Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = cow mastitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 637 KiB  
Article
Relationship Between Hyperkeratosis, Teat Conformation Traits, Microbiological Isolation, and Somatic Cell Count in Milk from Dairy Cows
by Leonardo Leite Cardozo, Deise Aline Knob, Pauline Thais dos Santos, Angela Pelizza, Ana Paula Mori, Mauricio Camera, Sandra Maria Ferraz, Marcella Zampoli de Assis and André Thaler Neto
Dairy 2025, 6(4), 45; https://doi.org/10.3390/dairy6040045 (registering DOI) - 7 Aug 2025
Abstract
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic [...] Read more.
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic cell count (SCC) in milk from 170 cows on ten commercial dairy farms in Santa Catarina, Brazil. During two farm visits, milk and teat-end swab samples from paired teats (one with hyperkeratosis, one without) were analyzed for microbial growth and SCC. SCC data were transformed into somatic cell scores (SCS). Results showed no significant association between hyperkeratosis and mastitis microorganisms, although environmental microorganisms tended to be more frequent in hyperkeratotic teats (p = 0.0778). Major microorganisms in milk were significantly associated with higher SCC (p = 0.0132). No relationship was observed between teat conformation traits and hyperkeratosis. These findings suggest that hyperkeratosis may subtly influence the teat canal to environmental bacterial colonization, underscoring the need for improved milking management practices to minimize hyperkeratosis and associated mastitis risks. Full article
(This article belongs to the Special Issue Farm Management Practices to Improve Milk Quality and Yield)
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 216
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
14 pages, 1316 KiB  
Article
Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle
by Xiaoli Ren, Chu Chu, Xiangnan Bao, Lei Yan, Xueli Bai, Haibo Lu, Changlei Liu, Zhen Zhang and Shujun Zhang
Animals 2025, 15(15), 2242; https://doi.org/10.3390/ani15152242 - 30 Jul 2025
Viewed by 196
Abstract
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow [...] Read more.
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow cytometry, which is expensive and time-consuming, particularly for DSCC analysis. Mid-infrared spectroscopy (MIR) enables qualitative and quantitative analysis of milk constituents with great advantages, being cheap, non-destructive, fast, and high-throughput. The objective of this study is to develop a dairy cattle udder health status diagnostic model of MIR. Data on milk composition, SCC, DSCC, and MIR from 2288 milk samples collected in dairy farms were analyzed using the CombiFoss 7 DC instrument (FOSS, Hilleroed, Denmark). Three MIR spectral preprocessing methods, six modeling algorithms, and three different sets of MIR spectral data were employed in various combinations to develop several diagnostic models for mastitis of dairy cattle. The MIR diagnostic model of effectively identifying the healthy and mastitis cattle was developed using a spectral preprocessing method of difference (DIFF), a modeling algorithm of Random Forest (RF), and 1060 wavenumbers, abbreviated as “DIFF-RF-1060 wavenumbers”, and the AUC reached 1.00 in the training set and 0.80 in the test set. The other MIR diagnostic model of effectively distinguishing mastitis and chronic/persistent mastitis cows was “DIFF-SVM-274 wavenumbers”, with an AUC of 0.87 in the training set and 0.85 in the test set. For more effective use of the model on dairy farms, it is necessary and worthwhile to gather more representative and diverse samples to improve the diagnostic precision and versatility of these models. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

14 pages, 661 KiB  
Article
Longevity and Culling Reasons in Dairy Herds in Southern Brazil
by Rodrigo de Almeida, Sidneia de Paula, Marianna Marinho Marquetti, Milaine Poczynek, Delma Fabíola Ferreira da Silva, Rodrigo Barros Navarro, Altair Antonio Valloto, José Augusto Horst and Victor Breno Pedrosa
Animals 2025, 15(15), 2232; https://doi.org/10.3390/ani15152232 - 29 Jul 2025
Viewed by 272
Abstract
This study aimed to evaluate cow longevity and identify the main culling reasons in dairy herds in Southern Brazil. Two data sets from 26 predominantly confined Holstein herds were analyzed over a 10-year period (2007–2016). The first included 11,150 cows that were culled, [...] Read more.
This study aimed to evaluate cow longevity and identify the main culling reasons in dairy herds in Southern Brazil. Two data sets from 26 predominantly confined Holstein herds were analyzed over a 10-year period (2007–2016). The first included 11,150 cows that were culled, died, or sold, and the second comprised 636,739 cows for demographic analysis. The average annual culling rate was 24.2%, mainly due to reproductive disorders (34.0%), mastitis/high somatic cell count (20.4%), and feet and leg problems (17.9%). Involuntary causes represented 89.5% of all culling. The death rate averaged 3.8%, with the most frequent causes being unknown (27.3%), other reasons (25.6%), tick fever (10.2%), and accidents/injuries (10.0%). Larger herds had higher culling rates than smaller ones (26.2% vs. 22.8%; p = 0.04), as did higher-producing herds compared to lower-producing ones (25.7% vs. 22.0%; p = 0.02). Cows with ≥5 calvings were culled more often (p < 0.01) than those in earlier lactations. Culling was lowest (p < 0.02) in spring and highest (p < 0.01) during early (0–60 d) and late (>420 d) lactation. Herds with a higher proportion of older cows had slightly lower milk yields (p < 0.01), indicating longevity does not always enhance productivity. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 1641 KiB  
Article
Evaluating the Impact of Clinical Mastitis on Ovarian Morphometry and the Effectiveness of the Synchronisation Protocol in Dairy Cows
by Gabija Lembovičiūtė, Greta Šertvytytė, Ramūnas Antanaitis, Vytuolis Žilaitis, Walter Baumgartner and Arūnas Rutkauskas
Animals 2025, 15(15), 2215; https://doi.org/10.3390/ani15152215 - 28 Jul 2025
Viewed by 438
Abstract
Inflammatory processes within the body have been hypothesised to be causative agents of various health complications, including reproductive issues. This study investigates the effects of mastitis on ovarian morphometry and fertility outcomes while also comparing the effectiveness of different synchronisation protocols in affected [...] Read more.
Inflammatory processes within the body have been hypothesised to be causative agents of various health complications, including reproductive issues. This study investigates the effects of mastitis on ovarian morphometry and fertility outcomes while also comparing the effectiveness of different synchronisation protocols in affected cows. Healthy multiparous Holstein dairy cows, in their second to fifth lactations and with an average milk yield of approximately 12,000 kg in the preceding lactation, were selected for this study. The average milk yield per lactation was approximately 12,000 kg, with an average daily milk yield of 30 kg. The aim of this study was to determine the impact of mastitis on the reproductive cycle, ovarian morphometry, and function in dairy cows, as well as its effect on synchronisation efficiency. This study focused on both clinically healthy cows and those diagnosed with clinical mastitis postpartum. Three different synchronisation protocols—OvSynch, G7G, and Presynch—were evaluated at 60 days in milk (DIM). A total of 110 cows were included in this study, with 53 being clinically healthy and 57 affected by mastitis. The results indicated that inflammation affects ovarian morphometric parameters such as the area and the number of functional structures. In addition, the G7G protocol was observed to result in higher conception rates in cows suffering from mastitis following the second insemination. This study demonstrated that cows that developed mastitis within the first 30 DIM exhibited higher conception rates after the first insemination compared to those in cows that developed mastitis later in lactation. Full article
(This article belongs to the Section Cattle)
Show Figures

Graphical abstract

13 pages, 896 KiB  
Article
Prevalence and Diversity of Staphylococcus aureus in Bulk Tank Milk from Community-Based Alpine Dairy Pastures in Tyrol, Austria
by Nasrin Ramezanigardaloud, Igor Loncaric, Patrick Mikuni-Mester, Masoumeh Alinaghi, Monika Ehling-Schulz, Johannes Lorenz Khol and Tom Grunert
Animals 2025, 15(14), 2153; https://doi.org/10.3390/ani15142153 - 21 Jul 2025
Viewed by 294
Abstract
Staphylococcus aureus frequently causes intramammary infections in dairy cows (bovine mastitis), which impair animal welfare, milk yield, and food safety. This study determined the prevalence and genetic diversity of S. aureus in bulk tank milk (BTM) samples from community-based Alpine dairy pastures in [...] Read more.
Staphylococcus aureus frequently causes intramammary infections in dairy cows (bovine mastitis), which impair animal welfare, milk yield, and food safety. This study determined the prevalence and genetic diversity of S. aureus in bulk tank milk (BTM) samples from community-based Alpine dairy pastures in Tyrol, a major milk-producing region in Austria. Throughout the 2023 Alpine season (May–September), 60.3% (94/156) of BTM samples tested positive for S. aureus at least once over the course of up to four samplings. A total of 140 isolates collected from the 94 S. aureus-positive community-based Alpine dairy pastures revealed 33 distinct spa types, with t2953 (n = 33), t529 (n = 12), t267 (n = 11), and t024 (n = 10) being the most common. Selected isolates representing the different spa types were characterised by DNA microarray-based genotyping, multi-locus sequence typing (MLST), and antimicrobial susceptibility testing. Isolates with spa types associated with bovine-adapted CC8 (CC8bov/GTB) were identified as the most common subtype, being detected in BTM samples from 35.3% (55/156) of the pastures. This emphasises the high prevalence of this subtype in dairy herds across European Alpine countries. Other common bovine-associated subtypes were also detected, including CC97, CC151, and CC479. While antimicrobial resistance was rare, enterotoxin-producing genes were detected in all CC8bov-associated spa types. Overall, these findings underscore the importance of rigorous hygiene practices in dairy farming, particularly in community-based Alpine dairy pastures, where the risk of transmission is particularly high. It also emphasises the need for continued surveillance and subtyping to improve animal health, ensure food safety, and promote sustainable milk production. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

16 pages, 738 KiB  
Article
Evaluation of the Therapeutic Effect of Levamisole on Subclinical Mastitis in Bovine Leukemia Virus-Infected Cows Classified by Proviral Load
by Aiko Watanabe, Yosuke Maeda, Hironobu Murakami, Shiro Miyoshi, Michisaburo Miura, Koki Murao, Yasunori Shinozuka, Tomomi Kurumisawa and Kazuhiro Kawai
Animals 2025, 15(14), 2145; https://doi.org/10.3390/ani15142145 - 21 Jul 2025
Viewed by 358
Abstract
Subclinical mastitis causes economic losses due to reduced milk yield and elevated somatic cell counts (SCCs), despite no visible clinical signs. A higher incidence of subclinical mastitis has been reported in cattle infected with bovine leukemia virus (BLV). Levamisole (LMS), known for its [...] Read more.
Subclinical mastitis causes economic losses due to reduced milk yield and elevated somatic cell counts (SCCs), despite no visible clinical signs. A higher incidence of subclinical mastitis has been reported in cattle infected with bovine leukemia virus (BLV). Levamisole (LMS), known for its immunomodulatory properties, has been suggested as a potential alternative to antibiotics for mastitis treatment; however, its efficacy in BLV-infected cows, particularly in relation to proviral load (PVL), remains unclear. This study aimed to evaluate the therapeutic effect of LMS on subclinical mastitis and its impact on milk immune responses by classifying BLV-infected cows based on PVL. A total of 42 dairy cows with subclinical mastitis (48 quarters) were grouped as BLV-negative, low-PVL, or high-PVL using a PVL cut-off value of 17.8 copies/10 ng DNA, and were administered LMS orally. Changes in viable bacterial counts, SCCs, and milk leukocyte populations were compared. LMS administration significantly reduced the SCC and milk macrophage numbers, especially in BLV-negative and low-PVL cows. These results suggest that LMS may improve subclinical mastitis in certain BLV-infected cows and that PVL may serve as a useful indicator for treatment responsiveness. However, the limited effect in high-PVL cows and the small sample size have limitations, warranting further investigation. Full article
(This article belongs to the Special Issue Ruminant Health: Management, Challenges, and Veterinary Solutions)
Show Figures

Figure 1

20 pages, 6223 KiB  
Article
Virulence, Antibiotic Resistance and Cytotoxic Effects of Lactococcus lactis Isolated from Chinese Cows with Clinical Mastitis on MAC-T Cells
by Tiancheng Wang, Fan Wu, Tao Du, Xiaodan Jiang, Shuhong Liu, Yiru Cheng and Jianmin Hu
Microorganisms 2025, 13(7), 1674; https://doi.org/10.3390/microorganisms13071674 - 16 Jul 2025
Viewed by 278
Abstract
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates [...] Read more.
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates exhibited a high degree of susceptibility to marbofloxacin and vancomycin. A series of molecular and cell biological techniques were used to explore the biological characteristics and pathogenicity of these isolates. The virulence gene profiles of the isolates were analyzed using whole genome resequencing combined with polymerase chain reaction (PCR) to elucidate the differences in virulence gene expression between isolates. To provide a more visual demonstration of the pathogenic effect of L. lactis on bovine mammary epithelial cells, an in vitro infection model was established using MAC-T cells. The results showed that L. lactis rapidly adhered to the surface of bovine mammary epithelial cells and significantly induced the release of lactate dehydrogenase, suggesting that the cell membranes might be damaged. Ultrastructural observations showed that L. lactis not only adhered to MAC-T cells, but also invaded the cells through a perforation mechanism, leading to a cascade of organelle damage, including mitochondrial swelling and ribosome detachment from the endoplasmic reticulum. The objective of this study was to provide strong evidence for the cytotoxic effects of L. lactis on bovine mammary epithelial cells. Based on this research, a prevention and treatment strategy for L. lactis as well as major pathogenic mastitis bacteria should be established, and there is a need for continuous monitoring. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 1127 KiB  
Review
Antibiotic Treatment vs. Non-Antibiotic Treatment in Bovine Clinical Mastitis During Lactation with Mild and Moderate Severity
by Franziska Nankemann, Stefanie Leimbach, Julia Nitz, Anne Tellen, Nicole Wente, Yanchao Zhang, Doris Klocke, Isabel Krebs, Stephanie Müller, Sabrina Teich, Jensine Wilm, Pauline Katthöfer, Jan Kortstegge and Volker Krömker
Antibiotics 2025, 14(7), 702; https://doi.org/10.3390/antibiotics14070702 - 12 Jul 2025
Viewed by 422
Abstract
Background/Objectives: This review aimed to compare the efficacy of antibiotic treatment vs. non-antibiotic treatment in mild and moderate clinical mastitis in lactating dairy cows, categorized by the causative pathogen. Methods: The initial systematic review plan, which resulted in only four relevant articles, was [...] Read more.
Background/Objectives: This review aimed to compare the efficacy of antibiotic treatment vs. non-antibiotic treatment in mild and moderate clinical mastitis in lactating dairy cows, categorized by the causative pathogen. Methods: The initial systematic review plan, which resulted in only four relevant articles, was altered due to limited available studies and significant heterogeneity among them. Consequently, five additional articles, closely meeting our criteria with minor differences, were included to ensure comprehensive analysis, resulting in nine included articles. Due to these pragmatic constraints, this review represents a hybrid between a systematic and a narrative review. The outcome of interest was the bacteriological cure (BC). Results: The findings revealed that antibiotic treatment resulted in improved BC rates for cases caused by Streptococci. For cases caused by Escherichia (E.) coli, antibiotic therapy showed no significant improvement in BC rates compared to non-antibiotic treatment, suggesting that antibiotics may be often unnecessary for these cases due to self-limiting tendencies. However, severe E. coli mastitis warrants systemic antibiotic treatment due to potentially life-threatening complications. Klebsiella spp. mastitis showed better cure rates with antibiotic therapy. Conclusions: This study underscores the importance of regular pathogen diagnostics to guide appropriate treatment, advocating for the use of on-farm rapid tests to reduce unnecessary antibiotic use while ensuring effective treatment outcomes. Full article
(This article belongs to the Special Issue Evidence in Antibiotic Mastitis Therapy)
Show Figures

Figure 1

16 pages, 442 KiB  
Review
Enhancing Agricultural Productivity in Dairy Cow Mastitis Management: Innovations in Non-Antibiotic Treatment Technologies
by Lijie Jiang, Qi Li, Huiqing Liao, Hourong Liu and Zhiqiang Wang
Vet. Sci. 2025, 12(7), 662; https://doi.org/10.3390/vetsci12070662 - 12 Jul 2025
Cited by 1 | Viewed by 568
Abstract
Dairy mastitis is a common dairy farming disease. It severely affects the health of dairy cows and the quality and yield of dairy products. This paper reviews the main current mastitis treatments and associated bacterial resistance. It emphasizes the importance of integrated resistance [...] Read more.
Dairy mastitis is a common dairy farming disease. It severely affects the health of dairy cows and the quality and yield of dairy products. This paper reviews the main current mastitis treatments and associated bacterial resistance. It emphasizes the importance of integrated resistance and treatment management. The therapeutic efficacy and resistance associated with commonly used antibiotics such as penicillin, cephalosporins, macrolides and fluoroquinolones are analyzed. The principles, application effects and benefits of non-antibiotic therapies are also discussed, including those of immunotherapy, herbal therapy, probiotic therapy and phage therapy. The paper presents the latest gene editing and nanotechnology advances in the contexts of big data and artificial intelligence. It suggests future research directions such as developing new antibiotics, optimizing treatment and enhancing immunity. In conclusion, effective treatment and management can control dairy cow mastitis. It can guarantee cow health, improve dairy product quality and promote sustainable dairy industry development. Full article
(This article belongs to the Special Issue Exploring Innovative Approaches in Veterinary Health)
Show Figures

Figure 1

15 pages, 1557 KiB  
Article
Factors Associated with Cure and Prediction of Cure of Clinical Mastitis of Dairy Cows
by Larissa V. F. Cruz, Ruan R. Daros, André Ostrensky and Cristina S. Sotomaior
Dairy 2025, 6(4), 37; https://doi.org/10.3390/dairy6040037 - 11 Jul 2025
Viewed by 340
Abstract
To study behavioral and productive factors to detect changes that may indicate and predict clinical mastitis cure, Holstein dairy cows (n = 60), in an automatic milking system (AMS) and equipped with behavioral monitoring collar, were monitored from the diagnosis of clinical [...] Read more.
To study behavioral and productive factors to detect changes that may indicate and predict clinical mastitis cure, Holstein dairy cows (n = 60), in an automatic milking system (AMS) and equipped with behavioral monitoring collar, were monitored from the diagnosis of clinical mastitis (D0) until clinical cure. The parameters collected through sensors were feeding activity, milk electrical conductivity (EC), milk yield, Mastitis Detection Index (MDi), milk flow, and number of gate passages. Clinical mastitis cases (n = 22) were monitored and divided into cured cases (n = 14) and non-cured cases within 30 days (n = 8), paired with a control case group (n = 28). Cows were assessed three times per week, and cure was determined when both clinical assessment and California Mastitis Test (CMT) results were negative in three consecutive evaluations. Mixed generalized linear regression was used to assess the relationship between parameters and clinical mastitis results. Mixed generalized logistic regression was used to create a predictive model. The average clinical cure time for cows with clinical mastitis was 11 days. Feeding activity, gate passages, milk yield, milk flow, EC, and the MDi were associated with cure. The predictive model based on data from D0 showed an Area Under the Curve of 0.89 (95% CI = 0.75–1). Sensitivity and specificity were 1 (95% CI = 1–1) and 0.63 (95% CI = 0.37–0.91), respectively. The predictive model demonstrated to have good internal sensitivity and specificity, showing promising potential for predicting clinical mastitis cure within 14 days based on data on the day of clinical mastitis diagnosis. Full article
(This article belongs to the Section Dairy Animal Health)
Show Figures

Figure 1

12 pages, 1106 KiB  
Article
Antimicrobial Resistance and Virulence Determinants of Escherichia coli Isolates from Raw Milk of Dairy Cows with Subclinical Mastitis
by Ntelekwane George Khasapane, Olga de Smidt, Kgaugelo Edward Lekota, Jane Nkhebenyane, Oriel Thekisoe and Tsepo Ramatla
Animals 2025, 15(13), 1980; https://doi.org/10.3390/ani15131980 - 5 Jul 2025
Viewed by 295
Abstract
Subclinical mastitis (SCM) is a stealthy but devastating challenge in the dairy industry, leading to economic losses and hindering efforts to achieve milk self-sufficiency. This study investigated the prevalence of SCM, antimicrobial resistance, and virulence profiles of Escherichia coli. A total of [...] Read more.
Subclinical mastitis (SCM) is a stealthy but devastating challenge in the dairy industry, leading to economic losses and hindering efforts to achieve milk self-sufficiency. This study investigated the prevalence of SCM, antimicrobial resistance, and virulence profiles of Escherichia coli. A total of 174 milk samples were analyzed using the California mastitis test (CMT), somatic cell counts (SCCs), bacteriological culture, MALDI-TOF MS, and polymerase chain reaction (PCR). The findings revealed that the SCM prevalence was 68/174 (39.08%) based on CMT and SCC. Among SCM-positive samples, 60/68 (88.23%) were identified as E. coli, confirmed by MALDI-TOF MS and PCR assay. The most frequently detected serogroups were 0113 (11.6%) and 0113 (3.3%). Additionally, the genes for Stx1 and Stx2 were also detected in nine (15%) and one (1.7%), respectively. Antimicrobial susceptibility tests showed widespread resistance, with E. coli isolates demonstrating resistance to penicillin in 43 (71.6%), followed by ciprofloxacin in 42 (70%) and gentamicin in 18 (30%). A larger proportion of the E. coli strains (100%) harbored the blaVIM gene, while 23 (38.3%), 20%, 20%, and 1.47% contained blaKPC, blaNMD, suli1, and msrA. Thirty (50%) isolates were considered multidrug-resistant (MDR). These findings underscore the urgent need for enhanced surveillance and antibiotic stewardship in dairy farming. The presence of MDR E. coli in SCM poses a dual threat of potential transmission to humans and treatment failures in mastitis management. This study highlights the importance of proactive control strategies to mitigate the spread of antimicrobial resistance in livestock and beyond. Full article
Show Figures

Figure 1

12 pages, 869 KiB  
Review
Factors Influencing the Setting of Automatic Teat Cup Removal at the End of Machine Milking in Dairy Cows—An Overview
by Shehadeh Kaskous
Ruminants 2025, 5(3), 30; https://doi.org/10.3390/ruminants5030030 - 1 Jul 2025
Viewed by 248
Abstract
Overmilking occurs when the teat cups remain attached to the udder during milking, even though there is little or no milk flow. This puts pressure on the teat tissue and reduces milk production due to longer milking times, meaning fewer cows are milked [...] Read more.
Overmilking occurs when the teat cups remain attached to the udder during milking, even though there is little or no milk flow. This puts pressure on the teat tissue and reduces milk production due to longer milking times, meaning fewer cows are milked per hour. Therefore, the correct removal of the teat cup at the end of mechanical milking is crucial for the milking process. The aim of this study was to describe the factors influencing automatic teat cup removal (ATCR) at the end of mechanical milking and to demonstrate its importance for udder health, milk production and milk quality. There are considerable differences between milking system suppliers and countries regarding the minimum removal of the teat cup at the end of the milking process. However, to ensure good milk quality, prevent teat damage and reduce the risk of mastitis, it is important to shorten the working time of the milking machine on the udder in both automatic and conventional milking systems. For this reason, several studies have shown that increasing the milk flow switch point effectively reduces milking time, especially in automatic milking systems where dairy cows are milked more than twice a day. However, when the ATCR setting was increased above 0.5 kg·min−1, milk production decreased, and the number of somatic cells in the milk produced increased. Therefore, the use of ATCR at a milk flow rate of 0.2 kg·min−1 significantly increased milk production, improved milk quality and maintained udder health when a low vacuum level (34–36 kPa) was used in milking machines such as MultiLactor and StimuLactor (Siliconform, Germany). In conclusion, ATCR at a milk flow of 0.2–0.3 kg·min−1 is a useful level to achieve various goals on dairy farms when a low vacuum of 34–36 is used in the milking machine. If the milking machine uses a higher vacuum, it is possible to program a higher ATCR at a milk flow of up to 0.5 kg·min−1. Full article
Show Figures

Figure 1

13 pages, 1367 KiB  
Article
Prevalence and Characterization of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Isolated from Guangxi Dairy Farms
by Kai Ma, Jia Guo, Jie Hu, Qiuyuan Liu, Hui Wang and Ting Xue
Foods 2025, 14(13), 2221; https://doi.org/10.3390/foods14132221 - 24 Jun 2025
Viewed by 347
Abstract
Staphylococcus aureus (S. aureus) is a major pathogen responsible for mastitis in dairy cows and can contaminate raw milk, thereby posing significant health risks to consumers. The emergence of methicillin-resistant S. aureus (MRSA) has further heightened public health concerns due to [...] Read more.
Staphylococcus aureus (S. aureus) is a major pathogen responsible for mastitis in dairy cows and can contaminate raw milk, thereby posing significant health risks to consumers. The emergence of methicillin-resistant S. aureus (MRSA) has further heightened public health concerns due to its antibiotic resistance and infectious potential. In this study, we examined the prevalence, virulence genes, antimicrobial resistance, spa types, and biofilm formation of S. aureus isolates from dairy farms in Guangxi Province, China. Among 242 randomly selected samples, 37 S. aureus strains were identified (15.3% infection rate), including 67.5% MRSA. Antibiotic resistance was observed in 78.4% of isolates, with 35.1% exhibiting multidrug resistance (MDR). Enterotoxin gene analysis showed sea as the most common (67.6%), followed by ser (54.1%) and seh (51.4%), whereas seb and selj were absent. All isolates formed biofilms in vitro, with 64.8% showing strong biofilm-forming ability. Staphylococcal protein A (spa) typing classified the 37 S. aureus strains into 11 spa types, with t030 being the most prevalent (43.2%). These findings indicate that S. aureus is moderately prevalent in raw milk, often carrying multiple virulence genes, forming robust biofilms, and showing antimicrobial resistance. The MRSA that is “latent” in raw milk reminds us of the need for monitoring at the farm level. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 484 KiB  
Article
Annual and Seasonal Trends in Mastitis Pathogens Isolated from Milk Samples from Dairy Cows of California’s San Joaquin Valley Dairies Between January 2009 and December 2023
by Daniela R. Bruno, Karen H. Tonooka, Terry W. Lehenbauer, Sharif S. Aly and Wagdy R. ElAshmawy
Vet. Sci. 2025, 12(7), 609; https://doi.org/10.3390/vetsci12070609 - 21 Jun 2025
Viewed by 811
Abstract
Bovine mastitis is a significant disease affecting dairy cattle worldwide, impacting milk quality and farm profitability. Understanding pathogen distribution is crucial for effective disease management. This study analyzed 319,634 individual cow milk samples submitted to the UC Davis Milk Quality Laboratory between 2009 [...] Read more.
Bovine mastitis is a significant disease affecting dairy cattle worldwide, impacting milk quality and farm profitability. Understanding pathogen distribution is crucial for effective disease management. This study analyzed 319,634 individual cow milk samples submitted to the UC Davis Milk Quality Laboratory between 2009 and 2023 to assess pathogen prevalence, seasonal variations, and long-term trends. Routine microbiological cultures identified major and minor mastitis pathogens, with additional testing for Mycoplasma spp. Statistical analyses evaluated annual and seasonal trends in bacterial isolation rates. Results indicated that environmental pathogens, particularly non-aureus staphylococci and coliforms, were most frequently isolated, while contagious pathogens (Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma spp.) were less prevalent. Seasonal trends revealed higher contamination rates in Winter and increased no-growth samples in Summer. The study also observed a decline in sample submissions in recent years, possibly reflecting evolving dairy management practices. These findings provide a comprehensive perspective on mastitis pathogen dynamics in California’s Central Valley, supporting improved milk quality control measures and tailored mastitis prevention strategies. Full article
Show Figures

Figure 1

Back to TopTop