Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = creep prediction models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7912 KB  
Article
Study on Creep Compression Characteristics of Pressure-Bearing Graded Crushed Rock
by Yu Tian, Mei Zhi, Jie Zhou, Pengfei Ji and Shitong Peng
Buildings 2026, 16(1), 116; https://doi.org/10.3390/buildings16010116 - 26 Dec 2025
Viewed by 66
Abstract
To study the creep compression characteristics and evolution mechanism of pressure-bearing graded crushed rock under constant load. Creep compression tests of crushed rock were conducted using the self-developed confined compression test system under different Talbot indexes and axial stresses. The axial displacement, void [...] Read more.
To study the creep compression characteristics and evolution mechanism of pressure-bearing graded crushed rock under constant load. Creep compression tests of crushed rock were conducted using the self-developed confined compression test system under different Talbot indexes and axial stresses. The axial displacement, void ratio, mass distribution, fractal dimension, and fragmentation of crushed rock during creep compression were analyzed. And the void ratio-fractal dimension model of crushed rock under pressure was established. The results reveal three-stage characteristics in axial displacement and void change, which correspond to rapid, attenuation, and stable change processes. The axial displacement and fragmentation amount are positively correlated with the axial stress and Talbot index, while the porosity is negatively correlated with them. The fractal dimension shows a positive correlation with axial stress and a negative correlation with the Talbot index. Additionally, a theoretical model was established to characterize the dynamic correlation between void ratio and fractal dimension during compression process, and its accuracy was verified, with a maximum error of only 0.0819. The research findings can provide insights for stability prediction and deformation control of crushed rock in engineering applications such as building foundation pits, ground treatment, and coal mine goafs. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Figure 1

42 pages, 2511 KB  
Article
Model of Space-Time as an Elastic Medium: State of the Art and Perspectives on the Knowledge of Time
by David Izabel
Time Space 2025, 1(1), 5; https://doi.org/10.3390/timespace1010005 - 18 Dec 2025
Viewed by 317
Abstract
This paper presents a theoretical framework modeling space-time as a quantized elastic medium. This elastic model is not intended to replace general relativity, but to offer a complementary mechanical interpretation in the approximation of the weak gravitational field. The goal is not to [...] Read more.
This paper presents a theoretical framework modeling space-time as a quantized elastic medium. This elastic model is not intended to replace general relativity, but to offer a complementary mechanical interpretation in the approximation of the weak gravitational field. The goal is not to redefine gravity, but to explore whether this elastic formalism can simplify certain aspects of space-time dynamics, provide new insights, and generate falsifiable predictions—particularly in contexts where analytical solutions in general relativity are difficult to obtain. As originally envisaged by A. Sakharov, who associated general relativity with the concept of space-time behaving like an elastic medium, this paper introduces the notion of the “elasther” and reinterprets gravitational effects, time dilation, and phenomena commonly attributed to dark energy and dark matter through analogies with established mechanical principles such as Hooke’s law, thermal expansion, and creep. Full article
Show Figures

Figure 1

18 pages, 6329 KB  
Article
Study on Fatigue Behavior and Life Prediction of Laser Powder Bed Fused Ti6Al4V Alloy at 400 °C
by Liangliang Wu, Ruida Xu, Jiaming Zhang, Huichen Yu and Zehui Jiao
Materials 2025, 18(24), 5678; https://doi.org/10.3390/ma18245678 - 18 Dec 2025
Viewed by 314
Abstract
Additive manufacturing has huge development potential in the aerospace field. The hot-end components of aeroengines work in harsh environments, facing high temperatures and a demand for long service life. In this paper, high-cycle fatigue (HCF) tests of Ti6Al4V alloy at 400 °C by [...] Read more.
Additive manufacturing has huge development potential in the aerospace field. The hot-end components of aeroengines work in harsh environments, facing high temperatures and a demand for long service life. In this paper, high-cycle fatigue (HCF) tests of Ti6Al4V alloy at 400 °C by selective laser melting (SLM) under different stress ratios (−1, 0.1, 0.3, 0.5, and 0.8) were carried out, and the fracture surfaces were observed. The results show that the defects existing on the surface or subsurface are prone to become the origin of fatigue cracks. There is a large dispersion of the high-cycle fatigue life of the samples, especially at a low stress ratio. With the increase in the stress ratio, the fatigue failure area on the fracture surface gradually decreases, and the fracture surface gradually presents a mixed pattern of tensile endurance fracture and fatigue failure. Considering the influence of creep damage due to mean stress, models were established, respectively, for the fatigue behavior and time-related rupture behavior to predict fatigue life and conduct an assessment. Then, the two models were combined and the composite models were proposed using the linear damage law. Finally, the single fatigue model and rupture models, as well as the composite models, were evaluated, respectively, and compared with the actual fatigue life, and the best model was obtained for the high-cycle fatigue prediction of SLM Ti6Al4V at 400 °C. Full article
Show Figures

Figure 1

11 pages, 721 KB  
Communication
A Creep Model with a Real Structural Parameter for Deformable Solids
by Rafael Shaikhutdinov
Appl. Mech. 2025, 6(4), 91; https://doi.org/10.3390/applmech6040091 - 17 Dec 2025
Viewed by 154
Abstract
Creep in metals as a phenomenon has been comprehensively studied in solid mechanics as well as in materials science. This interest stems from two key motivations: assessing the strength characteristics of components subjected to prolonged exposure at high temperatures and enhancing our understanding [...] Read more.
Creep in metals as a phenomenon has been comprehensively studied in solid mechanics as well as in materials science. This interest stems from two key motivations: assessing the strength characteristics of components subjected to prolonged exposure at high temperatures and enhancing our understanding of plastic deformation mechanisms. As it is known, the mechanics of deformable solids employ constitutive equations when describing creep behavior, whereas strength physics utilize models aimed at quantifying a particular creep deformation mechanism or mechanisms in novel materials and to predict the performance of the parts manufactured from them. However, such models are rarely encountered within traditional mechanics problem-solving frameworks. To bridge this gap, this study demonstrates how some classic boundary value problems can incorporate the kinetic equation of a metal creep model with a real structural parameter derived from the theory of irreversible deformations. The main derivation steps and numerical solutions are provided for steady and transient creep conditions, along with visualizations illustrating the distribution of actual structural parameters. This research outlines promising pathways for incorporating diverse structural creep models—typically associated with materials science—into solid mechanics. These findings lay the groundwork for more accurate predictions of evolving material properties in applications where creep deformations play a critical role. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

31 pages, 11140 KB  
Article
High-Temperature Properties of Hot Mix Asphalt Modified with Different Nanomaterials
by Yousuf M. Hamed AlHamdo, Amjad H. Khalil Albayati and Mazen J. Al-Kheetan
Nanomaterials 2025, 15(24), 1845; https://doi.org/10.3390/nano15241845 - 8 Dec 2025
Viewed by 375
Abstract
Rutting is a predominant distress in asphalt pavements, particularly in hot climatic regions. This study systematically investigated the high-temperature performance of hot mix asphalt modified with five nanomaterials, namely, nano-silica (NS), nano-alumina (NA), nano-titanium (NT), nano-zinc (NZ), and carbon nanotubes (CNTs), under consistent [...] Read more.
Rutting is a predominant distress in asphalt pavements, particularly in hot climatic regions. This study systematically investigated the high-temperature performance of hot mix asphalt modified with five nanomaterials, namely, nano-silica (NS), nano-alumina (NA), nano-titanium (NT), nano-zinc (NZ), and carbon nanotubes (CNTs), under consistent laboratory conditions. Modification dosages were selected up to 10% for NS, NA, and NT, and up to 5% for NZ and CNTs. The experimental methodology comprised the following: (i) binder rheological characterization through rotational viscosity, G*/sinδ, and multiple stress creep recovery (MSCR) to quantify rutting susceptibility; (ii) chemical and microstructural assessments using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM); (iii) mixture-level evaluation via repeated-load axial testing coupled with digital image correlation (DIC) to monitor permanent microstrain evolution; and (iv) rutting performance over a 20-year period using the VESYS 5W predictive model. A cost–performance analysis was further incorporated to assess the economic viability of each nanomaterial. The results demonstrated that nanomodification substantially improved rutting resistance, consistent with reductions in non-recoverable creep compliance and permanent microstrain. Among additives, the 8% NS mixture exhibited the most favorable performance, maintaining a present serviceability index (PSI) of 2.5 after 20 years, whereas the un-modified mixture dropped below the failure threshold within a few years. These findings confirm that nanomaterial selection and dosage can meaningfully enhance the structural and performance of asphalt pavements. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

24 pages, 3961 KB  
Article
A Novel Measurement-Based Computational Method for Real-Time Distribution of Lateral Wheel–Rail Contact Forces
by Nihat Bulduk and Muzaffer Metin
Machines 2025, 13(12), 1105; https://doi.org/10.3390/machines13121105 - 28 Nov 2025
Viewed by 405
Abstract
This study has developed a novel measurement-based computational method that accurately determines the vertical and lateral wheel–rail contact forces transmitted from railway vehicles to the rails. A major contribution—and the first in the literature—is the analytical distribution of the total lateral wheelset force [...] Read more.
This study has developed a novel measurement-based computational method that accurately determines the vertical and lateral wheel–rail contact forces transmitted from railway vehicles to the rails. A major contribution—and the first in the literature—is the analytical distribution of the total lateral wheelset force into its outer-wheel and inner-wheel components, thereby enabling precise individual evaluation of derailment risk on each wheel in curved tracks. Analytical equations derived from Newton’s second law were first formulated to express both vertical forces and total axle lateral force directly from bogie/axle-box accelerations and suspension reactions. To eliminate the deviations caused by conventional simplifying assumptions (neglect of creep effects, wheel diameter variation, and constant contact geometry), surrogate functions and distribution equations sensitive to curve radius, vehicle speed, and cant deficiency were introduced for the first time and seamlessly integrated into the equations. Validation was performed using the Istanbul Tramway multibody model in SIMPACK 2024x.2, with the equations implemented in MATLAB/Simulink R2024b. Excellent agreement with SIMPACK reference results was achieved on straight tracks and curves, after regression-based calibration of the surrogate functions. Although the method requires an initial regression calibration within a simulation environment, it relies exclusively on measurable parameters, ensuring low cost, full compatibility with existing vehicle sensors, and genuine suitability for real-time monitoring. Consequently, it supports predictive maintenance and proactive safety management while overcoming the practical limitations of instrumented wheelsets and offering a robust, fleet-scalable alternative for the railway industry. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

25 pages, 7323 KB  
Article
Stability Assessment of Operation Tunnels Considering Long-Term Interaction Between the Lining and Surrounding Rock
by Peng Peng, Zhaopeng Ji, Chang Liu, Sulei Zhang and Mingqing Du
Buildings 2025, 15(23), 4240; https://doi.org/10.3390/buildings15234240 - 24 Nov 2025
Viewed by 365
Abstract
Operational tunnels are generally accompanied by time-dependent deformation and structural failures due to delayed behaviors, e.g., loading effects from surrounding rock and degradation of the concrete lining. This paper presents an analytical approach to investigate the long-term stability of tunnels considering those delayed [...] Read more.
Operational tunnels are generally accompanied by time-dependent deformation and structural failures due to delayed behaviors, e.g., loading effects from surrounding rock and degradation of the concrete lining. This paper presents an analytical approach to investigate the long-term stability of tunnels considering those delayed behaviors. To quantitatively characterize the degradation process of concrete lining, specific degradation models are adopted according to the identified obstacles in service environments. The viscoelastic Burgers model is selected to recognize the long-term creep properties of the surrounding rock. The time-varying solutions for tunnel deformation and lining stress can be obtained using the displacement compatibility condition between the concrete lining and the surrounding rock. The results find that the long-term stability of tunnels is governed by the interaction between the concrete lining and the surrounding rock. Different degradation models and rates significantly influence mechanical response, with thinner linings showing greater susceptibility. Viscoelastic rock properties further affect system behavior. The amplified effect of degradation under long-term rock loading underscores the necessity of understanding these coupled mechanisms for accurate life predictions. On account of the findings, a long-term performance maintenance method for operation tunnels is proposed and illustrated by a rehabilitation project for tunnel damage. Remediation of structural damage in operation tunnels should consider the surrounding rock condition and support structure performance, significantly improving long-term safety and reducing remediation costs. Overall, the present work provides some insight into the long-term stability assessment of operation tunnels. Full article
Show Figures

Figure 1

22 pages, 4497 KB  
Article
Experimental and Analytical Framework for Predicting Nonlinear Viscoelastic–Viscoplastic Behavior of Polymers
by Alen Oseli, Matic Šobak and Lidija Slemenik Perše
Polymers 2025, 17(23), 3095; https://doi.org/10.3390/polym17233095 - 21 Nov 2025
Viewed by 573
Abstract
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by [...] Read more.
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by an experimental and analytical framework for identifying model parameters. Introduced multi-scale analysis allows evaluation of pure linear and nonlinear viscoelastic, as well as viscoplastic behavior, enabling the study of their contribution to overall material response. Model performance was examined with creep recovery tests on two versatile and well-established thermoplastic polymers with different morphological structures: amorphous ABS exhibiting notable flow and semi-crystalline POM, where flow may be neglected. Results show extremely accurate predictions and exceptional agreement with experimental data, as the error was found to be less than 5% ranging from infinitesimally small to relatively high loading magnitudes (from 0.1 to 15 MPa of shear stress) at 70 °C (maximum operating temperature). Notably, viscoplastic strains were detected even within linear viscoelastic domain, suggesting that these effects are not related to yield phenomena (associated with progressive/damaging mechanisms), but rather provide an explanation for the material’s inability to fully recover. With its predictive capability and adaptability, the model demonstrates to be a powerful tool for capturing realistic material responses not only for the considered but also applicable to other molecular systems. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

19 pages, 5760 KB  
Article
Effect of Over-Temperature on Creep Damage of Bi-Based Brazing Filler Alloy
by Jun Hong, Tao Wang, Baoyin Zhu, Dongpeng Li, Haitao Dong, Dungui Zuo and Gongye Zhang
Crystals 2025, 15(11), 1001; https://doi.org/10.3390/cryst15111001 - 20 Nov 2025
Viewed by 282
Abstract
This work investigates the creep damage behavior and life prediction of Bi-based brazing alloys and their corresponding joints under intermittent over-temperature conditions, and proposes an integrated real-time monitoring and analytical framework. Temperature–time histories of structural components are acquired using both fixed and mobile [...] Read more.
This work investigates the creep damage behavior and life prediction of Bi-based brazing alloys and their corresponding joints under intermittent over-temperature conditions, and proposes an integrated real-time monitoring and analytical framework. Temperature–time histories of structural components are acquired using both fixed and mobile infrared thermography systems to quantify thermal fluctuations. These data are subsequently coupled with a materials database and an enhanced Kachanov–Rabotnov creep damage constitutive model to simulate the evolution of thermally induced stresses and the accumulation of damage. Structural parameters, including weld seam thickness and porosity, are incorporated to perform sensitivity analyses. Experimental findings reveal a pronounced decline in the yield strength of the Bi-based brazing alloy with increasing temperature, identifying this degradation as the principal driver of creep failure. Fractographic observations show intergranular rupture characteristics during creep, in distinct contrast to the transgranular fracture mechanisms observed under tensile loading. Model predictions exhibit excellent concordance with experimental data and faithfully capture the life evolution across varying thermal–mechanical conditions. The results demonstrate that the proposed system enables real-time assessment of the health state, residual life, and failure risk of critical components. Moreover, it provides a robust theoretical foundation and practical guidance for operational safety management and maintenance decision-making in large enclosed containment structures, including those employed in nuclear power systems. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 6508 KB  
Article
Calculation and Intelligent Prediction of Long-Term Subgrade Settlement on Soft Soil Interlayer Foundations Under Secondary Consolidation in the Yellow River Floodplain
by Yong Lu, Ang Zheng, Xianjin Xu, Tao Lei, Zihan Sang, Lei Zhang, Zhaoyun Sun, Zhanyong Yao and Kai Yao
Eng 2025, 6(11), 320; https://doi.org/10.3390/eng6110320 - 10 Nov 2025
Viewed by 379
Abstract
Highways constructed on stratified foundations with thick soft soil interlayers in the Yellow River floodplain of Shandong Province have experienced long-term settlement. However, accurately predicting subgrade settlement caused by the secondary consolidation of soft soils remains a major engineering challenge. In this study, [...] Read more.
Highways constructed on stratified foundations with thick soft soil interlayers in the Yellow River floodplain of Shandong Province have experienced long-term settlement. However, accurately predicting subgrade settlement caused by the secondary consolidation of soft soils remains a major engineering challenge. In this study, PLAXIS 3D numerical simulation was combined with a neural network model to predict the long-term temporal and spatial settlement behavior of highway subgrades. The results show that the soft soil creep (SSC) constitutive model better represents the consolidation process of the soft soil interlayer than the soft soil (SS) model. A decrease in permeability will prolong the dissipation time of excess pore water pressure and the settlement stabilization time, leading to an increase in the proportion of post-construction settlement in the total settlement. The final settlement increases linearly with the thickness of the soft soil interlayer and embankment height, while it decreases following a power-law function with increasing interlayer burial depth. By comprehensively considering the combined effects of multiple factors, a genetic algorithm–optimized backpropagation neural network (GA-BP) model was developed. The testing dataset achieved a root mean square error (RMSE) of 0.01488 m, a mean absolute percentage error (MAPE) of 7.0562%, and a coefficient of determination (R2) of 0.9706, demonstrating the model’s ability to achieve intelligent full-period and full-section settlement prediction for subgrades with soft soil interlayers. Overall, this study developed an intelligent framework for predicting long-term settlement in subgrades with soft soil interlayers, offering practical guidance for evaluation and timely settlement control. Full article
(This article belongs to the Special Issue Advanced Numerical Simulation Techniques for Geotechnical Engineering)
Show Figures

Figure 1

33 pages, 6956 KB  
Article
Probabilistic Analysis of Creep and Shrinkage Effects on Prestressed Concrete Bridges Using Solid Element Models
by Jun Lu, Hongwei Zhang, Zhibin Jin and Xuezhi Deng
Buildings 2025, 15(21), 3973; https://doi.org/10.3390/buildings15213973 - 3 Nov 2025
Viewed by 749
Abstract
Concrete creep and shrinkage are critical factors affecting the long-term performance of extradosed bridges, leading to deflection, stress redistribution, and potential cracking. Predicting these effects is challenging due to uncertainties in empirical models and a lack of long-term data. While beam element models [...] Read more.
Concrete creep and shrinkage are critical factors affecting the long-term performance of extradosed bridges, leading to deflection, stress redistribution, and potential cracking. Predicting these effects is challenging due to uncertainties in empirical models and a lack of long-term data. While beam element models are common in design, they often fail to capture complex stress fields in disturbed regions (D-regions), potentially leading to non-conservative assessments of crack resistance. This study presents a computationally efficient probabilistic framework that integrates the First-Order Second-Moment (FOSM) method with a high-fidelity solid element model to analyze these time-dependent effects. Our analysis reveals that solid element models predict 14% higher long-term deflections and 64% greater sensitivity to creep and shrinkage parameters compared to beam models, which underestimate both the mean and variability of deformation. The FOSM-based framework proves highly efficient, with its prediction for the standard deviations of bridge deflection falling within 7.1% of those from the more computationally intensive Probability Density Evolution Method. Furthermore, we found that time-varying parameters have a minimal effect on principal stress directions, validating a scalar application of FOSM with less than 3% error. The analysis shows that uncertainties from creep and shrinkage models increase the 95% quantile of in-plane principal stresses by 0.58MPa, which is approximately 23% of the material’s tensile strength and increases the cracking risk. This research underscores the necessity of using high-fidelity models and probabilistic methods for the reliable design and long-term assessment of complex concrete bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 7021 KB  
Article
Mechanism and Parametric Study on Pullout Failure of Tunnel Anchorage in Suspension Bridges
by Menglong Dong, Zhijin Shen, Xiaojie Geng, Li Zhang and Aipeng Tang
Appl. Sci. 2025, 15(21), 11587; https://doi.org/10.3390/app152111587 - 30 Oct 2025
Viewed by 372
Abstract
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in [...] Read more.
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in predicting their performance in complex geological conditions. This study investigates the pullout failure mechanism and bearing behavior of tunnel anchorages situated in heterogeneous conglomerate rock, with application to the Wujiagang Yangtze River Bridge in China to employ a tunnel anchorage in such strata. An integrated research methodology is adopted, combining in situ and laboratory geotechnical testing, a highly instrumented 1:12 scaled field model test, and detailed three-dimensional numerical modeling. The experimental program characterizes the strength and deformation properties of the rock, while the field test captures the mechanical response under design, overload, and ultimate failure conditions. Numerical models, calibrated against experimental results, are employed to analyze the influence of key parameters such as burial depth, inclination, and overburden strength. Furthermore, the long-term stability and creep behavior of the anchorage are evaluated. The results reveal the deformation characteristics, failure mode, and ultimate pullout capacity specific to weakly cemented and stratified rock. The study provides novel insights into the rock–anchorage interaction mechanism under these challenging conditions and validates the feasibility of tunnel anchorages in complex geology. The findings offer practical guidance for the design and construction of future tunnel anchorages in similar settings, ensuring both safety and economic efficiency. Full article
Show Figures

Figure 1

20 pages, 3504 KB  
Article
Modeling the Evolution of Mechanical Behavior in Rocks Under Various Water Environments
by Lixiang Liu, Sai Fu, Xianlin Jia, Xibin Li and Linfei Zhang
Water 2025, 17(20), 2983; https://doi.org/10.3390/w17202983 - 16 Oct 2025
Viewed by 470
Abstract
After reservoir impoundment, water infiltration weakens rock strength and accelerates creep deformation. Existing models seldom capture both strength degradation and creep behavior under prolonged saturation. This study develops a coupled hydro-mechanical creep model that integrates saturation-dependent elastic modulus reduction, cohesion decay with pore [...] Read more.
After reservoir impoundment, water infiltration weakens rock strength and accelerates creep deformation. Existing models seldom capture both strength degradation and creep behavior under prolonged saturation. This study develops a coupled hydro-mechanical creep model that integrates saturation-dependent elastic modulus reduction, cohesion decay with pore pressure, and a nonlinear creep law modified by a Heaviside function. Simulation of rock deformation during water infiltration reveals that water–creep coupling increases steady-state deformation by over 50% compared to strength degradation alone. A case study of a high arch dam reservoir slope demonstrates that models incorporating both water-weakening and creep effects predict significantly larger deformations than those ignoring these mechanisms. The model provides a practical tool for predicting long-term deformation in reservoir slopes under water–rock interaction. Full article
Show Figures

Figure 1

23 pages, 7146 KB  
Article
Creep Performance and Viscoelastic Constitutive Relationship of Structural Acrylic Connected Using Bulk Polymerization Technique
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Wei Cheng, Ming Huang and Yulong Song
Buildings 2025, 15(20), 3691; https://doi.org/10.3390/buildings15203691 - 14 Oct 2025
Viewed by 553
Abstract
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to [...] Read more.
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to study the creep performance of structural acrylic base material and coupons connected using the bulk polymerization technique, short-term tensile tests and long-term creep tests were conducted, and the effect of annealing temperature controlled in the bulk polymerization process was considered. The results show that annealing temperature significantly affects the quality of bulk polymerization. The Burgers model accurately describes the viscoelastic behavior of acrylic, and the Prony series converted from the parameters in the Burgers model can be directly implemented in Abaqus and accurately simulates the creep behavior of acrylic. The equation proposed in this study, on the basis of the Findley model, is precise enough to predict the creep curves of acrylic base material and connecting coupons. The Time–Stress Superposition Principle is valid when the time is greater than the threshold value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5882 KB  
Article
Creep and Fatigue Life Prediction of Bulk-Polymerized Spliced Acrylic
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Yulong Song and Wei Cheng
Buildings 2025, 15(20), 3677; https://doi.org/10.3390/buildings15203677 - 13 Oct 2025
Viewed by 460
Abstract
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well [...] Read more.
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well as base material coupons. The experimental life data were fitted using log-log linear regression models. Based on statistical analysis, a simple yet robust statistical framework was established for life prediction, featuring three design curves: 97.7% survival curves, improved 95% confidence interval lower bounds, and one-sided tolerance curves. Fractographic examination using scanning electron microscopy (SEM) was performed to characterize macroscopic failure modes. The results indicate distinct threshold behavior between stress levels and both creep and fatigue life. The creep threshold stresses are 25 MPa for the base material, 29 MPa for the spliced coupons annealed at 85 °C, and 17 MPa for the spliced coupons annealed at 65 °C. Corresponding fatigue threshold stress amplitudes are 21 MPa, 22 MPa, and 31 MPa, respectively. Failure in the base material is primarily initiated by randomly distributed internal defects, whereas failure in the spliced coupons is mainly caused by defects within the seam or interfacial tearing. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop