Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = creep ductility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 372
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

27 pages, 4124 KiB  
Article
Evaluating Binary Molybdenum Alloys as Strong and Ductile High-Temperature Materials
by Cheng Fu, Jiayi Yan, Jiang Yu, Yuhong Ren and Sha Li
Materials 2025, 18(14), 3329; https://doi.org/10.3390/ma18143329 - 15 Jul 2025
Viewed by 243
Abstract
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is [...] Read more.
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is to explore opportunities of discovering useful alloys from the usually less investigated binary Mo-X systems (X = alloying element). With computational thermodynamics (CALPHAD), first-principles calculation, and mechanistic modeling combined, in this work a large number of Mo-X binary systems are investigated in terms of thermodynamic features and mechanical properties (yield strength, ductility, ductile-brittle transition temperature, creep resistance, and stress-strain relationship). The applicability of the alloy systems as solution-strengthened or precipitation-strengthened alloys is investigated. Starting from 92 Mo-X systems, a down-selection process is implemented, the results of which include three candidate systems for precipitation strengthening (Mo-B, Mo-C, Mo-Si) and one system (Mo-Re) for solid-solution strengthened alloy. In a composition optimization of Mo alloys to reach the properties of Ni-base superalloys, improving ductility is of top priority, for which Re plays a unique role. The presented workflow is also applicable to other bcc refractory alloy systems. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

13 pages, 3867 KiB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 226
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 365
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

18 pages, 8183 KiB  
Article
Experimental Study on Rheological Behavior of Firefighting Foams
by Youquan Bao, Huiqiang Zhi, Lu Wang, Yakun Fan and Junqi Wang
Materials 2025, 18(14), 3236; https://doi.org/10.3390/ma18143236 - 9 Jul 2025
Viewed by 246
Abstract
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the [...] Read more.
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the time-dependent viscoelasticity, yielding, and viscous flow of firefighting foam under controlled shear conditions, addressing the significant challenge posed by its rapid structural evolution (drainage and coarsening) during measurement. Using a cylindrical Couette rheometer, conductivity measurements for the liquid fraction, and microscopy for the bubble size analysis, the study quantifies how foam aging impacts key rheological parameters. The results show that the creep and relaxation response of the firefighting foam in the linear viscoelastic region conforms to the Burgers model. The firefighting foam shows ductile yielding and significant shear thinning, and its flow curve under slow shear can be well represented by the Herschel–Bulkley model. Foam drainage and coarsening have competitive effects on the rheology of the firefighting foam, which results in monotonic and nonmonotonic variations in the rheological response in the linear and nonlinear viscoelastic regions, respectively. The work reveals that established empirical relationships between rheology, liquid fraction, and bubble size for general aqueous foams are inadequate for firefighting foams, highlighting the need for foam-specific constitutive models. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

12 pages, 3805 KiB  
Article
Preparation of Graft-Functionalized SBS/SBS Composite Latex Modifier and Its Effect on Emulsified Asphalt Properties
by Kunyu Wang, Yifan Liu, Zhenhao Cao, Yanyan Zhang, Jia Wang and Xue Li
Processes 2025, 13(7), 2125; https://doi.org/10.3390/pr13072125 - 3 Jul 2025
Viewed by 352
Abstract
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS [...] Read more.
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS composite latex-modified emulsified asphalt (MSMEA) with varying ratios to determine the optimal composition. The ideal ratio was found to be MA-g-SBS:SBS = 1:4. Subsequently, conventional property tests, rheological analyses, microphase structure observations, and bending beam creep tests were conducted on MSMEA with the optimal ratio to assess the impact of the composite latex on asphalt performance. Findings indicated that increasing the latex content significantly enhanced the softening point and ductility while reducing penetration. These macroscopic improvements were notably superior to those achieved with single SBS latex modification. Fluorescence microscopy revealed that at low dosages, the MA-g-SBS/SBS composite dispersed uniformly as point-like structures within the asphalt. At higher dosages (above 5%), a distinct network structure emerged. The addition of the composite latex raised the complex shear modulus and rutting factor while reducing the phase angle, with pronounced fluctuations observed between 4% and 5% dosages. This suggests a substantial enhancement in the high-temperature performance of the emulsified asphalt, attributed to the formation of the network structure. FT-IR results confirmed that a chemical reaction occurred during the modification process. Additionally, the bending beam creep test demonstrated that the composite latex reduced asphalt brittleness and improved its low-temperature performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 3861 KiB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 443
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

17 pages, 5744 KiB  
Article
Evaluation of Mechanical Characteristics of Tungsten Inert Gas (TIG) Welded Butt Joint of Inconel 600
by Arash Moradi, Fatemeh Marashi Najafi, Yong Chen and Mahmoud Chizari
J. Manuf. Mater. Process. 2025, 9(6), 177; https://doi.org/10.3390/jmmp9060177 - 28 May 2025
Viewed by 546
Abstract
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques [...] Read more.
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques for joining these alloys. Therefore, the investigation of the mechanical behaviour after the welding process is crucial for selecting the appropriate technique for joining Inconel 600 sheets. This research focuses on investigating the microstructure and mechanical behaviour of TIG-welded Inconel 600 through a series of tests, such as tensile, fatigue, creep, and hardness evaluations. In addition, microstructural analysis is combined with these mechanical evaluations to simulate the operating conditions experienced by turbine blades. Key parameters such as yield strength, tensile strength, and elongation have been evaluated through these analyses. The Ramberg–Osgood relationship has been investigated using the engineering and true stress–strain curves obtained from the welded specimens. The results of the fatigue test illustrate the relationship between strain amplitude and the number of cycles to failure for single and double-edge notched specimens. The test was performed at two different loads including 400 MPa and 250 MPa at a constant temperature of 650 °C, and the corresponding strain-time curves were recorded. The results showed rapid creep failure at 650 °C, suggesting that TIG welding may need to be optimized for high temperature applications. Full article
Show Figures

Figure 1

20 pages, 3018 KiB  
Article
Performance Evaluation of Desulfurized Rubber Powder and Styrene-Butadiene-Styrene Composite-Modified Asphalt
by Bin Liu, Kai Zhang, Xiangyang Fan and Chongzhi Tu
Coatings 2025, 15(5), 607; https://doi.org/10.3390/coatings15050607 - 19 May 2025
Viewed by 509
Abstract
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified [...] Read more.
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified asphalt was prepared using desulfurized rubber powder (DRP) and styrene-butadiene-styrene (SBS) modifiers, aiming to identify the optimal formulation for enhanced performance. It was hypothesized that the combined use of DRP and SBS would produce synergistic effects, improving the overall mechanical and rheological properties of the asphalt. To test this, the effects of this composite modification were evaluated using Marshall tests (penetration, softening point, ductility, elastic recovery, and Brookfield viscosity) and Superpave tests (shear modulus, high-performance grade, rutting factor, fatigue factor, and creep and recovery). Additionally, moisture susceptibility, high-temperature stability, low-temperature cracking resistance, and fatigue resistance at the mixture level were assessed. Performance was evaluated according to the Chinese standard JT/T 798-2019 for rubberized asphalt using reclaimed tire rubber. Results show that DRP-modified asphalt demonstrates excellent temperature sensitivity, rutting resistance, deformation resistance, and fatigue performance. However, an excessive amount of DRP increases Brookfield viscosity, which negatively affects the workability of the asphalt binder. The addition of SBS further improves the softening point, ductility, and deformation recovery of the binder. Considering cost-effectiveness and overall performance, the optimal formulation was determined to be 25% DRP and 1% SBS. At this dosage, all performance indicators met the required standards. The rotational viscosity at 180 °C was approximately 35% lower than that of conventional rubber powder–modified asphalt, while the high-temperature rutting factor and fatigue resistance at medium-to-low temperatures outperformed those of SBS-modified asphalt. The mixture test results reveal that the gradation has an impact on the performance of the obtained mixture, but overall, the DRP-SBS composite-modified asphalt mixture has significant advantages in terms of performance and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Asphalt and Concrete Coatings)
Show Figures

Figure 1

16 pages, 3096 KiB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 431
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

16 pages, 6813 KiB  
Article
Creep–Fatigue Behavior and Life Prediction of Medium-Si-Mo Ductile Iron
by Mucheng Liu, Huihua Feng and Peirong Ren
Appl. Sci. 2025, 15(10), 5406; https://doi.org/10.3390/app15105406 - 12 May 2025
Viewed by 516
Abstract
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. [...] Read more.
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. It was found that QTRSi4Mo exhibited cyclic hardening at room temperature and 400 °C, whereas it exhibited cyclic softening at 600 °C and 700 °C for low-cycle stress–strain responses. During creep–fatigue tests with hold time, variations in the strain amplitude did not alter the hysteresis loop shape or the hardening/softening characteristics of the material. They only induced a slight upward shift in the yield center. Additionally, stress relaxation primarily occurred in the initial phase of the hold period, so the hold duration had little effect on the final stress value. The investigation of creep–fatigue life models highlighted that accurately characterizing the damage induced by stress relaxation during the hold stage is critical for creep damage evaluation. The calculated creep damage results differed greatly from the experimental results of the time fraction model (TF). A combined approach using the strain energy density dissipation model (T-SEDE) and the Ostergren method demonstrated excellent predictive capability for creep–fatigue life. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

19 pages, 6562 KiB  
Article
Rethinking PE-HD Bottle Recycling—Impacts of Reducing Design Variety
by Lorenz P. Bichler, Thomas Koch, Nina Krempl and Vasiliki-Maria Archodoulaki
Recycling 2025, 10(3), 93; https://doi.org/10.3390/recycling10030093 - 8 May 2025
Viewed by 1585
Abstract
As the severe environmental impacts of plastic pollution demand determined action, the European Union (EU) has included recycling at the core of its policies. Consequently, evolving jurisdiction now aims to achieve a recycling rate of 65% for non-PET plastic bottles by 2040. However, [...] Read more.
As the severe environmental impacts of plastic pollution demand determined action, the European Union (EU) has included recycling at the core of its policies. Consequently, evolving jurisdiction now aims to achieve a recycling rate of 65% for non-PET plastic bottles by 2040. However, the widespread use of post-consumer high-density polyethylene (rPE-HD) recyclates in household chemical containers is still limited by PP contamination, poor mechanical properties, and low environmental stress cracking resistance (ESCR). Although previous studies have explored the improvement of regranulate properties through additives, few have examined whether reducing the variety of extrusion blow-moulded PE-HD packaging could offer similar benefits. Therefore, two sorted fractions of rPE-HD hollow bodies were processed into regranulates under industrial conditions, including hot washing, extrusion, and deodorisation. Subsequently, both materials underwent comprehensive characterisation regarding their composition and performance. The opaque material, which was sourced from milk bottles in the UK, exhibited greater homogeneity with minor impurities, leading to improved ductility and melt strain hardening at moderate strain rates compared to the mixed material stream, which contained approximately 2.5% PP contamination. However, both rPE-HD recyclates exhibited similar short-term creep behaviour, relatively low strain hardening moduli, and were almost devoid of inorganic particles. Considering the sum of the investigated properties, melt blending with suitable virgin material is likely one of the most effective options to maximise regranulate utilisation in hollow bodies, followed by recycling-oriented packaging design (e.g., for efficient sorting), and the employment of advanced sorting technology. Full article
Show Figures

Graphical abstract

24 pages, 28123 KiB  
Article
The Role of Titanium Carbides in Forming the Microstructure and Properties of Ti-33Mo-0.2C Alloy
by Wojciech Szkliniarz and Agnieszka Szkliniarz
Coatings 2025, 15(5), 546; https://doi.org/10.3390/coatings15050546 - 2 May 2025
Viewed by 448
Abstract
This study presents the characteristics of the Ti-33Mo-0.2C alloy, which belongs to the group of titanium alloys with a stable β phase and contains 0.27 wt% carbon; this is significantly higher than the permissible level for this alloy, which is 0.1 wt%. The [...] Read more.
This study presents the characteristics of the Ti-33Mo-0.2C alloy, which belongs to the group of titanium alloys with a stable β phase and contains 0.27 wt% carbon; this is significantly higher than the permissible level for this alloy, which is 0.1 wt%. The Ti-33Mo-0.2C alloy was melted in a vacuum induction furnace with a cold copper crucible and subsequently processed into a 12 mm diameter rod through hot rolling and annealing under standard conditions. The microstructure, as well as the mechanical and physicochemical properties of the Ti-33Mo-0.2C alloy, were compared with those of the Ti-33Mo alloy of a similar chemical composition. The following techniques were used to characterize the microstructure and properties of the alloys: LM; SEM/EDS (WDS); XRD; and mechanical, creep, and corrosion testing. The conducted analyses demonstrated that the addition of approximately 0.2 wt% carbon to the Ti-33Mo alloy leads to the expected improvement in microstructural stability by reducing grain growth and inhibiting the precipitation of the α phase at β grain boundaries. Consequently, a unique simultaneous enhancement of both strength and ductility, with increased creep resistance, is observed while maintaining the excellent corrosion resistance of the investigated alloy. The observed beneficial effects and additional capabilities resulting from the presence of carbon in the investigated alloy justify the conclusion that carbon should no longer be regarded as an undesirable impurity, which stands in contrast to some previous statements. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

25 pages, 4766 KiB  
Article
CO2-Based Polypropylene Carbonates with High-Stretch and Self-Healing Properties
by Chiara Pasini, Stefano Pandini, Francesca Milocco, Jing Chen, Zhenchen Tang, Paolo P. Pescarmona and Luciana Sartore
Int. J. Mol. Sci. 2025, 26(8), 3878; https://doi.org/10.3390/ijms26083878 - 19 Apr 2025
Viewed by 723
Abstract
Carbon dioxide-based copolymers such as polypropylene carbonate (PPC) can offer the double environmental benefit of capturing CO2 and replacing oil-based raw materials in the plastics industry with renewable ones. However, their production at an industrial level is still limited by the range [...] Read more.
Carbon dioxide-based copolymers such as polypropylene carbonate (PPC) can offer the double environmental benefit of capturing CO2 and replacing oil-based raw materials in the plastics industry with renewable ones. However, their production at an industrial level is still limited by the range of applications in which their physicochemical properties are competitive and ideally surpass those of fossil-based polymeric commodities. This work introduces PPC materials with high-stretch and self-healing properties that were prepared by copolymerization of CO2 and propylene oxide using tailored Zn glutarate catalysts. The PPC materials were analyzed in terms of composition, molecular weight, thermal and mechanical behavior, particularly focusing on their tensile properties, strain recovery, creep response, and self-healing ability. All the prepared PPC materials showed good ductility and self-healing properties. The most promising ones achieved excellent and fast recovery of extremely high elongations (>700%), still reaching remarkable values (>600%) after proper self-healing. These high-stretch and self-healing PPC materials are completely amorphous, present good optical transparency, and can be processed using techniques normally used for other thermoplastics. Therefore, they are promising for a variety of applications, including shrink films and self-healing packaging, thus providing new, valuable perspectives for the industrialization of these CO2-based polymers. Full article
(This article belongs to the Special Issue Research on Synthesis and Application of Polymer Materials)
Show Figures

Figure 1

18 pages, 4795 KiB  
Article
Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test
by Meng Guo, Chenlu Sun, Yiqiao Wan and Xiuli Du
Materials 2025, 18(6), 1322; https://doi.org/10.3390/ma18061322 - 17 Mar 2025
Viewed by 412
Abstract
Low-temperature cracking is a primary failure mode of asphalt pavement. The poker chip test provides a straightforward and efficient approach to simulating the film state of asphalt binders in asphalt structures. By measuring the tensile strength and ultimate tensile strain of the binder [...] Read more.
Low-temperature cracking is a primary failure mode of asphalt pavement. The poker chip test provides a straightforward and efficient approach to simulating the film state of asphalt binders in asphalt structures. By measuring the tensile strength and ultimate tensile strain of the binder film, this test can effectively evaluate the cracking resistance and ductility of asphalt binders. Accordingly, this study employed the poker chip test to analyze the evolutions of low-temperature cracking resistance under various aging levels. To ensure the reliability of tensile strength and ultimate tensile strain, a Pearson correlation analysis was conducted between the two indicators and the traditional low-temperature performance evaluation indicators: stiffness modulus, creep rate, and the Glover-Rowe (G-R) parameter. The results indicate that the tensile strength and ultimate tensile strain of styrene–butadiene–styrene (SBS)-modified asphalt are higher than those of 70# base asphalt at the same aging level. With increasing aging time, the tensile strength of both SBS-modified asphalt and 70# base asphalt increases, while the ultimate tensile strain decreases. Additionally, the tensile strength and ultimate tensile strain are sensitive to changes in asphalt binder types and aging levels. They have a good linear correlation with stiffness modulus and creep rate, with correlation coefficients exceeding 0.9. Due to the distinct characteristics represented, the correlation between the two indicators and the G-R parameter is relatively weaker, with correlation coefficients exceeding 0.7. The findings of this study demonstrate that tensile strength and ultimate tensile strain are effective indicators for assessing the low-temperature performance of asphalt binders. They can serve as substitute indicators of stiffness modulus and creep rate, respectively. Full article
Show Figures

Figure 1

Back to TopTop