Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,314)

Search Parameters:
Keywords = crisis areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 12422 KiB  
Article
Real-Time Foreshock–Aftershock–Swarm Discrimination During the 2025 Seismic Crisis near Santorini Volcano, Greece: Earthquake Statistics and Complex Networks
by Ioanna Triantafyllou, Gerassimos A. Papadopoulos, Constantinos Siettos and Konstantinos Spiliotis
Geosciences 2025, 15(8), 300; https://doi.org/10.3390/geosciences15080300 - 4 Aug 2025
Viewed by 96
Abstract
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused [...] Read more.
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused considerable social concern. A rapid increase in both the seismicity rate and the earthquake magnitudes was noted until the mainshock of ML = 5.3 on 10 February; afterwards, activity gradually diminished. Fault-plane solutions indicated SW-NE normal faulting. The epicenters moved with a mean velocity of ~0.72 km/day from SW to NE up to the mainshock area at a distance of ~25 km. Crucial questions publicly emerged during the cluster. Was it a foreshock–aftershock activity or a swarm of possibly volcanic origin? We performed real-time discrimination of the cluster type based on a daily re-evaluation of the space–time–magnitude changes and their significance relative to background seismicity using earthquake statistics and the topological metric betweenness centrality. Our findings were periodically documented during the ongoing cluster starting from the fourth cluster day (2 February 2025), at which point we determined that it was a foreshock and not a case of seismic swarm. The third day after the ML = 5.3 mainshock, a typical aftershock decay was detected. The observed foreshock properties favored a cascade mechanism, likely facilitated by non-volcanic material softening and the likely subdiffusion processes in a dense fault network. This mechanism was possibly combined with an aseismic nucleation process if transient geodetic deformation was present. No significant aftershock expansion towards the NE was noted, possibly due to the presence of a geometrical fault barrier east of the Anydros Ridge. The 2025 activity offered an excellent opportunity to investigate deciphering the type of ongoing seismicity cluster for real-time discrimination between foreshocks, aftershocks, and swarms. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

32 pages, 6681 KiB  
Article
Spatial Distribution Characteristics and Cluster Differentiation of Traditional Villages in the Central Yunnan Region
by Tao Chen, Sisi Zhang, Juan Chen, Jiajing Duan, Yike Zhang and Yaoning Yang
Land 2025, 14(8), 1565; https://doi.org/10.3390/land14081565 - 30 Jul 2025
Viewed by 316
Abstract
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects [...] Read more.
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects the Central Yunnan region of Southwest China—characterized by its complex geography and multi-ethnic habitation—as the research area. Employing ArcGIS spatial analysis techniques alongside clustering algorithms, we examine the spatial distribution characteristics and clustering patterns of 251 traditional villages within this region. The findings are as follows. In terms of spatial distribution, traditional villages in Central Yunnan are unevenly dispersed, predominantly aggregating on mid-elevation gentle slopes; their locations are chiefly influenced by rivers and historical courier routes, albeit with only indirect dependence on waterways. Regarding single-cluster attributes, the spatial and geomorphological features exhibit a composite “band-and-group” pattern shaped by river valleys; culturally, two dominant modes emerge—“ancient-route-dependent” and “ethnic-symbiosis”—reflecting an economy-driven cultural mechanism alongside latent marginalization risks. Concerning construction characteristics, the “Qionglong-Ganlan” and Han-style “One-seal” residential features stand out, illustrating both adaptation to mountainous environments and the cumulative effects of historical culture. Based on these insights, we propose a three-tiered clustering classification framework—“comprehensive-element coordination”, “feature-led”, and “potential-cultivation”—to inform the development of contiguous and typological protection strategies for traditional villages in highland, multi-ethnic regions. Full article
Show Figures

Figure 1

25 pages, 3868 KiB  
Article
From Research to Design: Enhancing Mental Well-Being Through Quality Public Green Spaces in Beirut
by Mariam Raad, Georgio Kallas, Falah Assadi, Nina Zeidan, Victoria Dawalibi and Alessio Russo
Land 2025, 14(8), 1558; https://doi.org/10.3390/land14081558 - 29 Jul 2025
Viewed by 244
Abstract
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given [...] Read more.
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given these conditions, improving the quality and accessibility of green spaces offers a promising avenue for alleviating mental health issues in urban areas. This study investigates the psychological impact of nine urban public spaces in Beirut through a comprehensive survey methodology, involving 297 participants (locals and tourists) who rated these spaces using Likert-scale measures. The findings reveal location-specific barriers, with Saanayeh Park rated highest in quality and Martyr’s Square rated lowest. The analysis identifies facility quality as the most significant factor influencing space quality, contributing 73.6% to the overall assessment, while activity factors have a lesser impact. The study further highlights a moderate positive association (Spearman’s rho = 0.30) between public space quality and mental well-being in Beirut. This study employs a hybrid methodology combining Research for Design (RfD) and Research Through Designing (RTD). Empirical data informed spatial strategies, while iterative design served as a tool for generating context-specific knowledge. Design enhancements—such as sensory plantings, shading systems, and social nodes—aim to improve well-being through better public space quality. The proposed interventions support mental health, life satisfaction, climate resilience, and urban inclusivity. The findings offer actionable insights for cities facing public health and spatial equity challenges in crisis contexts. Full article
Show Figures

Figure 1

20 pages, 1978 KiB  
Review
Banking Profitability: Evolution and Research Trends
by Francisco Sousa and Luís Almeida
Int. J. Financial Stud. 2025, 13(3), 139; https://doi.org/10.3390/ijfs13030139 - 29 Jul 2025
Viewed by 342
Abstract
This study aims to map the scientific knowledge of bank profitability and its determinants. It identifies trends and gaps in existing research through a bibliometric analysis. To this end, 634 documents published in the Web of Science database over the last 54 years [...] Read more.
This study aims to map the scientific knowledge of bank profitability and its determinants. It identifies trends and gaps in existing research through a bibliometric analysis. To this end, 634 documents published in the Web of Science database over the last 54 years were analyzed using the bibliometric package. The results indicate an increase in the volume of publications following the 2008 financial crisis, focusing on analyzing the factors influencing bank profitability and economic growth. The Journal of Banking and Finance is the preeminent publication in this field. The literature reviewed shows that bank profitability depends on internal factors (size, credit risk, liquidity, efficiency, and management) and external factors (such as GDP, inflation, interest rates, and unemployment). In addition to the traditional determinants, the recent literature highlights the importance of innovation and technological factors such as digitalization, mobile banking, and electronic payments as relevant to bank profitability. ESG (environmental, social, and governance) and governance indicators, which are still emerging but have been extensively researched in companies, indicate a need for evidence in this area. This paper also provides relevant insights for the formulation of monetary policy and the strategic formulation of banks, helping managers and owners to improve bank performance. It also provides directions for future empirical studies and research collaborations in this field. Full article
Show Figures

Figure 1

25 pages, 2377 KiB  
Article
Assessment of Storm Surge Disaster Response Capacity in Chinese Coastal Cities Using Urban-Scale Survey Data
by Li Zhu and Shibai Cui
Water 2025, 17(15), 2245; https://doi.org/10.3390/w17152245 - 28 Jul 2025
Viewed by 290
Abstract
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This [...] Read more.
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This research is based on the Hazard–Exposure–Vulnerability (H-E-V) framework and PPRR (Prevention, Preparedness, Response, and Recovery) crisis management theory. It focuses on 52 Chinese coastal cities as the research subject. The evaluation system for the disaster response capabilities of Chinese coastal cities was constructed based on three aspects: the stability of the disaster-incubating environment (S), the risk of disaster-causing factors (R), and the vulnerability of disaster-bearing bodies (V). The significance of this study is that the storm surge capability of China’s coastal cities can be analyzed based on the results of the evaluation, and the evaluation model can be used to identify its deficiencies. In this paper, these storm surge disaster response capabilities of coastal cities were scored using the entropy weighted TOPSIS method and the weight rank sum ratio (WRSR), and the results were also analyzed. The results indicate that Wenzhou has the best comprehensive disaster response capability, while Yancheng has the worst. Moreover, Tianjin, Ningde, and Shenzhen performed well in the three aspects of vulnerability of disaster-bearing bodies, risk of disaster-causing factors, and stability of disaster-incubating environment separately. On the contrary, Dandong (tied with Qinzhou), Jiaxing, and Chaozhou performed poorly in the above three areas. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

20 pages, 5419 KiB  
Article
The Analysis of Fire Protection for Selected Historical Buildings as a Part of Crisis Management: Slovak Case Study
by Jana Jaďuďová, Linda Makovická Osvaldová, Stanislava Gašpercová and David Řehák
Sustainability 2025, 17(15), 6743; https://doi.org/10.3390/su17156743 - 24 Jul 2025
Viewed by 222
Abstract
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, [...] Read more.
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, as part of crisis management. This article focuses on selected castle buildings from Slovakia. Three castle buildings were selected based on their location in the country. All of them are currently used for museum purposes. Using an analytical form, we assessed fire hazards and fire safety measures in two parts, calculated the fire risk index, and proposed solutions. Qualitative research, which is more suitable for the issue at hand, was used to evaluate the selected objects. The main methods used in the research focused on visual assessment of the current condition of the objects and analysis of fire documentation and its comparison with currently valid legal regulations. Based on the results, we can conclude that Kežmarok Castle (part of the historical city center) has a small fire risk (fire risk index = 13 points). Trenčín Castle (situated on a rock above the city) and Stará Ľubovňa Castle (situated on a limestone hill outside the city, surrounded by forest) have an increased risk of fire (fire risk index = 50–63). Significant risk sources identified included surrounding forest areas, technical failures related to outdated electrical installations, open flames during cultural events, the concentration of highly flammable materials, and complex evacuation routes for both people and museum collections. Full article
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 342
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

26 pages, 5395 KiB  
Article
Understanding Urban Growth and Shrinkage: A Study of the Modern Manufacturing City of Dongguan, China
by Tingting Chen, Zhoutong Wu and Wei Lang
Land 2025, 14(8), 1507; https://doi.org/10.3390/land14081507 - 22 Jul 2025
Viewed by 511
Abstract
Since the early 21st century, urban shrinkage has become a significant global phenomenon. Dongguan, in Guangdong Province, China, is known as a “world factory”. It experienced notable urban shrinkage following the 2008 financial crisis. However, the city demonstrated remarkable recovery and ongoing development [...] Read more.
Since the early 21st century, urban shrinkage has become a significant global phenomenon. Dongguan, in Guangdong Province, China, is known as a “world factory”. It experienced notable urban shrinkage following the 2008 financial crisis. However, the city demonstrated remarkable recovery and ongoing development in subsequent years. On that basis, this study focuses on the following three points: (1) identifying the spatiotemporal factors contributing to the growth and shrinkage of manufacturing cities, taking Dongguan as an example; (2) explaining the influencing factors of the growth and shrinkage of Dongguan City during three critical periods, 2008–2014 (post-crisis), 2015–2019 (as machinery replaced human work), and 2020–2023 (the COVID-19 pandemic and recovery); and (3) selecting representative towns and streets for on-site observation and investigation, analyzing the measures they have taken to cope with growth and shrinkage during different periods. The key findings include the following: (1) The spatial dynamics of growth and shrinkage in Dongguan show significant temporal patterns, with traditional manufacturing areas shrinking from 2008 to 2014, central urban areas recovering from 2015 to 2019, and renewed shrinkage from 2020 to 2023. However, some regions maintained stability through strategic innovations. (2) Various factors, particularly industrial upgrading and technological innovation, drove the urban dynamics, enhancing economic resilience. (3) The case study of Houjie Town revealed successful adaptive mechanisms supported by policy while facing challenges like labor mismatches and inadequate R&D investment. This research offers insights for improving urban resilience and promoting sustainable development in Dongguan. Full article
Show Figures

Figure 1

8 pages, 331 KiB  
Proceeding Paper
Advances in Implementation of Metal Oxide Nanoparticles for Urban Water Pollution Treatment
by Md. Golam Sazid and Sk. Tanjim Jaman Supto
Eng. Proc. 2025, 87(1), 96; https://doi.org/10.3390/engproc2025087096 - 18 Jul 2025
Viewed by 252
Abstract
Urban water bodies are facing a growing crisis due to contamination from a diverse array of pollutants, encompassing heavy metals, oil and grease, organic and inorganic chemicals, industrial effluents, and pathogenic microorganisms. This study focuses on the burgeoning field of utilizing metal oxide [...] Read more.
Urban water bodies are facing a growing crisis due to contamination from a diverse array of pollutants, encompassing heavy metals, oil and grease, organic and inorganic chemicals, industrial effluents, and pathogenic microorganisms. This study focuses on the burgeoning field of utilizing metal oxide nanoparticles (MONs) as a potential solution to this pressing environmental challenge. The distinctive physicochemical properties of MONs, including their large surface area, catalytic activity, and photocatalytic ability, position them as promising candidates for water purification technologies. This study also comprehensively discusses the sources of urban water pollution and the specific challenges posed by different types of contaminants. A critical evaluation of MONs’ efficacy in removing heavy metals, oil and grease, organic and inorganic chemicals, and industrial pollutants is presented, with a focus on the underlying mechanisms such as adsorption, photocatalysis, and redox reactions. Furthermore, the potential of MONs to neutralize pathogens and microbial contaminants is investigated. While MONs exhibit significant advantages, this study acknowledges the challenges associated with nanoparticle stability, recovery, and potential environmental repercussions. To fully realize the potential of MONs in water treatment, sustained research is imperative to refine treatment processes, develop economically viable strategies, and ensure the long-term sustainability of these technologies in addressing urban water pollution. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 229
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

30 pages, 1348 KiB  
Review
Emerging Molecular Mechanisms in Malaria Pathogenesis and Novel Therapeutic Approaches: A Focus on P. falciparum Malaria
by Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Vyshnavy Balendra, Omar Shazley, Tatiana Gardellini, Abdul Jan, Kokab Younis, Chuku Okorie and Ricardo Izurieta
Biomolecules 2025, 15(7), 1038; https://doi.org/10.3390/biom15071038 - 17 Jul 2025
Viewed by 972
Abstract
Malaria is still one of the biggest global health problems, especially in parts of the world, such as sub-Saharan Africa, which remains most heavily affected. Despite significant advancements in testing, treatment, and prevention, malaria continues to seriously impact millions, primarily young children and [...] Read more.
Malaria is still one of the biggest global health problems, especially in parts of the world, such as sub-Saharan Africa, which remains most heavily affected. Despite significant advancements in testing, treatment, and prevention, malaria continues to seriously impact millions, primarily young children and populations in rural and impoverished areas. This paper looks at how the malaria parasite works inside the body, how it avoids the immune system, and how it becomes resistant to current drugs. Thanks to new advances in genetic and biochemical research, scientists are discovering new weak points in the parasite that could lead to better treatments. New vaccines, like RTS, S and R21, along with antibody-based therapies, offer renewed hope; however, extending the duration of the immunity they induce and ensuring effectiveness across diverse parasite strains remain significant challenges. Solving the malaria crisis will require more than science—it also necessitates equitable and timely access to treatments, robust health systems, and international collaboration. Continued research and global cooperation bring the world closer to ending malaria for good. Full article
(This article belongs to the Special Issue New Insights into Molecular Mechanisms and Therapeutics for Malaria)
Show Figures

Figure 1

13 pages, 4342 KiB  
Article
Wholesale Destruction Inside a Marine Protected Area: Anchoring Impacts on Sciaphilic Communities and Coralligenous Concretions in the Eastern Mediterranean
by Carlos Jimenez, Magdalene Papatheodoulou, Vasilis Resaikos and Antonis Petrou
Water 2025, 17(14), 2092; https://doi.org/10.3390/w17142092 - 14 Jul 2025
Viewed by 596
Abstract
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on [...] Read more.
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on the destruction of sciaphilic sessile communities and coralligenous concretions produced by the anchoring of a high-tonnage vessel inside a Marine Protected Area in Cyprus. The damage from the anchors and the chains consisted of the dislodgement of large boulders that were dragged or rolled over the seafloor, increasing the breakage and further dislodgement of more boulders; many were left upside-down. The biological communities that thrived in the dark environments below the boulders were directly exposed to high irradiance levels and went through a slow mortality and decaying process, most probably due to a combination of several deterioration agents, such as exposure to direct sunlight, predation, mucilage aggregates, and cyanobacterial blooms. The enforcement of regulatory measures for anchoring and transit in the MPA is necessary to prevent similar destruction. Given the extent of the irreversible damage to these sciaphilic communities, our study is, unfortunately, another environmental post-mortem contribution. Full article
(This article belongs to the Special Issue Effect of Human Activities on Marine Ecosystems)
Show Figures

Graphical abstract

18 pages, 5741 KiB  
Article
Research on Design Strategy for Zero-Carbon Touristic Apartment Openings Based on Building Life Cycle
by Yiru Wang, Fangyuan Wang, Yang Yang, Xun Sun and Dekun Dong
Buildings 2025, 15(14), 2427; https://doi.org/10.3390/buildings15142427 - 10 Jul 2025
Viewed by 217
Abstract
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on [...] Read more.
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on zero-carbon buildings considers carbon emissions as a constant value and cannot adapt to the impact of user changes during the operation phase. Constructing a low-carbon design applicable to timeshare is significant for controlling carbon emissions in the construction industry and responding to the environmental crisis. The practical carbon emissions of touristic apartments depend on the requirement changes in different customer clusters. The timeshare theory reflects the requirement change in different customer clusters based on the timeshare property ownership change. This paper focuses on a dynamic design strategy for zero-carbon building openings to reduce practical carbon emissions. Firstly, this research clarifies the primary customer clusters and conducts a touristic apartment unit model by timeshare property ownership. Then, this research clarifies the changes in customer requirements to analyze the spatial function changes in the operating phase. Finally, the study identifies six dynamic carbon emission indicators, such as the window-to-wall ratio, ventilation rate, and effective daylight area, and through passive design methods, provides 13 variable devices applied in the operating phase to control dynamic carbon emission indicators by customers. This paper also offers a flexible method to effectively decrease and accurately control carbon emissions by reducing the possible device utility. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

10 pages, 194 KiB  
Article
Evaluation of a Pilot Program to Increase Mental Health Care Access for Youth—The Interprofessional Child-Centered Integrated Care (ICX2) Model
by Nicole Klaus, Evelyn English, Elizabeth Lewis, Jordan Camp, Sarah Krogman and Kari Harris
Children 2025, 12(7), 910; https://doi.org/10.3390/children12070910 - 10 Jul 2025
Viewed by 277
Abstract
Background/Objectives: The pediatric mental health crisis in the United States has reached unprecedented levels. Severe shortages in specialized health care professionals, particularly child and adolescent psychiatrists (CAPs), exacerbate the challenge of delivering timely and quality mental health care, especially in rural areas like [...] Read more.
Background/Objectives: The pediatric mental health crisis in the United States has reached unprecedented levels. Severe shortages in specialized health care professionals, particularly child and adolescent psychiatrists (CAPs), exacerbate the challenge of delivering timely and quality mental health care, especially in rural areas like Kansas. Innovative models such as Pediatric Mental Health Care Access (PMHCA) programs and School-Based Health Clinics (SBHCs) aim to integrate mental health expertise into primary care settings to address this gap. Methods: This paper examines an integrated care model to support SBHCs developed by the Kansas PMHCA. The Interprofessional Child-Centered Integrated Care Model (ICX2) was implemented within an SBHC in Haysville, KS. ICX2 utilizes biweekly collaborative team meetings (CTMs) via zoom involving primary care, psychology, child psychiatry, social work, and school resource coordinators to discuss patient cases and enhance the primary care management of pediatric mental health. This descriptive study analyzes data from January 2023 to June 2023, focusing on patient demographics, case characteristics discussed during CTMs, and recommendations made by the interprofessional team. Results: Findings illustrate the complex biopsychosocial needs of patients seen and define themes of case consultation and recommendations. Conclusions: Integrated care programs like ICX2 can be feasibly implemented through PMHCA programs and may be an efficient intervention to bridge resource gaps. Full article
Show Figures

Graphical abstract

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 358
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

Back to TopTop