Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,048)

Search Parameters:
Keywords = covering coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 118
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 271
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

12 pages, 6808 KiB  
Communication
Research on Preventing High-Density Materials from Settling in Liquid Resin
by Lixin Xuan, Zhiqiang Wang, Xuan Yang, Xiao Wu, Junjiao Yang and Shijun Zheng
Materials 2025, 18(15), 3469; https://doi.org/10.3390/ma18153469 - 24 Jul 2025
Viewed by 191
Abstract
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing [...] Read more.
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing the density of the particles is essential. To achieve this goal, high-density magnetic particles were coated onto the surface of hollow silica using anion–cation composite technology. Further, the silane coupling agent N-[3-(trimethoxysilyl)propyl]ethylenediamine was bonded to the surface of magnetic particles to form an amino-covered interfacial layer with a pH value of 9.28, while acrylic acid was polymerized and coated onto the surface of hollow silica to form a carboxyl-covered interfacial layer with a pH value of 4.65. Subsequently, the two materials were compounded to obtain a low-density composite magnetic material. The morphologies and structural compositions of the magnetic composite materials were studied by FTIR, SEM, SEM-EDS, XRD, and other methods. The packing densities of the magnetic composite materials were compared using the particle packing method, thereby solving the problem of magnetic particles settling in the resin solution. Full article
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(15), 3947; https://doi.org/10.3390/en18153947 - 24 Jul 2025
Viewed by 166
Abstract
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under [...] Read more.
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under deep peaking, the gas–solid flow characteristics and distributions of flue gas temperature, wall heat flux, and wall wear rate in a 600 MW tangentially fired pulverized coal boiler under variable loads (353 MW, 431 MW, 519 MW, and 600 MW) are investigated in this study employing computational fluid dynamics numerical simulation method. Results demonstrate that increasing the boiler load significantly amplifies gas velocity, wall heat flux, and wall wear rate. The maximum gas velocity in the furnace rises from 20.9 m·s−1 (353 MW) to 37.6 m·s−1 (600 MW), with tangential airflow forming a low-velocity central zone and high-velocity peripheral regions. Meanwhile, the tangential circle diameter expands by ~15% as the load increases. The flue gas temperature distribution exhibits a “low-high-low” profile along the furnace height. As the load increases from 353 MW to 600 MW, the primary combustion zone’s peak temperature rises from 1750 K to 1980 K, accompanied by a ~30% expansion in the coverage area of the high-temperature zone. Wall heat flux correlates strongly with temperature distribution, peaking at 2.29 × 105 W·m−2 (353 MW) and 2.75 × 105 W·m−2 (600 MW) in the primary combustion zone. Wear analysis highlights severe erosion in the economizer due to elevated flue gas velocities, with wall wear rates escalating from 3.29 × 10−7 kg·m−2·s−1 (353 MW) to 1.23 × 10−5 kg·m−2·s−1 (600 MW), representing a 40-fold increase under full-load conditions. Mitigation strategies, including ash removal optimization, anti-wear covers, and thermal spray coatings, are proposed to enhance operational safety. This work provides critical insights into flow field optimization and wear management for large-scale coal-fired boilers under flexible load operation. Full article
Show Figures

Figure 1

16 pages, 4884 KiB  
Article
Focused Solar-Induced Construction of Activated Solar Carbon@Carbon Fiber Coaxial Electrode from Waste Carbon Fiber-Reinforced Polymer and Its Supercapacitor Performance
by Chongjun Zhao, Tenghui Huang, Yingying Rong, Yanyu Guo, Puqi Geng and Chunhua Zhao
Molecules 2025, 30(15), 3093; https://doi.org/10.3390/molecules30153093 - 24 Jul 2025
Viewed by 273
Abstract
Carbon layer-coated μm-sized carbon fiber has the potential to be developed as an electrode, as it can be directly used as an electrode without any preparation process in the absence of an insulating binder. In our work, a carbon layer-coated carbon fiber (C@CF) [...] Read more.
Carbon layer-coated μm-sized carbon fiber has the potential to be developed as an electrode, as it can be directly used as an electrode without any preparation process in the absence of an insulating binder. In our work, a carbon layer-coated carbon fiber (C@CF) coaxial structure is constructed by in situ conversion of the epoxy resin around the carbon fiber into a carbon layer, in which a sandwich scaffold of cover/CFRP/screen is designed and adopted. The activated SC@CF, i.e., A-SC@CF, can be directly served as the electrode, and has excellent supercapacitor performance: a high specific capacity of 227.1 F g−1 at 0.5 A g−1, with a capacitance retention of 98.9% after 20,000 cycles for the electrode, and an energy density of 16.68 Wh kg−1 at the power density of 1400 W kg−1 for its symmetrical supercapacitor (SSC). Full article
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Surface Moisture Control for Sustainable Manure Management: Reducing Ammonia Emissions and Preserving Nutrients
by Ieva Knoknerienė, Rolandas Bleizgys and Vilma Naujokienė
Sustainability 2025, 17(14), 6617; https://doi.org/10.3390/su17146617 - 20 Jul 2025
Viewed by 336
Abstract
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have [...] Read more.
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have focused on environmental factors influencing ammonia volatilization and manure composition but not on controlling the moisture level on the surface of the excreta. Applying the principles of convective mass exchange, this study was undertaken to compare different types of organic covers that mitigate NH3 emissions and offer recommendations on how to properly apply organic covers on the surface of manure. Data was obtained from research in laboratory conditions comparing well-known coatings (chopped straw) with less commonly used organic materials (peat) or waste generated in other industries (sawdust, hemp chaff). This research demonstrated that applying bio-coatings can reduce ammonia (NH3) emissions at coating thicknesses of ≥5 cm for sawdust, ≥3 cm for peat, ≥10 cm for hemp chaff, and 8–12 cm for straw. These reductions are linked to the ability of the coatings to lower manure surface moisture evaporation, a key driver of ammonia volatilization, highlighting the role of surface moisture control in emission mitigation. Full article
Show Figures

Figure 1

24 pages, 9660 KiB  
Article
Effect of Mouth Rinsing and Antiseptic Solutions on Periodontitis Bacteria in an In Vitro Oral Human Biofilm Model
by Jan Tinson Strenge, Ralf Smeets, Maria Geffken, Thomas Beikler and Ewa Klara Stuermer
Dent. J. 2025, 13(7), 324; https://doi.org/10.3390/dj13070324 - 16 Jul 2025
Viewed by 403
Abstract
Background/Objectives: The formation of oral biofilms in periodontal pockets and around dental implants with induction of periodontitis or peri-implantitis is an increasing problem in dental health. The intelligent design of a biofilm makes the bacteria embedded in the biofilm matrix highly tolerant [...] Read more.
Background/Objectives: The formation of oral biofilms in periodontal pockets and around dental implants with induction of periodontitis or peri-implantitis is an increasing problem in dental health. The intelligent design of a biofilm makes the bacteria embedded in the biofilm matrix highly tolerant to antiseptic therapy, often resulting in tooth or implant loss. The question therefore arises as to which mouthwashes have eradication potential against oral biofilm. Methods: A human oral biofilm model was developed based on donated blood plasma combined with buffy coats, inoculated with oral pathogenic bacterial species found in periodontal disease (Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus mitis, and Porphyromonas gingivalis). Over a span of 7 days, we tested different mouth rinsing and antiseptic solutions (Chlorhexidine, Listerine®, NaOCl, Octenisept®, and Octenident®) covering the matured biofilm with 24 h renewal. Phosphate-buffered saline (PBS) was used as a control. Bacterial growth patterns were detected via quantitative polymerase chain reaction (qPCR) after 2, 4, and 7 days of treatment. Results: While all groups showed initial bacterial reduction, the control group demonstrated strong regrowth from day 2 to 4. Listerine showed a near-significant trend toward bacterial suppression. Additionally, strain-specific efficacy was observed, with Octenisept® being most effective against Streptococcus mitis, Octenident® and NaOCl showing superior suppression of Actinomyces naeslundii, and Listerine® outperforming other solutions in reducing Fusobacterium nucleatum. Donor-specific, individual variability further influenced treatment outcomes, with distinct trends in bacterial suppression and regrowth observed across donors. Conclusions: These findings underscore the complexity of biofilm-associated infections and highlight the importance of targeted therapeutic approaches for managing bacterial biofilms. In this experiment, the donor-specific outcomes of the antimicrobial effects of the solutions may indicate that genetic predisposition/tolerance to oral infections appears to play a critical role in the control of oral biofilms. Full article
(This article belongs to the Special Issue Oral Microbiology and Related Research)
Show Figures

Figure 1

31 pages, 5836 KiB  
Article
Investigation of Corrosion and Fouling in a Novel Biocide-Free Antifouling Coating on Steel
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Micro 2025, 5(3), 34; https://doi.org/10.3390/micro5030034 - 15 Jul 2025
Viewed by 238
Abstract
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on [...] Read more.
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on ship hulls also has detrimental environmental consequences due to the release of biocides during maritime travel. Therefore, it is imperative to develop eco-friendly antifouling paints that inhibit the robust adhesion of marine organisms. This study aimed to assess a biocide-free antifouling coating formulated with polymers intended to diminish molecular adhesion interactions between marine species’ adhesives and the coating. The evaluation included laboratory corrosion experiments in artificial seawater and the immersion of samples in a marine environment in Attica, Greece, for varying durations. The research indicates that an antifouling coating applied to naval steel in an artificial seawater solution improves corrosion resistance by more than 60%. The conductive polymer covering, comprising polyaniline and graphene oxide, diminishes corrosion current values, lowers the corrosion rate, and enhances corrosion potentials. The impedance parameters exhibit analogous behavior, with the coating preventing water absorption and displaying corrosion resistance. The coating serves as a low-permeability barrier, exhibiting exceptional durability for naval steel over time, with an operational performance up to 98%. Full article
Show Figures

Figure 1

16 pages, 4297 KiB  
Article
The Influence of Absorber Properties on Operating Parameters and Electricity Generation in the Solar Chimney with a Vertical Collector
by Sylwia Berdowska
Energies 2025, 18(14), 3740; https://doi.org/10.3390/en18143740 - 15 Jul 2025
Viewed by 237
Abstract
The paper presents an analysis of the operating parameters of a solar chimney with a non-selective and selective absorbers. The analyzed system consisted of a rectangular vertical collector integrated with a chimney. The collector surface was 30 m2, while the installation [...] Read more.
The paper presents an analysis of the operating parameters of a solar chimney with a non-selective and selective absorbers. The analyzed system consisted of a rectangular vertical collector integrated with a chimney. The collector surface was 30 m2, while the installation was 80 m high. The calculations were performed for the climatic conditions in Katowice, Poland. The work included an analysis of parameters such as air temperature increase and its velocity and mass flow in the solar chimney system. The cumulative amounts of electricity that can be obtained in each month of the year were shown. A comparison of electricity generation in the installation with an absorber covered with a non-selective coating and selective coatings was made. The installation with an absorber with an absorption coefficient of 0.95 and an emission coefficient of 0.05 allowed for the generation of the largest amount of electricity during the year. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

26 pages, 38900 KiB  
Article
A Set of Fluorescent Protein-Based Markers for Major Vesicle Coat Proteins in Yeast
by Xue-Fei Cui, Zheng-Tan Zhang, Jing Zhu, Li Cui and Zhiping Xie
Membranes 2025, 15(7), 209; https://doi.org/10.3390/membranes15070209 - 13 Jul 2025
Viewed by 412
Abstract
In eukaryotic cells, vesicle-mediated transport interconnects the endomembrane system. These vesicles are formed by coat proteins via deformation of donor membranes. Here, we constructed a set of fluorescent protein-based markers for major coat protein complexes in the yeast model system, and examined their [...] Read more.
In eukaryotic cells, vesicle-mediated transport interconnects the endomembrane system. These vesicles are formed by coat proteins via deformation of donor membranes. Here, we constructed a set of fluorescent protein-based markers for major coat protein complexes in the yeast model system, and examined their subcellular localization patterns. Our markers covered COPII, COPI, AP-1, AP-2, AP-3, and retromer complexes. Our live cell imaging demonstrates that COPII puncta were primarily associated with the endoplasmic reticulum (ER), and occasionally with early Golgi. COPI was present on both early Golgi and late Golgi/early endosomes. AP-1 puncta were present on late Golgi/early endosomes. AP-2 was present on plasma membrane (PM)-associated puncta, and around the bud neck. AP-3 puncta were present on late Golgi/early endosomes and on the surface of vacuoles. Retromer was present on the surface of vacuoles, late endosomes, and other perivacuolar puncta. Notably, more than half of AP-1 puncta and AP-3 puncta were not associated with the donor compartments where they are thought to be generated, implying that these were coated transport vesicles. This work provides a convenient tool set for the investigation of vesicular transport in yeast and live cell imaging evidence for the presence of certain coated transport vesicles. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

14 pages, 3449 KiB  
Article
Superhydrophobic Coating on 6061 Aluminum Alloy Fabricated by Femtosecond Laser Etching and Anodic Oxidation
by Quanlv Liu and Yuxin Wang
Coatings 2025, 15(7), 816; https://doi.org/10.3390/coatings15070816 - 11 Jul 2025
Viewed by 456
Abstract
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a [...] Read more.
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a fluorosilane ethanol solution, the surface exhibited superhydrophobicity with a contact angle of 154°. Subsequently, the anodic oxidation process formed an anodic oxide film dominated by an array of aluminum oxide (Al2O3) nanopores at the submicron scale. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the nanopore structures uniformly and continuously covered the laser-ablated layer. This hierarchical structure significantly increased the surface water contact angle to 162°. Wettability analysis showed that the prepared composite coating formed an air layer accounting for 91% of the surface area. Compared with the sample only treated by femtosecond laser etching, the presence of the Al2O3 nanopore structure significantly enhanced the mechanical durability, superhydrophobic durability, and corrosion resistance of the superhydrophobic surface. The proposed multi-step fabrication strategy offers an innovative method for creating multifunctional, durable superhydrophobic coatings and has important implications for their large-scale industrial use. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

37 pages, 5136 KiB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 522
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 641
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

25 pages, 4510 KiB  
Article
Corrosion and Antifouling Behavior of a New Biocide-Free Antifouling Paint for Ship Hulls Under Both Artificially Simulated and Natural Marine Environment
by Polyxeni Vourna, Pinelopi P. Falara, Evangelos V. Hristoforou and Nikolaos D. Papadopoulos
Materials 2025, 18(13), 3095; https://doi.org/10.3390/ma18133095 - 30 Jun 2025
Cited by 1 | Viewed by 430
Abstract
This study involved covering naval steel samples with a biocide-free, innovative antifouling coating, which were subsequently immersed in either artificial seawater or a Greek maritime environment for durations ranging from 1 to 50 weeks. The objective was to assess the efficacy of the [...] Read more.
This study involved covering naval steel samples with a biocide-free, innovative antifouling coating, which were subsequently immersed in either artificial seawater or a Greek maritime environment for durations ranging from 1 to 50 weeks. The objective was to assess the efficacy of the coating as an anticorrosion and antifouling barrier on the steel samples. Non-coated samples were analyzed alongside the coated samples for comparative purposes. The findings indicate that a reduction in coating thickness during static immersion in laboratory settings leads to the removal of precipitated corrosion products, exposing a fresh layer of “pristine” coating. This layer decreases the corrosion rate by almost 90% throughout extended immersion durations. The efficacy of the coating is validated through trials conducted in natural maritime environments, demonstrating an operational performance of 99% for the coated samples after 50 weeks of continuous exposure to seawater. In fact, the coated samples showed only soft fouling, in contrast to the uncoated samples which were characterized by a strong presence of hard fouling within a short period of time after immersion. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1502
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

Back to TopTop