-site grazing, and 40% (8/20) perceived improvements afterward, indicating its potential role in ecological regulation under climate stress. By fusing remote sensing quantification with local stakeholder insights, this study advances social–ecological coupling theory and offers actionable guidance for optimizing cross-regional forage allocation and adaptive governance in arid pastoral zones. Full article
Show Figures

Figure 1

9 pages, 817 KiB  
Article
A Green and Simple Analytical Method for the Evaluation of the Effects of Zn Fertilization on Pecan Crops Using EDXRF
by Marcelo Belluzzi Muiños, Javier Silva, Paula Conde, Facundo Ibáñez, Valery Bühl and Mariela Pistón
Processes 2025, 13(7), 2218; https://doi.org/10.3390/pr13072218 - 11 Jul 2025
Viewed by 319
Abstract
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf [...] Read more.
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf samples from two crop cycles: 2020–2021 and 2021–2022. Fresh samples were dried, ground, and sieved. Analytical determinations were performed by flame atomic absorption spectrometry (FAAS, considered a standard method) and energy dispersive X-ray spectrometry (EDXRF, the proposed method). In the first case, sample preparation was carried out by microwave-assisted digestion using 4.5 mol L−1 HNO3. In the second case, pellets (Φ 13 mm, 2–3 mm thick) were prepared by direct mechanical pressing. Figures of merit of both methodologies were adequate for the purpose of zinc monitoring. The results obtained from both methodologies were statistically compared and found to be equivalent (95% confidence level). Based on the principles of Green Analytical Chemistry, both procedures were evaluated using the Analytical Greenness Metric Approach (AGREE and AGREEprep) tools. It was concluded that EDXRF was notably greener than FAAS and can be postulated as an alternative to the standard method. The information emerging from the analyses aided decision-making at the agronomic level. Full article
Show Figures

Figure 1

19 pages, 8839 KiB  
Article
Potential Expansion of Root Chicory Cultivation Areas in Chile
by Donna Cortez, Manuel Paneque and Celián Román-Figueroa
Agronomy 2025, 15(7), 1675; https://doi.org/10.3390/agronomy15071675 - 10 Jul 2025
Viewed by 290
Abstract
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has [...] Read more.
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has increased by 242% in Chile since 2006, highlighting its potential for expansion into new territories. In this study, land suitability (without restriction, mild restriction, moderate restriction, and unsuitable) for root chicory cultivation and its potential productivity were determined using Geographic Information System (GIS) and analytical hierarchy process (AHP). The regions where root chicory is currently produced (between the Maule and La Araucanía regions) showed the best suitability, as did the Valparaíso and O’Higgins regions. The potential maximum productivity ranged from 20 to 27 t DW ha−1, mainly concentrated in the Los Lagos region, despite the absence of land without restriction. This could be attributed to the high water availability in this region, which is consistent with the expected displacement of crop areas due to climate change. Field studies in the Los Lagos region are recommended to evaluate the feasibility of expanding root chicory cultivation in these areas. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

22 pages, 14299 KiB  
Article
Comparative Analysis of Runoff Diversion Systems on Terraces and Glacis in Semi-Arid Landscapes of Spain and Tunisia
by Ghaleb Fansa-Saleh, Alejandro J. Pérez Cueva and Emilio Iranzo-García
Geographies 2025, 5(3), 32; https://doi.org/10.3390/geographies5030032 - 10 Jul 2025
Viewed by 302
Abstract
This study explores the water harvesting systems of mgouds in southern Tunisia and boqueras in southeastern Spain to understand their adaptation to semi-arid conditions and geomorphic contexts. These systems use ephemeral water through medieval-origin infrastructures to increase the water supply to rainfed crops. [...] Read more.
This study explores the water harvesting systems of mgouds in southern Tunisia and boqueras in southeastern Spain to understand their adaptation to semi-arid conditions and geomorphic contexts. These systems use ephemeral water through medieval-origin infrastructures to increase the water supply to rainfed crops. The hypothesis is that the diversity of these systems stems from environmental rather than cultural factors. By employing a qualitative–analytical approach, this study compares concentrated runoff diversion systems to investigate the use of boqueras/mgouds in terraces and glacis in the arid and semi-arid areas of Tunisia and the southeastern Iberian Peninsula. The research involved performing detailed geomorphological and climatological analyses and comparing structural complexities and water management strategies across different regions. The results indicate significant variability in system size and complexity. Tunisian mgouds are typically simpler and more individualised, while Spanish boqueras are larger and more complex due to more frequent and intense torrential rainfall. No common patterns were identified between the two regions. This study reveals that both types of systems reflect sophisticated adaptations to manage water scarcity and mitigate the impacts of intense rainfall, with geomorphic and climatic factors playing a decisive role. The primary conclusion is that the design and functionality of these water systems are predominantly influenced by environmental conditions rather than cultural factors. This research provides insights for developing sustainable water management strategies in other semi-arid regions. Full article
Show Figures

Figure 1

15 pages, 2091 KiB  
Review
AI Roles in 4R Crop Pest Management—A Review
by Hengyuan Yang, Yuexia Jin, Lili Jiang, Jia Lu and Guoqi Wen
Agronomy 2025, 15(7), 1629; https://doi.org/10.3390/agronomy15071629 - 3 Jul 2025
Viewed by 801
Abstract
Insect pests are a major threat to agricultural production, causing significant crop yield reductions annually. Integrated pest management (IPM) is well-studied, but its precise application in farmlands is still challenging due to variable weather, diverse insect behaviors, crop variability, and soil heterogeneity. Recent [...] Read more.
Insect pests are a major threat to agricultural production, causing significant crop yield reductions annually. Integrated pest management (IPM) is well-studied, but its precise application in farmlands is still challenging due to variable weather, diverse insect behaviors, crop variability, and soil heterogeneity. Recent advancements in Artificial Intelligence (AI) have shown the potential to revolutionize pest management by implementing 4R pest stewardship: right pest identification, right method selection, right control timing, and right action taken. This review explores the roles of AI technologies within the 4R framework, highlighting AI models for accurate pest identification, computer vision systems for real-time monitoring, predictive analytics for optimizing control timing, and tools for selecting and applying pest control measures. Innovations in remote sensing, UAV surveillance, and IoT-enabled smart traps further strengthen pest monitoring and intervention strategies. By integrating AI into 4R pest management, this study underscores the potential of precision agriculture to develop sustainable, adaptive, and highly efficient pest control systems. Despite these advancements, challenges persist in data availability, model generalization, and economic feasibility for widespread adoption. The lack of interpretability in AI models also makes some agronomists hesitant to adopt these technologies. Future research should focus on scalable AI solutions, interdisciplinary collaborations, and real-world validation to enhance AI-driven pest management in field crops. Full article
Show Figures

Figure 1

43 pages, 1513 KiB  
Communication
The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture
by Wenli Sun, Mohamad Hesam Shahrajabian and Lijie Guan
Plants 2025, 14(13), 2007; https://doi.org/10.3390/plants14132007 - 30 Jun 2025
Viewed by 432
Abstract
Plant-growth-promoting fungi (PGPF) play a central role in promoting sustainable agriculture by improving plant growth and resilience. The aim of this literature review is to survey the impacts of Trichoderma spp. and Penicillium spp. on various agricultural and horticultural plants. The information provided [...] Read more.
Plant-growth-promoting fungi (PGPF) play a central role in promoting sustainable agriculture by improving plant growth and resilience. The aim of this literature review is to survey the impacts of Trichoderma spp. and Penicillium spp. on various agricultural and horticultural plants. The information provided in this manuscript was obtained from randomized control experiments, review articles, and analytical studies and observations gathered from numerous literature sources such as Scopus, Google Scholar, PubMed, and Science Direct. The keywords used were the common and Latin names of various agricultural and horticultural species, fungal endophytes, plant-growth-promoting fungi, Trichoderma, Penicillium, microbial biostimulants, and biotic and abiotic stresses. Endophytic fungi refer to fungi that live in plant tissues throughout part of or the entire life cycle by starting a mutually beneficial symbiotic relationship with its host without any negative effects. They are also capable of producing compounds and a variety of bioactive components such as terpenoids, steroids, flavonoids, alkaloids, and phenolic components. Penicillium is extensively known for its production of secondary metabolites, its impact as a bioinoculant to help with crop productivity, and its effectiveness in sustainable crop production. The plant-growth-promotion effects of Trichoderma spp. are related to better absorption of mineral nutrients, enhanced morphological growth, better reproductive potential and yield, and better induction of disease resistance. Both Penicillium spp. and Trichoderma spp. are effective, affordable, safe, and eco-friendly biocontrol agents for various plant species, and they can be considered economically important microorganisms for both agricultural and horticultural sciences. The present review article aims to present the most up-to-date results and findings regarding the practical applications of two important types of PGPF, namely Penicillium spp., and Trichoderma spp., in agricultural and horticultural species, considering the mechanisms of actions of these species of fungi. Full article
Show Figures

Figure 1

24 pages, 964 KiB  
Article
Mechanistic Analysis of the Impact of Farmers’ Livelihood Transformation on the Ecological Efficiency of Agricultural Water Use in Arid Areas Based on the SES Framework
by Huijuan Du, Guangyao Wang, Guangyan Ran, Yaxue Zhu and Xiaoyan Zhu
Water 2025, 17(13), 1962; https://doi.org/10.3390/w17131962 - 30 Jun 2025
Viewed by 327
Abstract
Water resources have become a critical factor limiting agricultural development and ecological health in arid regions. The ecological efficiency of agricultural water use (EEAWU) serves as an indicator of the sustainable utilization of agricultural water resources, taking into account both economic output and [...] Read more.
Water resources have become a critical factor limiting agricultural development and ecological health in arid regions. The ecological efficiency of agricultural water use (EEAWU) serves as an indicator of the sustainable utilization of agricultural water resources, taking into account both economic output and environmental impact. This paper, grounded in the social–ecological system (SES) framework, integrates multidimensional variables related to social behavior, economic decision-making, and ecological constraints to construct an analytical system that examines the impact mechanism of farmers’ part-time employment on the EEAWU. Utilizing survey data from 448 farmers in the western Tarim River Basin, and employing the super-efficiency SBM model alongside Tobit regression for empirical analysis, the study reveals the following findings: (1) the degree of farmers’ part-time employment is significantly negatively correlated with EEAWU (β = −0.041, p < 0.05); (2) as the extent of part-time employment increases, farmers adversely affect EEAWU by altering agricultural labor allocation, adjusting crop structures, and inadequately adopting water-saving measures; (3) farm size plays a negative moderating role in the relationship between farmers’ part-time engagement and the EEAWU, where scale expansion can alleviate the EEAWU losses associated with part-time employment through cost-sharing and factor substitution mechanisms. Based on these findings, it is recommended to enhance the land transfer mechanism, promote agricultural social services, implement tiered water pricing and water-saving subsidy policies, optimize crop structures, and strengthen environmental regulations to improve EEAWU in arid regions. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

27 pages, 1579 KiB  
Review
Microplastics in Soil–Plant Systems: Current Knowledge, Research Gaps, and Future Directions for Agricultural Sustainability
by Zhangling Chen, Laura J. Carter, Steven A. Banwart and Paul Kay
Agronomy 2025, 15(7), 1519; https://doi.org/10.3390/agronomy15071519 - 22 Jun 2025
Viewed by 1323
Abstract
With the increasing accumulation of plastic residues in agricultural ecosystems, microplastics (MPs) have emerged as a novel and pervasive environmental risk factor threatening sustainable agriculture. Compared to aquatic systems, our understanding of MP dynamics in agricultural soils—particularly their transport mechanisms, bioavailability, plant uptake [...] Read more.
With the increasing accumulation of plastic residues in agricultural ecosystems, microplastics (MPs) have emerged as a novel and pervasive environmental risk factor threatening sustainable agriculture. Compared to aquatic systems, our understanding of MP dynamics in agricultural soils—particularly their transport mechanisms, bioavailability, plant uptake pathways, and ecological impacts—remains limited. These knowledge gaps impede accurate risk assessment and hinder the development of effective mitigation strategies. This review critically synthesises current knowledge in the study of MPs within soil–plant systems. It examines how MPs influence soil physicochemical properties, plant physiological processes, toxicological responses, and rhizosphere interactions. It further explores the transport dynamics of MPs in soil–plant systems and recent advances in analytical techniques for their detection and quantification. The role of plant functional traits in mediating species-specific responses to MP exposure is also discussed. In addition, the review evaluates the ecological relevance of laboratory-based findings under realistic agricultural conditions, highlighting the methodological limitations imposed by pollution heterogeneity, complex exposure scenarios, and detection technologies. It also examines existing policy responses at both regional and global levels aimed at addressing MP pollution in agriculture. To address these challenges, we propose future research directions that include the integration of multi-method detection protocols, long-term and multi-site field experiments, the development of advanced risk modelling frameworks, and the establishment of threshold values for MP residues in edible crops. Additionally, we highlight the need for future policies to regulate the full life cycle of agricultural plastics, monitor soil MP residues, and integrate MP risks into food safety assessments. This review provides both theoretical insights and practical strategies for understanding and mitigating MP pollution in agroecosystems, supporting the transition toward more sustainable, resilient, and environmentally sound agricultural practices. Full article
Show Figures

Figure 1

35 pages, 1008 KiB  
Review
The Control of Nitrogen in Farmlands for Sustainability in Agriculture
by Gina Vasile Scăețeanu and Roxana Maria Madjar
Sustainability 2025, 17(12), 5619; https://doi.org/10.3390/su17125619 - 18 Jun 2025
Viewed by 527
Abstract
The accelerated growth of the global population and rising food demand place increasing pressure on agricultural systems. While fertilizers have improved crop yields, they have also contributed to environmental degradation due to nutrient overuse, particularly nitrogen. Effective nitrogen management is therefore critical for [...] Read more.
The accelerated growth of the global population and rising food demand place increasing pressure on agricultural systems. While fertilizers have improved crop yields, they have also contributed to environmental degradation due to nutrient overuse, particularly nitrogen. Effective nitrogen management is therefore critical for achieving sustainable agricultural practices. This study investigates nitrogen dynamics in soil and reviews key analytical methods for monitoring total, mineral, and organic nitrogen. It evaluates protocols and technologies—including sensor-based systems—designed to optimize nitrogen application and reduce losses. The study demonstrates that the application of nitrogen fertilizers based on soil analysis and exploratory simulations, supported by Artificial Intelligence (AI) and the Internet of Things (IoT), can reduce inputs without compromising yield or quality parameters. Enhanced nitrogen monitoring techniques can significantly contribute to the goals of the Nitrates Directive (91/676/EEC) and promote sustainable farming, especially in regions facing environmental and technical limitations. Adoption, however, depends on overcoming challenges such as sensor affordability and farmer training. In conclusion, it emphasizes the crucial role of nitrogen management in maintaining soil health, optimizing crop yields, and minimizing environmental impact, ensuring that farming practices remain both productive and sustainable for future generations. Full article
Show Figures

Graphical abstract

25 pages, 5012 KiB  
Article
Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches
by Maria Luisa Buchaillot, Henda Mahmoudi, Sumitha Thushar, Salima Yousfi, Maria Dolors Serret, Shawn Carlisle Kefauver and Jose Luis Araus
Remote Sens. 2025, 17(12), 2045; https://doi.org/10.3390/rs17122045 - 13 Jun 2025
Viewed by 323
Abstract
Cultivating crops in the hot, arid conditions of the Arabian Peninsula often requires irrigation with brackish water, which exposes plants to salinity and heat stress. Timely, cost-effective monitoring of plant health can significantly enhance crop management. In this context, remote sensing techniques offer [...] Read more.
Cultivating crops in the hot, arid conditions of the Arabian Peninsula often requires irrigation with brackish water, which exposes plants to salinity and heat stress. Timely, cost-effective monitoring of plant health can significantly enhance crop management. In this context, remote sensing techniques offer promising alternatives. This study evaluates several low-cost, ground-level remote sensing methods and compares them with benchmark analytical techniques for assessing salt stress in two economically important woody species, moringa and pomegranate. The species were irrigated under three salinity levels: low (2 dS m−1), medium (5 dS m−1), and high (10 dS m−1). Remote sensing tools included RGB, multispectral, and thermal cameras mounted on selfie sticks for canopy imaging, as well as portable leaf pigment and chlorophyll fluorescence meters. Analytical benchmarks included sodium (Na) accumulation, carbon isotope composition (δ13C), and nitrogen (N) concentration in leaf dry matter. As salinity increased from low to medium, canopy temperatures, vegetation indices, and δ13C values rose. However, increasing salinity from medium to high levels led to a rise in Na accumulation without further significant changes in other remote sensing and analytical parameters. In moringa and across the three salinity levels, the Normalized Difference Red Edge (NDRE) and leaf chlorophyll content on an area basis showed significant correlations with δ13C (r = 0.758, p < 0.001; r = 0.423, p < 0.05) and N (r = 0.482, p < 0.01; r = 0.520, p < 0.01). In pomegranate, the Normalized Difference Vegetation Index (NDVI) and chlorophyll were strongly correlated with δ13C (r = 0.633, p < 0.01 and r = 0.767, p < 0.001) and N (r = 0.832, p < 0.001 and r = 0.770, p < 0.001). Remote sensing was particularly effective at detecting plant responses between low and medium salinity, with stronger correlations observed in pomegranate. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

Back to TopTop