The Control of Nitrogen in Farmlands for Sustainability in Agriculture
Abstract
:1. Introduction
2. Nitrogen Forms in the Soil
2.1. Total Nitrogen
2.2. Mineral Nitrogen
2.3. Organic Nitrogen
2.4. Concluding Remarks on Nitrogen in Soil
3. Methods for Control of Nitrogen Levels in Soil
N | Soil Sample Preparation/Extraction | Quantification (Lab/Field Techniques) | Advantages (A) and Limitations (L) | Ref. |
---|---|---|---|---|
Total nitrogen | N is converted in NH4+ by digestion with H2SO4 conc. (Kjeldahl method) | Titration of NH3 resulted by distillation (lab technique) | A: Comprehensive for total nitrogen (organic + inorganic); accurate; widely used and accepted. L: Requires attention in handling hazardous chemicals (H2SO4); time consuming, laborious. | [14,50,51,52] |
Combustion in the presence of CuO at high temperature (600 °C) (Dumas method) | Resulting N2 is quantified using a thermal conductivity detector (lab technique). | A: Rapid, can measure total nitrogen (organic + inorganic); no reagents used; high precision; safer than Kjeldahl. L: Specialized expensive instruments. | [50,52] | |
Extraction with 0.025 M CaCl2 and digestion by Koroleff’s method | Spectrophotometric, on the basis of the protocol proposed by Merck (field technique) | A: Easy, precise measurement for total nitrogen. L: Total nitrogen test kits, reagents, and photometers need to be purchased. | [53,54] | |
The soil sample is subjected to the removal of grass and plant debris and other impurities. | Near-infrared spectroscopy (NIRS) technique (lab technique) | A: No chemicals; little sample preparation; non-destructive; provides real-time data. L: Extensive research on calibration models. | [55,56] | |
Soil samples are collected and air-dried, and plant residues and stones are removed from the soil. | Hyperspectral imaging technology (lab technique) | A: Rapid; accurate; allows the change in total nitrogen content in soil to be monitored in real time. L: Extensive calibration and validation; data interpretation requires specialized personnel. | [57,58,59] | |
Hydrolysable nitrogen | Acidic hydrolysis (0.5 N H2SO4 or 3 N, 6 N HCl) Alkaline hydrolysis (2% H3BO3 and 0.25 N NaOH) Oxidative hydrolysis (1 N KMnO4, 1 N H2SO4 or chromic acid) With hot water | Distillation, titration (lab technique) | A: Simple, no expensive equipment. L: Laborious, time-consuming. | [14,35,36,38,60,61] |
Ammonium nitrogen, NH4+-N | Extraction with saline solutions (2 N KCl, 0.1 N K2SO4, 1% K2SO4), distilled water using specific extraction ratios. Extraction with 2 M KCl, 0.1 M MgSO4 | Ammonium reacts with Nessler’s reagent to form a yellow color, which is measured spectrophotometrically (420 nm) (lab technique). | A: Simple, inexpensive. L: Limited sensitivity at low levels; interference from other species. | [14,61,62] |
A specific ion-selective electrode (ISE) measures the concentration of ammonium ions in the soil extract (lab technique). | A: Fast, easy to operate. L: Requires specific electrode and equipment; sensitivity could be affected by the presence of other ions in soil extract. | [63] | ||
Extraction with 2 M KCl | Spectrophotometric measurement at 636 nm of blue-colored compound resulted after the addition of phenol–nitroprusside and hypochlorite reagents to an aliquot of soil extract (lab technique). | A: Rapid, sensitive, accurate method; allows for the quantification of low levels of ammonium. L: Interference with other cations found in soil extract; long time for analysis. | [64] | |
Extraction with 1 M KCl | Rapid detection kit coupled with a microplate reader (lab technique) | A: Simple reagent preparation, convenient operation, shorter detection time (96 samples in 30 min). L: Suitable for paddy soils only. | [65] | |
Distilled water | Ammonium ions form with salicylic acid in the presence of sodium nitroprusside and sodium hypochlorite, a colored complex with absorption maxima at 697.5 nm (lab technique) | A: Suitable for trace amounts of ammonium, good selectivity. L: Interference with other ions from soil. | [66] | |
Nitrate nitrogen, NO3−-N | Extraction with saline solutions (2 N KCl, 0.1 N K2SO4, 1% K2SO4), distilled water using specific extraction ratios | Nitrate ions react with specific reagents (phenol-2,4-disulphonic acid method) to develop colored nitro derivatives that absorb the light at certain wavelengths (420 nm) (lab technique). | A: Simple, commonly used for measuring nitrate nitrogen. L: Laborious, time-consuming, requires attention with used reagents. | [14,62] |
Nitrate ions are reduced to nitrite on a cadmium column, and afterwards, nitrite ions are quantified spectrophotometrically after a diazotation reaction (lab technique). | A: Very sensitive, easy to operate. L: Careful handling due to the use of cadmium. | [14] | ||
Extraction with distilled water, deionized water | A specific ion-selective electrode (ISE) measures the concentration of nitrate ions in the soil extract (lab technique). | A: Fast, easy to operate, efficient measurement. L: Requires specific electrode and equipment; interference from other ions encountered in soil extract. | [67] | |
Extraction with 2 M KCl, 0.1 M MgSO4 | A specific ion-selective electrode (ISE) measures the concentration of nitrate ions in the soil extract (lab technique). | A: Fast, easy to operate. L: Requires specific electrode and equipment; sensitivity could be affected by the presence of other ions in soil extract. | [63] | |
Extraction with 2 M KCl and cation exchange resin (Ag+) for Cl− precipitation and removal | Ion chromatography (lab technique) | A: Sensitive, precise, rapid technique. L: Laborious, interference with other ions found in soil extract. Requires specialized equipment; more expensive and time-consuming than other methods. | [68,69] | |
Extraction with distilled water | Ion chromatography (lab technique) | A: Sensitive, precise, rapid technique. L: Laborious, interference with other ions found in soil extract. Requires specialized equipment; more expensive and time-consuming than other methods. | [48] | |
N-NO3−, N-NO2− | Extraction with 5–25 mM K2SO4, distilled water (ultrasonic assisted extraction) | Ion chromatography (portable device) (field technique) | A: Real-time monitoring, on-site analysis; allows for the analysis of soil samples with a high content of organic matter; non-hazardous reagents. L: Specialized expensive instruments. | [70] |
4. Literature Data on Nitrogen Levels in Different Soils
Region | Soil Texture; Depth; Other Details | Total Nitrogen, g kg−1 | Mineral Nitrogen, mg kg−1 | Ref. | |
---|---|---|---|---|---|
NH4+-N | NO3−-N | ||||
Brazil | 0–20 cm; p.s. | 0.6–2.2 | 15.4–170.7 | 0.6–23.9 | [40] |
Clay; 0–20 cm; o.s. | 1.18 | 13.7 | 0.68 | [37] | |
Loamy sand; 0–20 cm; o.s. | 0.82 | 18.6 | 0.89 | [37] | |
China | Clay loam; 0–20 cm; a.s. | 1.32 | - | - | [108] |
Clay loam; p.s. | 1.26 | - | - | [109] | |
a.s. | 1.06 | - | - | [110] | |
Ghana | 0–20 cm; a.s. | 1.4–5.1 | 15.9–42.7 | 23.1–46.2 | [41] |
Greece | 0–30 cm | 0.67–1.82 | 60–128 | [111] | |
Hungary | Sandy soil; 0–20 cm; a.s. | - | 6.8 | 12.5 | [112] |
Loamy soil; 0–30 cm; a.s. | 1.4 | - | - | [113] | |
Indonesia | p.s. | 1.1–1.7 | - | - | [114] |
Italy | 0–25 cm; a.s. | 1.27 | 6.45 | 12.14 | [115] |
Clay; 0–40 cm; a.s. | 0.8–1.9 | [116] | |||
Sandy; 0–40 cm; a.s. | 1.1–1.8 | [116] | |||
Sandy loam; 0–40 cm; a.s. | 0.05–0.15 | [116] | |||
Sandy silty clay; 0–40 cm; a.s. | 0.4–1.3 | [116] | |||
Silty loam; 0–40 cm; a.s. | 0.8–2.8 | [116] | |||
Loam; 0–40 cm; a.s. | 0.7–1.9 | [116] | |||
Sandy clay loam; 0–20 cm; o.s. | 1.34 | 12.51 | 67.68 | [117] | |
Sandy clay loam; 20–40 cm; o.s. | 1.13 | 9.78 | 39.36 | [117] | |
Loam; 0–10 cm; a.s. | 0.99 | 8.5 (including NO2−-N) | [118] | ||
Loam; 10–20 cm; a.s. | 0.93 | 18.2 (including NO2−-N) | [118] | ||
Loam; 20–30 cm; a.s. | 0.90 | 23 (including NO2−-N) | [118] | ||
Loam; 30–40 cm; a.s. | 0.89 | 18.1 (including NO2−-N) | [118] | ||
0–5 cm; a.s. | 1.0–2.5 | [119] | |||
5–30 cm; a.s. | 0.8–1.7 | [119] | |||
Lithuania | Loam; a.s. | 1.48 | 2.06 | 21.93 | [101] |
Sandy loam; a.s. | 1.51 | 1.33 | 35.99 | [101] | |
Sandy; a.s. | 0.13 | 0.98 | 0.76 | [101] | |
Sandy clay; a.s. | 1.20 | 3.68 | 37.92 | [101] | |
Poland | Sandy loams, loams, silt loams; a.s. | 0.4–0.8 | 0.9–1.9 | 4.3–15.1 | [120] |
Heavy loamy silty sand underlain by light loam; 0–25 cm; a.s. | 0.58 | 9.4 (including NO2−-N) | [61] | ||
0–30 cm; a.s. | - | 18.24–18.31 (including NO2−-N) | [61] | ||
0–25 cm; a.s. | 0.846 | 8.25 | 4.65 | [38] | |
0–25 cm; a.s. | 0.428 | 7.50 | 2.65 | [38] | |
Romania | 0–25 cm; a.s. | 2.9 | - | - | [121] |
Spain | Silt, silt loam, sandy loam; 0–5 cm; a.s. | 1.79 | [106] | ||
Thailand | 0–20 cm; a.s. | 1.7 | - | - | [55] |
Turkey | Clay loam; 0–25 cm; a.s. | 1.74 | - | - | [122] |
Clay loam; 0–25 cm; o.s. | 1.28 | - | - | [122] | |
Clay; 0–25 cm; a.s. | 1.13 | - | - | [122] | |
Sandy loam; 0–25 cm; a.s. | 0.57 | - | - | [122] | |
0–20 cm; a.s. | 1.38 | [123] |
5. Sustainable Approaches for Nitrogen Management in Agriculture
Fertilizer | Total N, % | Organic N, g kg−1 | NH4+-N, g kg−1 | Ref. |
---|---|---|---|---|
Plant based-organic fertilizers | ||||
Algae fertilizer | 2.60 | - | - | [148] |
Crop residue compost | 1.20 | 12 | - | [149] |
2.43 | - | - | [150] | |
Green compost (fresh) | 2.12 | - | - | [151] |
Green compost (matured) | 1.44 | - | - | [151] |
Green seaweed fertilizer | 3.12 | - | - | [152] |
Seaweed fertilizer (fermented) | 1.88 | - | - | [153] |
Animal-based organic fertilizers | ||||
Beef manure | 0.92 | - | 1.80 | [154] |
2.60 | - | - | [155] | |
Blood meal fertilizer | 11.06 | - | 0.10 | [156] |
15.50 | - | - | [157] | |
Cattle manure | 0.92 | - | - | [158] |
1.99 | - | - | [159] | |
Cattle manure (composted) | 0.86 | - | 0.50 | [154] |
Cattle manure (liquid) | 0.26–0.33 | 1.10–2.20 | 1.50–2.00 | [160] |
Chicken manure | - | 21–40 | - | [161] |
4.60 | - | - | [155] | |
8.57 | - | - | [162] | |
5.54 | [163] | |||
Chicken manure (compost) | 4.47 | - | - | [164] |
Dairy manure | - | 9–24 | - | [165] |
0.72 | - | 1.50 | [154] | |
2.00–2.90 | - | - | [155] | |
Dairy manure compost | 1.50 | 14 | - | [149] |
1.90–2.10 | - | - | [155] | |
Farmyard manure | 1.86 | - | - | [151] |
0.55 | - | - | [164] | |
2.10 | - | - | [163] | |
Feather meal fertilizer | 13.01 | - | - | [156] |
14.40 | - | - | [157] | |
Fish emulsion | 0.045 | - | - | [157] |
Goat manure | - | 14–23 | - | [161] |
1.04 | - | 2.80 | [154] | |
Hog manure | 0.93 | - | 2.90 | [154] |
Horse manure | 0.50 | - | 0.70 | [154] |
- | 18–21 | - | [161] | |
Ostrich manure | - | 13–19 | - | [161] |
Pig manure | - | 17–26 | - | [161] |
3.90 | - | - | [155] | |
Poultry manure | 2.09 | - | - | [157] |
3.89 | - | - | [158] | |
2.71 | - | 6.00 | [154] | |
Poultry manure (pellet) | 4.00 | - | - | [166] |
4.70 | 39 | - | [149] | |
5.19 | - | 1.70 | [156] | |
Poultry manure compost | 2.60–3.80 | 24–36 | - | [149] |
Poultry manure liquid | 0.75–0.80 | 0.40–1.30 | 6.60–7.10 | [160] |
Rabbit manure | - | 16–18 | - | [161] |
Sheep manure | 0.87 | - | 2.80 | [154] |
- | 14–24 | - | [155] | |
2.30 | - | - | [155] | |
Sheep/goat manure | 1.45 | - | - | [159] |
Shrimp meal fertilizer | 5.69 | - | 0.10 | [156] |
Swine manure | 2.02 | - | - | [159] |
Turkey manure | 2.53 | - | 8.30 | [154] |
Veal manure (grain-fed) | 0.79 | - | 1.40 | [154] |
Other organic sources | ||||
Vermicompost | 2.20 | - | - | [167] |
1.50 | - | - | [148] | |
0.95 | - | - | [165] | |
Guano | 20.70 | 5.64 | 0.39 | [168] |
Insect’s frass (pellet) | 3.00 | - | - | [166] |
Organic fertilizers from tannery and slaughterhouse by-products | 2.78–14.80 | <0.10 | 0.30–6.00 | [169] |
Leonardite | 2.10 | - | - | [165] |
Vinasse-based fertilizers (pellet) | 6.00 | - | - | [166] |
6. Conclusions and Future Prospects
- -
- Developing low-cost, user-friendly nitrogen sensors for wider adoption, particularly in smallholder and developing-country contexts;
- -
- Evaluating the long-term impacts of integrated nutrient strategies across diverse soil types and textures, multiple crops, a range of fertilizers, and varying climatic conditions;
- -
- The development of enhanced-efficiency fertilizers and organic alternatives that further contribute to reducing nitrogen losses;
- -
- Investigating behavioral and economic barriers to the adoption of precision technologies;
- -
- Establishing region-specific thresholds and indicators aligned with policies such as the EU Nitrates Directive.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Madjar, R. Agrochemistry, Plant and Soil; INVEL-Multimedia: Ilfov, Romania, 2008. (In Romanian) [Google Scholar]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, Q.; Zhao, C.; Wang, L.; Li, Y.; Ma, X.; Guo, J.; Yang, H. Identification of nitrate sources in rivers in a complex catchment using a dual isotopic approach. Water 2021, 13, 83. [Google Scholar] [CrossRef]
- Madjar, R.M.; Vasile Scăețeanu, G.; Sandu, M.A. Nutrient water pollution from unsustainable patterns of agricultural systems, effects and measures of integrated farming. Water 2024, 16, 3146. [Google Scholar] [CrossRef]
- Mim, J.J.; Rahman, M.; Khan, F.; Paul, D.; Sikder, S.; Das, H.P.; Khan, S.; Orny, N.T.; Shuvo, R.H.; Hossain, N. Towards smart agriculture through nano-fertilizer—A review. Mater. Today Sustain. 2025, 30, 101100. [Google Scholar] [CrossRef]
- Kumar, B.; Shaloo; Bisht, H.; Meena, M.C.; Dey, A.; Dass, A.; Paramesh, V.; Babu, S.; Upadhyay, P.K.; Prajapati, V.K.; et al. Nitrogen management sensor optimization, yield, economics, and nitrogen use efficiency of different wheat cultivars under varying nitrogen levels. Front. Sustain. Food Syst. 2023, 7, 1228221. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Tselykh, A.; Bozhenyuk, A.; Choudhury, T.; Alomar, M.A.; Sanchez-Chero, M. Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sci. 2023, 18, 20220713. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A review of the risks associated with the inefficiency of its use and policy responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Luo, F.; Yan, X.-J.; Hu, X.-F.; Yan, L.-J.; Cao, M.-Y.; Zhang, W.-J. Nitrate quantification in fresh vegetables in Shanghai: Its dietary risks and preventive measures. Int. J. Environ. Res. Public Health 2022, 19, 14487. [Google Scholar] [CrossRef]
- Luetic, S.; Knezovic, Z.; Jurcic, K.; Majic, Z.; Tripkovic, K.; Sutlovic, D. Leafy vegetable nitrite and nitrate content: Potential health effects. Foods 2023, 12, 1655. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Pang, T.; Neokye, E.O. A review of greenhouse gas emissions from agricultural soil. Sustainability 2024, 16, 4789. [Google Scholar] [CrossRef]
- Ravikumar, S.; Villingiri, G.; Sellaperumal, P.; Pandian, K.; Sivasankar, A.; Sangchul, H. Real-time nitrogen monitoring and management to augment N use efficiency and ecosystem sustainability—A review. J. Hazard. Mater. Adv. 2024, 16, 100466. [Google Scholar] [CrossRef]
- Davidescu, D.; Davidescu, V.; Calancea, L.; Handra, M.; Petrescu, O. Nitrogen in Agriculture; Academy Publishing House: Bucharest, Romania, 1976. (In Romanian) [Google Scholar]
- Dincă, L.; Dincă, M. The characteristics of forest soils from Covasna County. Sci. Pap. Agron. Ser. 2021, 64, 123–126. [Google Scholar]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve ‘Marchesale’ (Calabria region, southern Italy). J. Maps 2017, 13, 91–99. [Google Scholar] [CrossRef]
- Lixandru, G.; Calancea, L.; Caramete, C.; Borlan, Z.; Goian, M.; Hera, C.; Rauta, C. Agrochemistry; Didactic and Pedagogic Publishing House: Bucharest, Romania, 1990. (In Romanian) [Google Scholar]
- Munch, J.C.; Velthof, G. Denitrification and agriculture. In Biology of the Nitrogen Cycle; Bothe, H., Ferguson, S.J., Newton, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Zhum, X.; Fu, W.; Kong, X.; Chen, C.; Liu, Z.; Chen, Z.; Zhou, J. Nitrate accumulation in the soil profile is the main fate of surplus nitrogen after land-use change from cereal cultivation to apple orchards on the Loess Plateau. Agric. Ecosyst. Environ. 2021, 319, 107574. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, Z.; Huang, C.; Chen, B.; Yang, R. Nitrate accumulation in leafy vegetables and its relationship with water. J. Soil Sci. Plant Nutr. 2014, 14, 761–768. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Sheng, H.; Wang, X.; Zhao, H.; Feng, K. Excessive nitrogen fertilizer application causes rapid degradation of greenhouse soil in China. Pol. J. Environ. Stud. 2022, 31, 1527–1534. [Google Scholar] [CrossRef]
- Awadelkareem, W.; Haroun, M.; Wang, J.; Qian, X. Nitrogen interactions cause soil degradation in greenhouses: Their relationship to soil preservation in China. Horticulturae 2023, 9, 340. [Google Scholar] [CrossRef]
- Sandu, M.A.; Vîrsta, A.; Vasile Scăețeanu, G.; Nicolae, C.G.; Iliescu, A.I.; Ivan, I.; Stoian, M.; Madjar, R.M. Water quality monitoring of Moara Domnească pond, Ilfov County, using UAV-based RGB imaging. AgroLife Sci. J. 2023, 12, 191–201. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water and increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/eli/dir/1991/676/oj (accessed on 23 March 2025).
- Mosaad, I.; El-Samit, R.; Seadh, A.; Abdelhamied, A.; Mustafa, A.; Elshikh, M. Quantitative nitrate leaching relationship models based on nitrogen fertilization and the intervals between maize irrigations in the salt-affected soil. J. King Saud Univ. Sci. 2024, 36, 103187. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, J.; Zhang, Z.; Abdelrahman, A.M.; Gao, Q. Effect of different fertilization managements on nitrate accumulation in a Mollisol of Northeast China. Biol. Technol. Agric. 2016, 3, 16. [Google Scholar] [CrossRef]
- Abdelkader, M.; Zargar, M.; Bayat, M.; Pakina, E.; Shehata, A.S.A.; Suliman, A.A. Biogenic nano-fertilizers as a sustainable approach to alleviate nitrate accumulation and enrich quality traits of vegetable crops. Horticulturae 2024, 10, 789. [Google Scholar] [CrossRef]
- Farzadfar, S.; Knight, D.; Congreves, K. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant Soil 2021, 462, 7–23. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Manuel, D.-B.; De Beeck, M.O.; Shahbaz, M.; Chen, Y.; Deng, X.; Xu, Z.; Liu, Z. Rotation cropping and organic fertilizer jointly promote soil health and crop production. J. Environ. Manag. 2022, 315, 115190. [Google Scholar] [CrossRef]
- Walworth, J. Nitrogen in Soil and the Environment; AZ1591 2013; The University of Arizona, College of Agriculture and Life Sciences: Tucson, AZ, USA, 2013. [Google Scholar]
- Da Silva, E.F.; Ferreira Melo, M.; Santos Sombra, K.E.; Severo Silva, T.; Ferreira de Freitas, D.; Da Costa, M.A.; Da Silva Santos, E.P.; Fernandes da Silva, L.; Pereira Serra, A.; De Morais Cavalcante Neitzke, P.R. Organic nitrogen in agricultural systems. In Nitrogen Fixation; Rigobelo, E.C., Pereira Serra, A., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Näsholm, T.; Huss-Danell, K.; Högberg, P. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 2000, 81, 1155–1161. [Google Scholar] [CrossRef]
- Näsholm, T.; Huss-Danell, K.; Högberg, P. Uptake of glycine by field grown wheat. New Phytol. 2002, 150, 59–63. [Google Scholar] [CrossRef]
- Kelley, K.R.; Stevenson, F.J. Forms and nature of organic N in soil. Fertil. Res. 1995, 42, 1–11. [Google Scholar] [CrossRef]
- Stevenson, F.J. Organic forms of soil nitrogen. In Nitrogen in Agricultural Soils; Stevenson, F.J., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America Inc.: Madison, WI, USA, 1982; Volume 22, pp. 67–122. [Google Scholar]
- Adame, C.R.; Carlos, R.S.; Braos, L.B.; Ferreira, M.E.; da Cruz, M.C.P. Organic nitrogen forms in soils treated with cattle manure. Nitrogen 2024, 5, 91–105. [Google Scholar] [CrossRef]
- Mazur, Z.; Mazur, T. Effects of long-term organic and mineral fertilizer applications on soil nitrogen content. Pol. J. Environ. Stud. 2015, 24, 2073–2078. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Xue, T.; Chen, X.; Fu, Y. Effects of land-use changes on soil organic nitrogen fractions in the black soil region on Northeast China. Soil Use Manag. 2023, 39, 805–816. [Google Scholar] [CrossRef]
- Drescher, G.L.; Da Silva, L.S.; Sarfaraz, Q.; Dal Molin, G.; Marzari, L.B.; Lopes, A.F.; Cella, C.; Facco, D.B.; Hammerschitt, R.K. Alkaline hydrolysable nitrogen and properties that dictate its distribution in paddy soil profiles. Pedosphere 2020, 30, 326–335. [Google Scholar] [CrossRef]
- Dodor, D.E.; Kamara, M.S.; Asamoah-Bediako, A.; Adiku, S.G.K.; MacCarthy, D.S.; Kumahor, S.K.; Neina, D. Evaluation of alkaline hydrolyzable organic nitrogen as an index of nitrogen mineralization potential of some coastal savannah soils of Ghana. Nitrogen 2022, 3, 652–662. [Google Scholar] [CrossRef]
- Davidescu, D.; Davidescu, V. Evaluation of Fertility by Plant and Soil Analysis; Abacus Press: London, UK, 1982; pp. 437–438. [Google Scholar]
- Pereira, M.G.; Espindula, A.; Valladares, G.S.; Cunha don Anjos, L.H.; De Melo Benites, V.; Schultz, N. Comparison of total nitrogen methods applied for histosols and soil horizons with high organic matter content. Commun. Soil Sci. Plant Anal. 2006, 37, 939–943. [Google Scholar] [CrossRef]
- Gautam, V.P.; Mishra, S.; Ahmed, H. Comparison of total nitrogen estimations by Kjeldahl method and CHNS analyzer in dry tropical grassland. Int. J. Plant Environ. 2023, 9, 180–182. [Google Scholar] [CrossRef]
- Ren, B.; Ma, Z.; Zhao, B.; Liu, P.; Zhang, J. Nitrapyrin mitigates nitrous oxide emissions, and improves maize yield and nitrogen efficiency under waterlogged field. Plants 2022, 11, 1983. [Google Scholar] [CrossRef]
- Bailey, T.; Robinson, N.; Farrell, M.; Macdonald, B.; Weaver, T.; Antille, D.; Chin, A.; Brackin, R. Storage of soil samples leads to over-representation of the contribution of nitrate to plant-available nitrogen. Soil Res. 2022, 60, 22–32. [Google Scholar] [CrossRef]
- Allende-Montalban, R.; San-Juan-Heras, R.; Martin-Lammerding, D.; Del Mar Delgado, M.; Del Mar Albarran, M.; Gabriel, J. The soil sample conservation method and its potential impact on ammonium, nitrate and total mineral nitrogen measurements. Geoderma 2024, 448, 116963. [Google Scholar] [CrossRef]
- Wada, S.I.; Odahara, K.; Gunjikake, N.; Takada, S. Prediction of nitrate and chloride ion concentrations in soil solution using water extracts. Soil Sci. Plant Nutr. 2006, 52, 1–4. [Google Scholar] [CrossRef]
- Garmay, A.; Oskolok, K.; Monogarova, O.; Demidov, M. Determination of ammonium and nitrate in soils by digital colorimetry. Environ. Monit. Assess. 2024, 196, 948. [Google Scholar] [CrossRef]
- Nelson, D.; Sommers, L. Total nitrogen analysis of soil and plant tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Nitrogen–Kjeldahl Method. Rome. 2021. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/17a0e476-f796-4608-a869-295a367c0b56/content (accessed on 17 April 2025).
- Mot, A.; Ion, V.A.; Madjar, R.M.; Badulescu, L. Dynamic Pregl-Dumas technique applied in nitrogen determination from inputs used in organic agriculture. Sci. Papers. Ser. A Agron. 2022, LXV, 105–110. [Google Scholar]
- Koroleff, F. Determination of Total Nitrogen in Natural Waters by Means of Persulfate Oxidation; ASC 1969–C–Hydrography Committee Report; ICES: Copenhagen, Denmark, 1969. [Google Scholar] [CrossRef]
- Merck. Available online: https://www.sigmaaldrich.com/RO/en/technical-documents/protocol/analytical-chemistry/photometry-and-reflectometry/determination-of-total-nitrogen-in-soil (accessed on 6 April 2025).
- Santasup, N.; Theanjumpol, P.; Santasup, C.; Kittiwachana, S.; Mawan, N.; Prantong, L.; Khongdee, N. Development of near-infrared spectroscopy for estimating organic matter, total carbon, and total nitrogen in agricultural soil. MethodsX 2024, 13, 102798. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; You, W.; Tian, S.; Xiao, T.; Wang, M.; Zheng, B.; Luo, L. Soil nitrogen content detection based on near-infrared spectroscopy. Sensors 2022, 22, 8013. [Google Scholar] [CrossRef]
- Li, H.; Jia, S.; Le, Z. Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors 2019, 19, 4355. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.; Wang, J.; Pan, R.; He, F.; Yan, L.; Xiao, J. Rapid detection of total nitrogen content in soil based on hyperspectral technology. Inf. Process. Agric. 2022, 9, 566–574. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lee, J.-E.; Back, I.; Lim, K.J.; Mo, C. Estimation of total nitrogen content in topsoil based on machine and deep learning using hyperspectral imaging. Agriculture 2023, 13, 1975. [Google Scholar] [CrossRef]
- Gotoh, S.; Araragi, M.; Koga, H.; Ono, S.I. Hydrolysable organic forms of nitrogen in some rice soil profiles as affected by organic matter application. Soil Sci. Plant Nutr. 1986, 32, 535–550. [Google Scholar] [CrossRef]
- Sądej, W.; Przekwas, K. Fluctuations of nitrogen levels in soil profile under conditions of a long-term fertilization experiment. Plant Soil Environ. 2008, 54, 197–203. [Google Scholar] [CrossRef]
- Kuśmierz, S.; Skowrońska, M.; Tkaczyk, P.; Lipiński, W.; Mielniczuk, J. Soil organic carbon and mineral nitrogen contents in soils as affected by their ph, texture and fertilization. Agronomy 2023, 13, 267. [Google Scholar] [CrossRef]
- Fayose, T.; Thomas, E.; Radu, T.; Dillingham, P.; Ullah, S.; Radu, A. Concurrent measurement of nitrate and ammonium in water and soil samples using ion-selective electrodes: Tackling sensitivity and precision issues. Anal. Sci. Adv. 2021, 2, 2790288. [Google Scholar] [CrossRef] [PubMed]
- Dorich, R.A.; Nelson, D.W. Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Sci. Soc. Am. J. 1983, 47, 8330836. [Google Scholar] [CrossRef]
- Liu, X.; Wu, D.; Abid, A.A.; Liu, Y.; Zhou, J.; Zhang, Q. Determination of paddy soil ammonia nitrogen using rapid detection kit coupled with microplate reader. Toxics 2022, 10, 725. [Google Scholar] [CrossRef]
- Qiu, X.-C.; Liu, G.-P.; Zhu, Y.-Q. Determination of water-soluble ammonium ion in soil by spectrophotometry. Analyst 1987, 112, 909–911. [Google Scholar] [CrossRef]
- Sibley, K.J.; Brewster, G.; Astatkie, T.; Adsett, J.; Struik, P. In-field measurement of soil nitrate using an ion-selective electrode. In Advances in Measurement Systems; From the Edited Volume; Sharma, M., Ed.; IntechOpen: London, UK, 2010. [Google Scholar]
- Stewart, B.M. Ion chromatographic determination of nitrate in 2M KCl soil extracts. J. Soil Sci. 1987, 38, 415–419. [Google Scholar] [CrossRef]
- Du Preez, C.C.; Laubscher, D.J.; Toit, P.J. Determination of nitrate in 2.0 M KCl soil extracts using ion chromatography. Commun. Soil Sci. Plant Anal. 1989, 20, 113–120. [Google Scholar] [CrossRef]
- Mai, Y.; Ghiasvand, A.; Gupta, V.; Edwards, S.; Cahoon, S.; Debruille, K.; Mikhail, I.; Murray, E.; Paull, B. Application of a portable ion chromatograph for real-time field analysis of nitrite and nitrate in soils and soil pore waters. Talanta 2024, 274, 126031. [Google Scholar] [CrossRef]
- Maggini, R.; Carmassi, G.; Incrocci, L.; Pardossi, A. Evaluation of quick test kits for the determination of nitrate, ammonium and phosphate in soil and hydroponic nutrient solutions. Agrochimica 2010, LIV, 331–341. [Google Scholar]
- Thomsen, E.O.; Reeve, J.R.; Culumber, C.M.; Alston, D.G.; Newhall, R.; Cardon, G. Simple soil tests for on-site evaluation of soil health in orchards. Sustainability 2019, 11, 6009. [Google Scholar] [CrossRef]
- Joly, M.; Marlet, M.; Barreau, D.; Jourdan, A.; Durieu, C.; Launay, J.; Temple-Boyer, P. Monitoring of ammonium and nitrate ions in soil using ion-sensitive potentiometric microsensors. Sensors 2024, 24, 7143. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Qian, M.; Liu, J.; Fang, Y. Low cost, portable voltammetric sensors for rapid detection of nitrate in soil. Electrochim. Acta 2023, 446, 142077. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical soil nitrate sensor for in situ real-time monitoring. Micromachines 2023, 14, 1314. [Google Scholar] [CrossRef] [PubMed]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed potentiometric nitrate sensors for use in soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Smith, K.A. The rapid determination of nitrate at low concentrations in soil extracts: Comparison of ion-selective electrode with continuous-flow analysis. Commun. Soil Sci. Plant. Anal. 1984, 15, 1437–1451. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Chen, M.; Wang, M.; Zhang, M. An ISE-based on-site soil nitrate nitrogen detection system. Sensors 2019, 19, 4669. [Google Scholar] [CrossRef]
- Ali, M.A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N.; Moru, S.; Castellano, M.; Schnable, J.; Schnable, P.; Dong, L. Continuous monitoring of soil nitrate using a miniature sensor with poly(3-octyl-thiophene) and molybdenum disulfide nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 29195–29206. [Google Scholar] [CrossRef]
- Szeles, A.; Huzsvai, L.; Mohammed, S.; Nyeki, A.; Zagyi, P.; Horvath, E.; Simon, K.; Arshad, S.; Tamas, A. Precision agricultural technology for advanced monitoring of maize yield under different fertilization and irrigation regimes: A case study in Eastern Hungary (Debrecen). J. Agric. Food Res. 2024, 15, 100967. [Google Scholar] [CrossRef]
- Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An approach to precise nitrogen management using hand-held crop sensor measurements and winter wheat yield mapping in a Mediterranean environment. Sensors 2015, 15, 5504–5517. [Google Scholar] [CrossRef]
- Vikuk, V.; Spirkaneder, A.; Noack, P.; Duemig, A. Validation of a sensor-system for real-time measurement of mineralized nitrogen in soils. Smart Agric. Technol. 2024, 7, 100390. [Google Scholar] [CrossRef]
- Steiger, A.; Qaswar, M.; Bill, R.; Mouazen, A.; Grenzdörffer, G. Comparing the hanfheld Stenon FarmLab soil sensor with a Vis-NIR multi-sensor soil sensing platform. Smart Agric. Technol. 2025, 10, 100717. [Google Scholar] [CrossRef]
- Lavanya, V.; Nayak, A.; Deb Roy, P.; Dasgupta, S.; Dey, S.; Li, B.; Weindorf, D.C.; Chakraborty, S. A smartphone-enabled imaging device for chromotropic acid-based measurement of nitrate in soil samples. Sensors 2023, 23, 7345. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Han, X.; Hu, R.; Yu, J.; Yan, X.; Xu, J. Research on soil inorganic nitrogen detection technology based on dielectric response. Sustainability 2025, 17, 2491. [Google Scholar] [CrossRef]
- Choi, W.-J.; Kwak, J.-H.; Lim, S.-S.; Park, H.-J.; Chang, S.; Lee, S.-M.; Arshad, M.; Yunm, S.-I.; Kim, H.-Y. Synthetic fertilizer and livestock manure differently affect δ15N in the agricultural landscape: A review. Agric. Ecosyst. Environ. 2017, 237, 1–15. [Google Scholar] [CrossRef]
- Mariotti, A.; Germon, J.C.; Leclerc, A. Nitrogen isotope fractionation associated with the NO2−→N2O step of the denitrification in soils. Can. J. Soil Sci. 1982, 62, 227–241. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Li, X. Using stable nitrogen isotope to indicate soil nitrogen dynamics under agricultural soil erosion In the Mun River basin, Northeast Thailand. Ecol. Indic. 2021, 128, 107814. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qun, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A.; Knöller, K.; Brouyére, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Mashaba-Munghemezulu, Z.; Chirima, G.J.; Munghemezulu, C. Modeling the spatial distribution of soil nitrogen content at smallholder maize farms using machine learning regression and Sentinel-2 data. Sustainability 2021, 13, 11591. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, M.; Zhang, Y.; Mao, D.; Li, F.; Wu, F.; Song, J.; Li, X.; Kou, C.; Li, C.; et al. Comparison of machine learning methods for predicting soil total nitrogen content using Landsat-8, Sentinel-1, and Sentinel-2 images. Remote Sens. 2023, 15, 2907. [Google Scholar] [CrossRef]
- Charishma, D.S.; Kuligod, V.B.; Gundlur, S.S.; Potdar, M.P.; Doddamani, M.B.; Nagaveni, H.C. Estimation of top soil properties by Sentinel-2 imaging. Geol. Ecol. Landsc. 2024, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Bao, N.; Li, W.; Liu, S.; Fu, Y.; Mao, Y. Soil nutrient estimation and mapping in farmland based on UAV imaging spectrometry. Sensors 2021, 21, 3919. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.A.; Diwakar, P.K.; Ragi, S. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Sci. Rep. 2021, 11, 12693. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Sherrell, J.; Emami, A.; Khaleghian, M. Application of artificial intelligence and sensor fusion for soil organic matter prediction. Sensors 2024, 24, 2357. [Google Scholar] [CrossRef] [PubMed]
- Schard, P.C.; Schmidt, J.P.; Kitchen, N.R.; Sudduth, K.A.; Hong, S.Y.; Lory, J.A.; Davis, J.G. Remote sensing for nitrogen management. J. Soil Water Conserv. 2002, 57, 518–524. [Google Scholar] [CrossRef]
- Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C.; Dalgaard, T.; Van Dijk, C.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; et al. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes. Biogesciences 2013, 10, 6279–6307. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Veeranampalayam Sivukumar, A.-N.; Schachtman, D. Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Front. Plant Sci. 2018, 9, 1406. [Google Scholar] [CrossRef]
- Croft, H.; Arabian, J.; Chen, J.; Shang, J.; Liu, J. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precis. Agric. 2020, 21, 856–880. [Google Scholar] [CrossRef]
- Swify, S.; Mažeika, R.; Volungevičius, J. Mineral nitrogen release patterns in various soil and texture types and the impact of urea and coated urea potassium humate on barley biomass. Soil Syst. 2023, 7, 102. [Google Scholar] [CrossRef]
- Sapek, B. Impact of soil pH on nitrogen mineralization in grassland soils. In Progress in Nitrogen Cycling Studies. Developments in Plant and Soil Sciences; Van Cleemput, O., Hofman, G., Vermoesen, A., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 68, pp. 271–276. [Google Scholar]
- Du, L.; Zhong, H.; Guo, X.; Li, H.; Xia, J.; Chen, Q. Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. Sci. Total Environ. 2024, 951, 175561. [Google Scholar] [CrossRef]
- Mocanu, V.; Voicu, V.; Dumitru, S.; Ignat, P.; Mocanu, V. The influence of mixed grass/legume pastures in crop rotation on soil quality—A study case on a cambisol from Southern Transylvania (Romania). AgroLife Sci. J. 2016, 5, 138–143. [Google Scholar]
- Lorenz, K.; Omondi, E.; Lal, R.; Das, S.; Smith, A. Soil organic carbon and total nitrogen after 34 years under conventional and organic management practices at the Rodale Institute Farming Systems Trial. Soil Sci. Soc. Am. J. 2025, 89, e14165. [Google Scholar] [CrossRef]
- Vidal, M.M.; Almendro-Candel, M.B.; Navarro-Pedreño, J. Carbon and nitrogen stocks in topsoil under different land use/land cover types in the Southeast of Spain. AgriEngineering 2024, 6, 396–408. [Google Scholar] [CrossRef]
- Spohn, M.; Stendahl, J. Soil carbon and nitrogen contents in forest soils are related to soil texture in interaction with pH and metal cations. Geoderma 2024, 441, 116746. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Zang, Q.; Li, Y.; Zhao, J.; Lu, X.; Jiang, M.; Zhuang, H.; Huang, L. The effects of cultivation patterns and nitrogen levels on fertility and bacterial community characteristics of surface and subsurface soil. Front. Microbiol. 2023, 14, 1072228. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chen, W.-Q.; Jiao, Y.-Q.; Yang, R.; Niu, L.-L.; Chen, X.-R.; Ji, C.-Y.; Yin, D.-X. Effects of nitrogen fertilizer application on soil properties and arsenic mobilization in paddy soil. Sustainability 2024, 16, 5565. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Sun, X.; Yan, J.; Sun, Y.; Liu, P.; Chen, J. Mapping topsoil total nitrogen using random forest and modified regression kriging in agricultural areas of Central China. Plants 2023, 12, 1464. [Google Scholar] [CrossRef]
- Simonis, A.; Setatou, H. Investigations on nitrogen dynamics in red Mediterranean soils of Greece. In Proceedings of the World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 131–133. [Google Scholar]
- Kincses, I.; Melendez, J.R.; Ramírez-Cando, L.; Burbano-Salas, D.; Lowy, D.; Nevarez, G.C.; Talledo Solorzano, V.; Arteaga, J.M.; Mendoza, B.; Sandor, Z. Soluble nitrogen forms in sand soil of Pallag: A quantitative report. F1000Research 2020, 9, 781. [Google Scholar] [CrossRef]
- Balla Kovács, A.; Juhász, E.K.; Béni, Á.; Kincses, I.; Tállai, M.; Sándor, Z.; Kátai, J.; Rátonyi, T.; Kremper, R. Changes in microbial community and activity of chernozem soil under different management systems in a long-term field experiment in Hungary. Agronomy 2024, 14, 745. [Google Scholar] [CrossRef]
- Wibowo, H.; Kasno, A. Soil organic carbon and total nitrogen dynamics in paddy soils on the Java Island, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012192. [Google Scholar] [CrossRef]
- Zilio, M.; Pigoli, A.; Rizzi, B.; Goglio, A.; Tambone, F.; Giordano, A.; Maretto, L.; Squartini, A.; Stevanato, P.; Meers, E.; et al. Nitrogen dynamics in soils fertilized with digestate and mineral fertilizers: A full field approach. Sci. Total Environ. 2023, 868, 161500. [Google Scholar] [CrossRef]
- Benedetti, A.; Sebastiani, G. Determination of potentially mineralizable nitrogen in agricultural soil. Biol. Fertil. Soils 1996, 21, 114–120. [Google Scholar] [CrossRef]
- Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil nitrogen and weed biodiversity: An assessment under two orchard floor management practices in a nitrogen vulnerable zone in Italy. Horticulturae 2020, 6, 96. [Google Scholar] [CrossRef]
- Papini, R.; Valboa, G.; Piovanelli, C.; Brandi, G. Nitrogen and phosphorus in a loam soil of Central Italy as affected by 6 years of different tillage systems. Soil Tillage Res. 2007, 92, 175–180. [Google Scholar] [CrossRef]
- Badagliacca, G.; Romeo, M.; Lo Presti, E.; Gelsomino, A.; Monti, M. Factors governing total and permanganate oxidizable c pools in agricultural soils from Southern Italy. Agriculture 2020, 10, 99. [Google Scholar] [CrossRef]
- Podlasek, A.; Koda, E.; Vaverková, M.D. The variability of nitrogen forms in soils due to traditional and precision agriculture: Case studies in Poland. Int. J. Environ. Res. Public Health 2021, 18, 465. [Google Scholar] [CrossRef]
- Moigradean, D.; Lazureanu, A.; Poiana, M.-A.; Harmanescu, M.; Gogoasa, I.; Gergen, I. The influence of mineral fertilization about nitrogen content in soil, plant and tomato fruit. Bull. UASVM Hortic. 2008, 65, 172–177. [Google Scholar]
- Mayes, M.; Marin-Spiotta, E.; Szymanski, L.; Erdogan, A.; Ozdogan, M.; Clayton, M. Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey. Geoderma 2014, 232–234, 517–527. [Google Scholar] [CrossRef]
- Uygur, V.; Irvem, A.; Karanlik, S.; Akis, R. Mapping of total nitrogen, available phosphorus and potassium in Amik Plain, Turkey. Environ. Earth Sci. 2010, 59, 1129–1138. [Google Scholar] [CrossRef]
- Sandu, M.A.; Madjar, R.M.; Preda, M.; Vîrsta, A.; Stavrescu-Bedivan, M.-M.; Vasile Scăețeanu, G. Assessment of Water Quality and Parasitofauna, and a Biometric Analysis of the Prussian Carp of the Romanian Lentic Ecosystem in Moara Domnească, Ilfov County. Water 2023, 15, 3978. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Freidenreich, A.; Barraza, G.; Jayachandran, K.; Khoddamzadeh, A.A. Precision agriculture application for sustainable nitrogen management of Justicia brandegeana using opti-cal sensor technology. Agriculture 2019, 9, 98. [Google Scholar] [CrossRef]
- Van Alphen, B.J. Precision nitrogen fertilization: A case study for Dutch arable farming. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Roma, E.; Laudicina, V.A.; Vallone, M.; Catania, P. Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves. Agronomy 2023, 13, 324. [Google Scholar] [CrossRef]
- AL Aasmi, A.; Li, J.; Hamoud, Y.A.; Lan, Y.; Alordzinu, K.E.; Appiah, S.A.; Shaghaleh, H.; Sheteiwy, M.; Wang, H.; Qiao, S.; et al. Impacts of slow-release nitrogen fertilizer rates on the morpho-physiological traits, yield, and nitrogen use efficiency of rice under different water regimes. Agriculture 2022, 12, 86. [Google Scholar] [CrossRef]
- Maduro Dias, C.; Machado, M.; Nunes, H.; Borba, A.; Madruga, J.; Monjardino, P. Nitrogen fertilization using conventional and slow-release fertilizers at multiple levels in Lolium multiflorum Lam. pastures. Agronomy 2024, 14, 2191. [Google Scholar] [CrossRef]
- Abhiram, G. Slow-Release Fertilisers Con-trol N Losses but negatively impact on agronomic performances of pasture: Evidence from a meta-analysis. Nitrogen 2024, 5, 1058–1073. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. Global trends and current advances in slow/controlled-release fertilizers: A bibliometric analysis from 1990 to 2023. Agriculture 2024, 14, 1502. [Google Scholar] [CrossRef]
- Ghafoor, I.; Rahman, M.H.u.; Hasnain, M.U.; Ikram, R.M.; Khan, M.A.; Iqbal, R.; Hussain, M.I.; El Sabagh, A. Effect of slow-release nitrogenous fertilizers on dry matter accumulation, grain nutritional quality, water productivity and wheat yield under an arid environment. Sci. Rep. 2022, 12, 14783. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, G.; Wang, J.; She, D. Preparation of lignin-based slow-release nitrogen fertilizer. Sustainability 2024, 16, 10289. [Google Scholar] [CrossRef]
- Yang, R.; Shen, Y.; Kong, X.; Ge, B.; Sun, X.; Cao, M. Effects of diverse crop rotation sequences on rice growth, yield, and soil properties: A field study in Gewu station. Plants 2024, 13, 3273. [Google Scholar] [CrossRef]
- Yfantopoulos, D.; Ntatsi, G.; Karkanis, A.; Savvas, D. Evaluation of the role of legumes in crop rotation schemes of organic or conventionally cultivated cabbage. Agronomy 2024, 14, 297. [Google Scholar] [CrossRef]
- Graham, R.F.; Wortman, S.E.; Pittelkow, C.M. Comparison of organic and integrated nutrient management strategies for reducing soil N2O emissions. Sustainability 2017, 9, 510. [Google Scholar] [CrossRef]
- Ali, A.; Niu, G.; Masabni, J.; Ferrante, A.; Cocetta, G. Integrated nutrient management of fruits, vegetables, and crops through the use of biostimulants, soilless cultivation, and traditional and modern approaches—A mini review. Agriculture 2024, 14, 1330. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total. Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Darjee, S.; Shrivastava, M.; Langyan, S.; Singh, G.; Pandey, R.; Sharma, A.; Khandelwal, A.; Singh, R. Integrated nutrient management reduced the nutrient losses and increased crop yield in irrigated wheat. Arch. Agron. Soil Sci. 2022, 69, 1298–1309. [Google Scholar] [CrossRef]
- Kharlukhi, D.G.; Upadhyaya, K.; Sahoo, U.K. Influence of integrated nutrient management on soil health, growth and yield of paddy in “jhum lands’ of north-eastern Himalayas. Discov. Agric. 2024, 2, 107. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Savvas, D. Impact of legumes as a pre-crop on nitrogen nutrition and yield in organic greenhouse tomato. Plants 2021, 10, 468. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, H.; Chen, F.; Wang, Q.; Li, J.; Chen, Q.; Liang, B. Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse. Environ. Pollut. 2022, 308, 119616. [Google Scholar] [CrossRef]
- Luo, X.; Kou, C.; Wang, Q. Optimal fertilizer application reduced nitrogen leaching and maintained high yield in wheat-maize cropping system in North China. Plants 2022, 11, 1963. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, J.; Wei, Z.; Dodla, S.; Fultz, L.; Gaston, L.; Xiao, R.; Park, J.-H.; Scaglia, G. Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland. Geoderma 2021, 388, 114947. [Google Scholar] [CrossRef]
- Sha, Z.; Ma, X.; Loick, N.; Lv, T.; Cardenas, L.; Ma, Y.; Liu, X.; Misselbrook, T. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: Field and laboratory investigation. J. Clean. Prod. 2020, 258, 121025. [Google Scholar] [CrossRef]
- Triozzi, M.; Ilacqua, A.; Tumolo, M.; Ancona, V.; Losacco, D. Assessment of the nitrification inhibitor nitrapyrin on nitrogen losses and Brassica oleracea growth: A preliminary sustainable research. Nitrogen 2025, 6, 15. [Google Scholar] [CrossRef]
- Rey, C.S.; Oyege, I.; Shetty, K.G.; Jayachandran, K.; Balaji Bhaskar, M.S. Evaluation of vermicompost, seaweed, and algal fertilizers on soil fertility and plant production of sunn hemp. Soil Syst. 2024, 8, 132. [Google Scholar] [CrossRef]
- Hartz, T.K.; Mitchell, J.P.; Giannini, C. Nitrogen and carbon mineralization dynamics of manures and composts. HortScience 2000, 35, 209–212. [Google Scholar] [CrossRef]
- Cozzolino, E.; Salluzzo, A.; Piano, L.d.; Tallarita, A.V.; Cenvinzo, V.; Cuciniello, A.; Cerbone, A.; Lombardi, P.; Caruso, G. Effects of the application of a plant-based compost on yield and quality of industrial tomato (Solanum lycopersicum L.) grown in different soils. Appl. Sci. 2023, 13, 8401. [Google Scholar] [CrossRef]
- Strenner, M.; Chmelíková, L.; Hülsbergen, K.-J. Compost Fertilization in Organic Agriculture—A comparison of the impact on corn plants using field spectroscopy. Appl. Sci. 2023, 13, 3676. [Google Scholar] [CrossRef]
- Espinosa-Antón, A.A.; Zamora-Natera, J.F.; Zarazúa-Villaseñor, P.; Santacruz-Ruvalcaba, F.; Sánchez-Hernández, C.V.; Águila Alcántara, E.; Torres-Morán, M.I.; Velasco-Ramírez, A.P.; Hernández-Herrera, R.M. Application of seaweed generates changes in the substrate and stimulates the growth of tomato plants. Plants 2023, 12, 1520. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Kurniawan, N.S.H.; Kirana, I.A.P.; Ardiana, N.; Abidin, A.S.; Ilhami, B.T.K.; Jupri, A.; Widyastuti, S.; Sunarpi, H.; Nikmatullah, A. Seaweed fertilizer prepared by EM-fermentation increases abundance of beneficial soil microbiome in paddy (Oryzasativa L.) during vegetative stage. Fermentation 2022, 8, 46. [Google Scholar] [CrossRef]
- Brown, C. Available Nutrients and Value for Manure from Various Livestock Types. Factsheet. Order No.13-043, AGDEX 538, 2013. Available online: https://www.ontario.ca/page/available-nutrients-and-value-manure-various-livestock-types (accessed on 17 April 2025).
- Pratt, P.; Castellanos, J. Available nitrogen from animal manures. Calif. Agric. 1981, 35, 24. [Google Scholar]
- Dion, P.-P.; Jeanne, T.; Theriault, M.; Hogue, R.; Pepin, S.; Dorais, M. Nitrogen release from five organic fertilizers commonly used in greenhouse organic horticulture with contrasting effects on bacterial communities. Can. J. Soil Sci. 2020, 100, 120–135. [Google Scholar] [CrossRef]
- Sukor, A.; Qian, Y.; Davis, J.G. Organic nitrogen fertilizer selection influences water use efficiency in drip-irrigated sweet corn. Agriculture 2023, 13, 923. [Google Scholar] [CrossRef]
- Bakayoko, S.; Soro, D.; Nindjin, C.; Dao, D.; Tschannen, A.; Girardin, O.; Assa, A. Effects of cattle and poultry manures on organic matter content and adsorption complex of a sandy soil under cassava cultivation (Manihot esculenta, Crantz). Afr. J. Environ. Sci. Technol. 2009, 3, 190–197. [Google Scholar]
- Dalias, P.; Christou, A. Nitrogen supplying capacity of animal manures to the soil in relation to the length of their storage. Nitrogen 2020, 1, 52–66. [Google Scholar] [CrossRef]
- Beauchamp, E.G. Availability of nitrogen from three manures to corn in the field. Can. J. Soil Sci. 1986, 66, 713–720. [Google Scholar] [CrossRef]
- Moral, R.; Moreno-Caselles, J.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Rufete, B.; Paredes, C. Characterization on the organic matter pool in manures. Bioresour. Technol. 2005, 96, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Ksheem, A.; Bennett, J.; Antille, D.; Raine, S. Towards a method for optimized extraction of soluble nutrients from fresh and composted chicken manures. Waste Manag. 2015, 45, 76–90. [Google Scholar] [CrossRef]
- Li, X.; Kang, X.; Xi, L.; Dou, Q.; Shi, Z.; Liu, T.; Wang, L. Drying characteristics of chicken manure under a variable temperature process. Appl. Sci. 2025, 15, 4093. [Google Scholar] [CrossRef]
- Patil, S.B.; Balakrishna Reddy, B.C.; Chitgupekar, S.C.; Patil, B.B. Modern tillage and integrated nutrient management practices for improving soil fertility and productivity of groundnut (Arachis hypogaea L.) under rainfed farming system. Int. Lett. Nat. Sci. 2015, 29, 1–12. [Google Scholar] [CrossRef]
- Başay, S.; Dorak, S.; Aşik, B.B. The effects of organic fertilizer applications on the nutrient elements content of eggplant seeds. Agronomy 2025, 15, 439. [Google Scholar] [CrossRef]
- Cardarelli, M.; El Chami, A.; Iovieno, P.; Rouphael, Y.; Bonini, P.; Colla, G. Organic fertilizer sources distinctively modulate productivity, quality, mineral composition, and soil enzyme activity of greenhouse lettuce grown in degraded soil. Agronomy 2023, 13, 194. [Google Scholar] [CrossRef]
- Tascı, F.G.; Kuzucu, C.O. The effects of vermicompost and green manure use on yield and economic factors in broccoli. Horticulturae 2023, 9, 406. [Google Scholar] [CrossRef]
- Hadas, A.; Rosenberg, R. Guano as a nitrogen source for fertigation in organic farming. Fert. Res. 1992, 31, 209–214. [Google Scholar] [CrossRef]
- Rapisarda, S.; Di Biase, G.; Mazzon, M.; Ciavatta, C.; Cavani, L. Nitrogen availability in organic fertilizers from tannery and slaughterhouse by-products. Sustainability 2022, 14, 12921. [Google Scholar] [CrossRef]
- Panday, D.; Bhusal, N.; Das, S.; Ghalehgolabbehbahani, A. Rooted in Nature: The rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability 2024, 16, 1530. [Google Scholar] [CrossRef]
- Rodrigues-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Almendro Candel, M.B.; Navarro-Pedreno, J.; Zorpas, A.; Gomez Lucas, I. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef] [PubMed]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic fertilization and tree orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Hu, W.; Bai, H.; Ma, L.; Lv, X.; Zhou, Z.; Meng, Y. Crop residue return improved soil nitrogen availability by increasing amino acid and mineralization under appropriate N fertilization. Land Degrad. Dev. 2022, 33, 2197–2207. [Google Scholar] [CrossRef]
- Bhatt, R.; Kunal; Moulick, D.; Barek, V.; Brestic, M.; Gaber, A.; Skalicky, M.; Hossain, A. Sustainable strategies to limit nitrogen loss in agriculture through improving its use efficiency—Aiming to reduce environmental pollution. J. Agric. Food Res. 2025, 22, 101957. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Danoroy, P.; Dittert, K.; Cugnon, T.; Quemada, M.; Wall, D.; Bechini, L.; Marx, S.; Oenema, O.; Reijneveld, A.; et al. Comparison of nitrogen fertilization recommendations of West European Countries. Eur. J. Soil Sci. 2023, 74, e13436. [Google Scholar] [CrossRef]
Supply Level | Field Crops | Intensive Vegetable Crops, Fruit Trees, and Vineyards | ||
---|---|---|---|---|
Total N, g kg−1 | NO3−-N + NH4+-N, mg kg−1 | Total N, g kg−1 | NO3−-N + NH4+-N, mg kg−1 | |
Low | <1.0 | <20 | <1.5 | <40 |
Medium | 1.1–1.5 | 21–40 | 1.6–2.5 | 41–70 |
Normal | 1.6–2.0 | 41–60 | 2.6–3.5 | 71–100 |
High | 2.1–3.0 | 61–100 | 3.6–4.5 | 101–130 |
Very high, excessive | >3.1 | >101 | >4.6 | >131 |
Process | Average Half-Life (Days) | |
---|---|---|
Mineralization | Organic N → NH4+ | 100–200 |
Nitrification | NH4+ → NO3− | 10–20 |
Volatilization | NH4+ → NH3 | 20–50 |
Denitrification | NO3− → N2 + N2O | 7–15 |
Form of Nitrogen | What It Represents | Characteristics | Importance |
---|---|---|---|
Total nitrogen |
|
|
|
Mineral nitrogen |
|
|
|
Organic nitrogen |
|
|
|
Crop | Nitrogen Demand, kg ha−1 |
---|---|
Cereals | 100–300 |
Fruits/tree nuts | 110 |
Roots/tubers | 65 |
Sugarcane | 200–300 |
Tomato and bean | 60–100 |
Vegetables | 190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasile Scăețeanu, G.; Madjar, R.M. The Control of Nitrogen in Farmlands for Sustainability in Agriculture. Sustainability 2025, 17, 5619. https://doi.org/10.3390/su17125619
Vasile Scăețeanu G, Madjar RM. The Control of Nitrogen in Farmlands for Sustainability in Agriculture. Sustainability. 2025; 17(12):5619. https://doi.org/10.3390/su17125619
Chicago/Turabian StyleVasile Scăețeanu, Gina, and Roxana Maria Madjar. 2025. "The Control of Nitrogen in Farmlands for Sustainability in Agriculture" Sustainability 17, no. 12: 5619. https://doi.org/10.3390/su17125619
APA StyleVasile Scăețeanu, G., & Madjar, R. M. (2025). The Control of Nitrogen in Farmlands for Sustainability in Agriculture. Sustainability, 17(12), 5619. https://doi.org/10.3390/su17125619