Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Testing Methods
2.2.1. Aging Test
2.2.2. The Poker Chip Test
2.2.3. Frequency Sweep Test
3. Results and Discussion
3.1. Analysis of the Poker Chip Test Results
3.1.1. Failure Cross Sections
3.1.2. Tensile Strength and Ultimate Tensile Strain
3.2. Analysis of Frequency Sweep Test Results
3.2.1. Stiffness Modulus and Creep Rate
3.2.2. G-R Parameter
3.3. Correlation Analysis
4. Conclusions
- With increasing aging time, the number of cavities on the failure cross sections of 70# base asphalt and SBS-modified asphalt increases, and the average cross-sectional area of cavities decreases. Under the same aging time, SBS-modified asphalt exhibits greater cohesiveness, a larger number of cavities, a smaller average cross-sectional area of cavities, and a flatter cross-sectional edge.
- The stretching process can be divided into four stages. Tensile strength and ultimate tensile strain are sensitive to aging times and asphalt binder types. SBS-modified asphalt consistently shows higher tensile strength and ultimate tensile strain than 70# base asphalt. As aging time increases, tensile strength rises, while ultimate tensile strain decreases for both asphalt types.
- According to the Pearson correlation analysis, tensile strength and ultimate tensile strain exhibit strong linear correlations with stiffness modulus and creep rate, with correlation coefficients exceeding 0.9. A linear correlation with G-R parameters was also observed, with correlation coefficients above 0.7. This indicates that tensile strength and ultimate tensile strain can serve as substitute indicators for stiffness modulus and creep rate, respectively.
- Testing the tensile strength and ultimate tensile strain of asphalt binders can help in selecting the appropriate asphalt formulation to meet the low-temperature cracking resistance requirements, especially when DSR and BBR tests are difficult to perform.
- In practical applications, especially in winter or cold regions, asphalt binders with higher ultimate tensile strain have greater potential in preventing low-temperature cracking of the pavement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamedi, G.H.; Saedi, D.; Ghahremani, H. Effect of short-term aging on low-temperature cracking in asphalt mixtures using mechanical and thermodynamic methods. J. Mater. Civ. Eng. 2020, 32, 04020288. [Google Scholar] [CrossRef]
- Li, L.; Guo, Z.; Ran, L.; Zhang, J. Study on low-temperature cracking performance of asphalt under heat and light together conditions. Materials 2020, 13, 1541. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Ayatollahi, M. Asphalt concrete resistance against fracture at low temperatures under different modes of loading. Cold Reg. Sci. Technol. 2015, 110, 149–159. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Li, L.; Li, P.; Saboundjian, S. Low temperature cracking analysis of asphalt binders and mixtures. Cold Reg. Sci. Technol. 2017, 141, 78–85. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, R.; Du, X.; Liu, P. A state-of-the-art review on the functionality of ultra-thin overlays towards a future low carbon road maintenance. Engineering 2024, 32, 82–98. [Google Scholar] [CrossRef]
- Isacsson, U.; Lu, X. Testing and appraisal of polymer modified road bitumens—State of the art. Mater. Struct. 1995, 28, 139–159. [Google Scholar] [CrossRef]
- Saarela, A. Asfalttipäällysteiden tutkimusohjelma ASTO 1987-1992. Tierakennusmestari 1991, 25, 52–53. [Google Scholar]
- Kandhal, P. Low-temperature ductility in relation to pavement performance. In Low-Temperature Properties of Bituminous Materials and Compacted Bituminous Paving Mixtures; Marek, C., Ed.; ASTM International: West Conshohocken, PA, USA, 1977; Volume 628, pp. 12–123. [Google Scholar]
- Tabatabaee, H.A.; Clopotel, C.; Arshadi, A.; Bahia, H. Critical Problems with Using the Asphalt Ductility Test as a Performance Index for Modified Binders. Transp. Res. Rec. 2013, 2370, 84–91. [Google Scholar] [CrossRef]
- Ruan, Y.; Davison, R.R.; Glover, C.J. The effect of long-term oxidation on the rheological properties of polymer modified asphalts. Fuel 2003, 82, 1763–1773. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, X.; Tan, Y.; Lu, L. Study on the Low Temperature Performance Evaluation Indexes of Modified Asphalt. J. Highw. Transp. Res. Dev. 2007, 24, 42–45. [Google Scholar]
- Huang, W.; Fu, X.; Li, Y.; Liu, S. Evaluation of Low Temperature Performance and Correlation Analysis on Low Temperature Indexes of SBS Modified Asphalts. J. Build. Mater. 2017, 20, 456–463. [Google Scholar]
- Wang, Q.; Cao, Y.; Yao, H.; Zhang, Y.; Mi, X.; Cao, Y. The Correlation Between 5 °C Ductility and Low Temperature Performance of SBS Modified Asphalt Mixture. Pet. Asph. 2023, 37, 35–42. [Google Scholar]
- Anderson, D.I.; Wiley, M. Force ductility—An asphalt performance indicator. In Chemical Abstracts; National Academy of Sciences: New Orleans, LA, USA, 1976; pp. 25–41. [Google Scholar]
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- McLeod, N. Asphalt cements: Pen-vis number and its application to moduli of stiffness. J. Test. Eval. 1976, 4, 275–282. [Google Scholar] [CrossRef]
- Thenoux, G.; Lees, G.; Bell, C. Laboratory investigation of the Fraass brittle test. Asph. Technol. 1987, 39, 34–36. [Google Scholar]
- Shen, J. The Indices of the Equivalent Softening Point & Equivalent Breaking Point of Road Asphalts. J. Highw. Transp. Res. Develpoment 1997, 14, 48–54. [Google Scholar]
- Eckmann, B.; Mazé, M.; Le Hir, Y.; Harders, O.; Gauthier, G. Checking Low Temperature Properties of Polymer Modified Bitumen-Is There a Future for the Fraass Breaking Point? The 3RD Eurasphalt and Eurobitume Congress: Vienna, Austria, 2004. [Google Scholar]
- Xia, P.; Hu, L.; Yan, J.; Wang, S.; Yang, Z. Low-temperature performance evaluation indices of high-viscosity modified asphalt. China Sci. 2020, 15, 1417–1421. [Google Scholar]
- Aashto, T. Standard Specification for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 1999. [Google Scholar]
- Velásquez, R.; Marasteanu, M.; Turos, M.; Labuz, J. Effect of beam size on the creep stiffness of asphalt mixtures at low temperatures. In Advanced Testing and Characterization of Bituminous Materials, 1st ed.; Loizos, A., Partl, M., Eds.; CRC Press: London, UK, 2009; pp. 329–338. [Google Scholar]
- Pszczola, M.; Jaczewski, M.; Rys, D.; Jaskula, P.; Szydlowski, C. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test. Materials 2018, 11, 100. [Google Scholar] [CrossRef]
- AASHTO MP1A(2002); Standard Specification for Determining Low-Temperature Performance Grade of Asphalt Binders. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2001.
- Li, F.; Yang, Y.; Wang, L. Evaluation of physicochemical interaction between asphalt binder and mineral filler through interfacial adsorbed film thickness. Constr. Build. Mater. 2020, 252, 119135. [Google Scholar] [CrossRef]
- Sirin, O.; Paul, D.K.; Kassem, E. State of the art study on aging of asphalt mixtures and use of antioxidant additives. Adv. Civ. Eng. 2018, 2018, 3428961. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.; Xie, L.; Zhang, Z.; Ma, X.; Oeser, M. Micro-scale investigation of aging gradient within bitumen film around air-binder interface. Fuel 2021, 286, 119404. [Google Scholar] [CrossRef]
- Gent, A.; Lindley, P. Internal rupture of bonded rubber cylinders in tension. Rubber Chem. Technol. 1961, 34, 925–936. [Google Scholar] [CrossRef]
- Lindsey, G.H. Triaxial fracture studies. J. Appl. Phys. 1967, 38, 4843–4852. [Google Scholar] [CrossRef]
- Sultana, S.; Bhasin, A.; Liechti, K.M. Rate and confinement effects on the tensile strength of asphalt binder. Constr. Build. Mater. 2014, 53, 604–611. [Google Scholar] [CrossRef]
- Marek, C.R.; Herrin, M. Tensile behavior and failure characteristics of asphalt cements in thin films. Assoc. Asph. Paving Technol. Proc. 1968, 37, 1–54. [Google Scholar]
- Poulikakos, L.; Partl, M. Micro scale tensile behaviour of thin bitumen films. Exp. Mech. 2011, 51, 1171–1183. [Google Scholar] [CrossRef]
- Poulikakos, L.; Tiwari, M.; Partl, M. Analysis of failure mechanism of bitumen films. Fuel 2013, 106, 437–447. [Google Scholar] [CrossRef]
- Filonzi, A.; Komaragiri, S.; Hajj, R.; Trevino, M.; Hazlett, D.; Mahmoud, E.; Bhasin, A. A method to evaluate the tensile strength and ductility of asphalt binders using a thin confined film. Int. J. Pavement Eng. 2023, 24, 2031194. [Google Scholar] [CrossRef]
- Anderson, R.M.; King, G.N.; Hanson, D.I.; Blankenship, P.B. Evaluation of the relationship between asphalt binder properties and non-load related cracking. J. Assoc. Asph. Paving Technol. 2011, 80, 615–662. [Google Scholar]
- Ishaq, M.A.; Giustozzi, F. Correlation between rheological tests on bitumen and asphalt low temperature cracking tests. Constr. Build. Mater. 2022, 320, 126109. [Google Scholar]
- Zhang, R.; Sias, J.E.; Dave, E.V. Correlating Laboratory Conditioning with Field Aging for Asphalt using Rheological Parameters. Transp. Res. Rec. 2020, 2674, 393–404. [Google Scholar] [CrossRef]
- Sui, C.; Farrar, M.J.; Tuminello, W.H.; Turner, T.F. New technique for measuring low-temperature properties of asphalt binders with small amounts of material. Transp. Res. Rec. 2010, 2179, 23–28. [Google Scholar] [CrossRef]
- Büchner, J.; Wistuba, M.P.; Remmler, T.; Wang, D. On low temperature binder testing using DSR 4 mm geometry. Mater. Struct. 2019, 52, 113. [Google Scholar] [CrossRef]
- Hajj, R.; Filonzi, A.; Rahman, S.; Bhasin, A. Considerations for using the 4 mm plate geometry in the dynamic shear rheometer for low temperature evaluation of asphalt binders. Transp. Res. Rec. 2019, 2673, 649–659. [Google Scholar] [CrossRef]
- Filonzi, A.; Lee, S.K.; Ferreira, W.; Hajj, R.; Bhasin, A. A micro-extraction method for use with 4 mm plate geometry in the Dynamic Shear Rheometer to evaluate asphalt binder rheology. Constr. Build. Mater. 2020, 252, 119024. [Google Scholar] [CrossRef]
- Primerano, K.; Mirwald, J.; Bhasin, A.; Hofko, B. Low-temperature characterization of bitumen and correlation to chemical properties. Constr. Build. Mater. 2023, 366, 130202. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Wang, S.; Xu, T. Thermal-oxidative aging mechanism of asphalt binder based on isothermal thermal analysis at the SARA level. Constr. Build. Mater. 2020, 255, 119349. [Google Scholar] [CrossRef]
- Xiang, H.; He, Z.; Tang, H.; Chen, L. Effects of thermo-oxidative aging on the macrophysical properties and microstructure of asphalt. Constr. Build. Mater. 2023, 395, 132315. [Google Scholar] [CrossRef]
- Hung, A.M.; Fini, E.H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel 2019, 242, 408–415. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, L.; Jia, Z.; Wang, F.; Li, Y.; Shi, P. Effect of thermo-oxidative ageing on nano-morphology of bitumen. Appl. Sci. 2019, 9, 3027. [Google Scholar] [CrossRef]
- Glover, C.J.; Davison, R.R.; Domke, C.H.; Ruan, Y.; Juristyarini, P.; Knorr, D.B.; Jung, S.H. Development of a New Method for Assessing Asphalt Binder Durability with Field Validation; FHWA/TX-05/1872-2; Texas Department of Transportation Research and Technology Implementation Office: Austin, TX, USA, 2005; pp. 1–334. [Google Scholar]
- Rowe, G.M.; King, G.; Anderson, M. The Influence of Binder Rheology on the Cracking of Asphalt Mixes in Airport and Highway Projects. J. Test. Eval. 2014, 42, 1–10. [Google Scholar] [CrossRef]
- Airey, G.D.; Rowe, G.M.; Sias, J.E.; Di Benedetto, H.; Sauzeat, C.; Dave, E.V. Black Space Rheological Assessment of Asphalt Material Behavior. J. Test. Eval. 2022, 50, 770–787. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Saboundjian, S. Evaluation of cracking susceptibility of Alaskan polymer modified asphalt binders using chemical and rheological indices. Constr. Build. Mater. 2021, 271, 121897. [Google Scholar] [CrossRef]
- Mensching, D.J.; Rowe, G.M.; Daniel, J.S.; Bennert, T. Exploring low-temperature performance in Black Space. Road Mater. Pavement Des. 2015, 16 (Suppl. 2), 230–253. [Google Scholar] [CrossRef]
Technical Indicators | Units | Measured Data | Method |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 72 | ASTM D5 |
Ductility at 15 °C | cm | >100 | ASTM D113 |
Softening Point | °C | 47 | ASTM D36 |
Flash Point | °C | 282 | ASTM D92 |
Density at 25 °C | g/cm3 | 1.030 | ASTM D70 |
Technical Indicators | Units | Measured Data | Method |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 49 | ASTM D5 |
Ductility (5 °C, 5 cm/min) | cm | 31 | ASTM D113 |
Softening Point | °C | 78.5 | ASTM D36 |
Flash Point | °C | 295 | ASTM D92 |
Relative Density at 25 °C | — | 1.033 | ASTM D70 |
−6 °C S | −6 °C m | 12 °C S | 12 °C m | 18 °C S | 18 °C m | G-R Parameter | |
---|---|---|---|---|---|---|---|
70# | 0.975 | 0.979 | 0.958 | 0.972 | 0.911 | 0.992 | 0.849 |
70# | 0.999 | 0.999 | 0.981 | 0.998 | 0.941 | 0.994 | 0.705 |
SBS | 0.995 | 0.960 | 0.997 | 0.935 | 0.979 | 0.921 | 0.930 |
SBS | 0.975 | 0.995 | 0.957 | 0.978 | 0.968 | 0.961 | 0.792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Sun, C.; Wan, Y.; Du, X. Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test. Materials 2025, 18, 1322. https://doi.org/10.3390/ma18061322
Guo M, Sun C, Wan Y, Du X. Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test. Materials. 2025; 18(6):1322. https://doi.org/10.3390/ma18061322
Chicago/Turabian StyleGuo, Meng, Chenlu Sun, Yiqiao Wan, and Xiuli Du. 2025. "Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test" Materials 18, no. 6: 1322. https://doi.org/10.3390/ma18061322
APA StyleGuo, M., Sun, C., Wan, Y., & Du, X. (2025). Study on the Low-Temperature Performance Evaluation Indicators of Asphalt Binder Based on the Poker Chip Test. Materials, 18(6), 1322. https://doi.org/10.3390/ma18061322