Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (671)

Search Parameters:
Keywords = critical materials extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 215
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 155
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

25 pages, 11221 KiB  
Article
A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2237; https://doi.org/10.3390/w17152237 - 27 Jul 2025
Viewed by 276
Abstract
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. [...] Read more.
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. Simulations of various scenarios involving hydrogeologic variables, including hydraulic conductivity, vertical anisotropy, specific yield, mechanical dispersion, molecular diffusion, and mass concentration in aquifers, have identified critical variables and parameters influencing mass transport interactions to optimize the system. MAR-MASS is adaptable across hydrogeologic conditions in aquifers that are 25–75 m thick, comprising unconsolidated materials with hydraulic conductivities between 5 and 100 m/d. It is effective in scenarios near coastal areas or in aquifers with variable-density flows within the continent, with mass concentrations of salts or solutes ranging from 3.5 to 35 kg/m3. This system employs a modular approach that offers scalable and adaptable solutions for mass extraction at specific locations. The integration of programming tools, such as Python 3.13.2, along with technological strategies utilizing parallelization techniques and high-performance computing, has facilitated the development and validation of MAR-MASS in mass extraction with remarkable efficiency. This study confirmed the utility of these tools for performing calculations, analyzing information, and managing databases in hydrogeologic models. Combining these technologies is critical for achieving precise and efficient results that would not be achievable without them, emphasizing the importance of an advanced technological approach in high-level hydrogeologic research. By enhancing groundwater quality within a comparatively short time frame, expanding freshwater availability, and supporting sustainable aquifer recharge practices, MAR-MASS is essential for improving water resource management. Full article
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 305
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

23 pages, 737 KiB  
Article
Influence of Plant-Based Substrate Composition and Extraction Method on Accumulation of Bioactive Compounds in Hericium erinaceus (Bull.) Pers. Fruiting Bodies
by Katarzyna Kała, Małgorzata Cicha-Jeleń, Katarzyna Sułkowska-Ziaja, Beata Ostachowicz, Ewa Węgrzynowicz, Jan Lazur, Agnieszka Szewczyk and Bożena Muszyńska
Molecules 2025, 30(15), 3094; https://doi.org/10.3390/molecules30153094 - 24 Jul 2025
Viewed by 342
Abstract
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium [...] Read more.
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium erinaceus (Bull.) Pers. cultivated on various plant-based substrates derived from waste materials, specifically hemp straw and beech sawdust. Another objective was to compare various extraction methods in terms of their impact on the concentration of these compounds. Elemental analysis was performed using the TXRF method, while bioactive constituents were determined using the DAD/UV RP-HPLC technique. The plant-based substrate and extraction method influenced the levels of obtained metabolites. Dual extraction with moderate ethanol concentrations was most effective for isolating key bioactive compounds from H. erinaceus—notably ergothioneine, lovastatin, L-phenylalanine, and ergosterol—while antioxidant activity did not correlate with the concentration of the solvent used. Although dual extracts enhanced certain antioxidants and metabolites, whole fruiting bodies contained higher levels of bioelements. Overall, fruiting bodies grown on beech sawdust had greater amounts of most bioactive compounds compared to those cultivated on hemp straw, emphasizing that both substrate choice and extraction method critically influence the mushroom’s bioactive profile and its potential health benefits. Full article
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors
by Göksal Sezen and Ramazan Aktan
Processes 2025, 13(8), 2350; https://doi.org/10.3390/pr13082350 - 24 Jul 2025
Viewed by 272
Abstract
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 [...] Read more.
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 nm, indicating stable, quasi-spherical ZnO nanoparticles with a narrow size distribution, primarily around 100 nm. Zeta potential measurements revealed a value of −25 mV for these particles, suggesting moderate colloidal stability. XRD analysis confirmed a highly crystalline hexagonal wurtzite structure for zinc acetate-derived ZnO, and SEM images supported a proper microstructure with approximately 2 µm particle size. FTIR analysis indicated higher-quality ZnO from zinc acetate due to the absence of moisture and hydroxyl groups. Conversely, zinc chloride-derived ZnO particles displayed a broader absorption spectrum around 370 nm, indicative of significant aggregation. Their narrower zeta potential distribution around +10 mV suggested diminished colloidal stability and a heightened aggregation tendency. While a peak around 100 nm was observed, many particles exceeded 1000 nm, reaching up to 10,000 nm. XRD results showed that zinc chloride adversely affected crystallinity, and SEM analysis indicated smaller particles (approx. 1 µm). FTIR analysis demonstrated that zinc chloride samples retained hydroxyl groups. Both zinc acetate- and zinc chloride-derived ZnO nanoparticles produced notable inhibitory zones against Gram-positive (L. monocytogenes, S. aureus) and specific Gram-negative bacteria (E. coli, K. pneumoniae). Zinc acetate-derived ZnO showed a 21 mm inhibitory zone against P. vulgaris, while zinc chloride-derived ZnO showed a 10.1 mm inhibitory zone against C. albicans. Notably, zinc chloride-derived ZnO exhibited broad-spectrum antimicrobial activity. MIC readings indicated that zinc acetate-derived ZnO had better antibacterial properties at lower concentrations, such as 3.125 µg/mL against L. monocytogenes. These findings emphasize that the precursor material selection critically influences particle characteristics, including optical properties, surface charge, and colloidal stability. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Graphical abstract

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 516
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 403
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

34 pages, 3482 KiB  
Review
Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation
by Loránd Szabó
Sustainability 2025, 17(14), 6580; https://doi.org/10.3390/su17146580 - 18 Jul 2025
Viewed by 453
Abstract
Deep-sea mining presents a critical sustainability paradox; it offers access to essential minerals for the technologies of the green transition (e.g., batteries, wind turbines, electric vehicles) yet threatens fragile marine ecosystems. As the terrestrial sources of these materials face mounting geopolitical, environmental, and [...] Read more.
Deep-sea mining presents a critical sustainability paradox; it offers access to essential minerals for the technologies of the green transition (e.g., batteries, wind turbines, electric vehicles) yet threatens fragile marine ecosystems. As the terrestrial sources of these materials face mounting geopolitical, environmental, and ethical constraints, undersea deposits are increasingly being viewed as alternatives. However, the extraction technologies remain unproven at large scales, posing risks related to biodiversity loss, sediment disruption, and altered oceanic carbon cycles. This paper explores how deep-sea mining might be reconciled with sustainable development, arguing that its viability hinges on addressing five interdependent challenges—technological readiness, environmental protection, economic feasibility, robust governance, and social acceptability. Progress requires parallel advancements across all domains. This paper reviews the current knowledge of deep-sea resources and extraction methods, analyzes the ecological and sociopolitical risks, and proposes systemic solutions, including the implementation of stringent regulatory frameworks, technological innovation, responsible terrestrial sourcing, and circular economy strategies. A precautionary and integrated approach is emphasized to ensure that the securing of critical minerals does not compromise marine ecosystem health or long-term sustainability objectives. Full article
(This article belongs to the Topic Green Mining, 2nd Volume)
Show Figures

Figure 1

34 pages, 14529 KiB  
Review
Research and Applications of Additive Manufacturing in Oil and Gas Extraction and Gathering Engineering
by Xiang Jin, Jubao Liu, Wei Fan, Mingyuan Sun, Zhongmin Xiao, Zongheng Fan, Ming Yang and Liming Yao
Materials 2025, 18(14), 3353; https://doi.org/10.3390/ma18143353 - 17 Jul 2025
Viewed by 593
Abstract
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its [...] Read more.
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its high design freedom, precision, and rapid prototyping, provides new approaches to address these issues. However, systematic reviews of related efforts are scarce. This paper reviews the applications and progress of metal and non-metal AM technologies in oil and gas extraction and gathering engineering, focusing on the just-in-time (JIT) manufacturing of failed components, the manufacturing and repair of specialized equipment and tools for oil and gas extraction and gathering, and artificial core and reservoir geological modeling fabrication. AM applications in this field remain exploratory and face challenges with regard to their standards, supply chains, materials, and processes. Future research should emphasize developing materials and processes for extreme conditions, optimizing process parameters, establishing standards and traceability systems, and integrating AM with digital design and reverse engineering to support efficient, safe, and sustainable industry development. This work aims to provide a reference for advancing AM research and engineering applications in the oil and gas sector. Full article
Show Figures

Figure 1

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 595
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

19 pages, 11197 KiB  
Article
Modeling of Linear Die Filling Based on Dimensional Analysis Using DEM-CFD Methods
by Jie Li, Sunsheng Zhou, Shiyan Yan, Yuanqiang Tan and Jiangtao Zhang
Materials 2025, 18(14), 3261; https://doi.org/10.3390/ma18143261 - 10 Jul 2025
Viewed by 308
Abstract
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based [...] Read more.
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based on DEM-CFD simulations. Several dimensionless parameters including the ratio of particle size to die depth (dphD1), solid density number (ρpρg1), shoe speed number (vρgLDμ1), and force number (GpFDrag1) were proposed based on the Pi theorem. The results showed that the filling ratio δ increased with the increase in dphD1 and ρpρg1 due to GpFDrag1 rising. But it decreased with the increase in vρgLDμ1 due to the shortening of effective filling time. Finally, a semi-empirical modeling of linear die filling was developed, taking the critical value (dphD1)90 as the dependent variable and the solid density number (ρpρg1) and shoe speed number (vρgLDμ1) as independent variables. Hence, this model provides a new approach to computing the smallest shoe speed and designing the sizes of dies based on measurable material properties under complete die filling. Full article
Show Figures

Figure 1

Back to TopTop