Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (797)

Search Parameters:
Keywords = covalent link

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5007 KiB  
Article
In Situ Construction of Thiazole-Linked Covalent Organic Frameworks on Cu2O for High-Efficiency Photocatalytic Tetracycline Degradation
by Zhifang Jia, Tingxia Wang, Zhaoxia Wu, Shumaila Razzaque, Zhixiang Zhao, Jiaxuan Cai, Wenao Xie, Junli Wang, Qiang Zhao and Kewei Wang
Molecules 2025, 30(15), 3233; https://doi.org/10.3390/molecules30153233 (registering DOI) - 1 Aug 2025
Abstract
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability [...] Read more.
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability was developed. To further boost photocatalytic activity, the TZ-COF was synthesized in situ on the surface of Cu2O through a simple multicomponent reaction, yielding an encapsulated composite material (Cu2O@TZ-COF-18). In this composite, the outermost COF endows the material with abundant redox active sites and mass transfer channels, while the innermost Cu2O exhibits unique photoelectric properties. Notably, the synthesized Cu2O@TZ-COF-18 was proven to have the heterojunction structure, which can efficiently restrain the recombination of photogenerated electron–hole pairs, thereby enhancing the photocatalytic performance. The photocatalytic degradation of tetracycline demonstrated that 3-Cu2O@TZ-COF-18 had the highest photocatalytic efficiency, with the removal rate of 96.3% within 70 min under visible light, which is better than that of pristine TZ-COF-18, Cu2O, the physical mixture of Cu2O and TZ-COF-18, and numerous reported COF-based composite materials. 3-Cu2O@TZ-COF-18 retained its original crystallinity and removal efficiency after five cycles in photodegradation reaction, displaying high stability and excellent cycle performance. Full article
Show Figures

Graphical abstract

21 pages, 5748 KiB  
Article
Potential and Challenges of a Targeted Membrane Pre-Fouling: Process Performance of Milk Protein Fractionation After the Application of a Transglutaminase Treatment of Casein Micelles
by Michael Reitmaier, Ulrich Kulozik and Petra Först
Foods 2025, 14(15), 2682; https://doi.org/10.3390/foods14152682 - 30 Jul 2025
Viewed by 17
Abstract
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce [...] Read more.
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce amount-dependent modifications of all milk proteins in SM and a reduction in deposit resistance for laboratory dead-end filtrations of up to 20%. This improvement in process performance could partially be confirmed in pilot-scale cross-flow filtrations of Tgase-pretreated SM and micellar casein solutions (MCC). These comparative trials with untreated retentates under a variation of ΔpTM (0.5–2 bar) at 10 and 50° revealed distinct differences in deposit behavior and achieved the reduction in deposit resistance in a range of 0–20%. The possibility of pre-fouling with enzymatically pretreated MCC prior to SM filtration was also investigated. Under different pre-fouling conditions, practical modes of retentate change, and pre-foulant compositions, a switch to untreated SM consistently resulted in an immediate and major increase in deposit resistance by 50–150%. This was partially related to the change in the ionic environment and the protein fraction. Nevertheless, our results underline the potential of Tgase pretreatment and pre-fouling approaches to alter filtration performance for different applications. Full article
(This article belongs to the Special Issue Membranes for Innovative Bio-Food Processing)
Show Figures

Graphical abstract

26 pages, 5763 KiB  
Article
The Development and Optimization of Extrusion-Based 3D Food Printing Inks Using Composite Starch Gels Enriched with Various Proteins and Hydrocolloids
by Evgenia N. Nikolaou, Eftychios Apostolidis, Eirini K. Nikolidaki, Evangelia D. Karvela, Athena Stergiou, Thomas Kourtis and Vaios T. Karathanos
Gels 2025, 11(8), 574; https://doi.org/10.3390/gels11080574 - 23 Jul 2025
Viewed by 179
Abstract
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, [...] Read more.
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, xanthan gum, and carboxy methylcellulose). Their rheological, mechanical, and textural properties were systematically analyzed to assess printability. Among all formulations, those containing κ-carrageenan consistently demonstrated superior viscoelastic behavior (G′ > 4000 Pa), optimal tan δ values (0.096–0.169), and yield stress conducive to stable extrusion. These inks also achieved high structural fidelity (93–96% accuracy) and favourable textural attributes such as increased hardness and chewiness. Computational Fluid Dynamics (CFD) simulations further validated the inks’ performances by linking pressure and velocity profiles with rheological parameters. FTIR analysis revealed that gel strengthening was primarily driven by non-covalent interactions, such as hydrogen bonding and electrostatic effects. The integration of empirical measurements and simulation provided a robust framework for evaluating and optimizing printable food gels. These findings contribute to the advancement of personalized and functional 3D-printed foods through data-driven formulation design. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

12 pages, 11599 KiB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 196
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

12 pages, 702 KiB  
Article
DNA Triplex-Formation by a Covalent Conjugate of the Anticancer Drug Temozolomide
by Andrew J. Walsh and William Fraser
DNA 2025, 5(3), 36; https://doi.org/10.3390/dna5030036 - 22 Jul 2025
Viewed by 230
Abstract
Background/Objectives: Temozolomide is an important drug used for the treatment of glioblastoma multiforme. Covalent conjugation of temozolomide to triplex-forming oligonucleotides could facilitate better sequence discrimination when targeted to DNA to lessen off-target effects and potentially reduce side-effects associated with conventional chemotherapy. The base [...] Read more.
Background/Objectives: Temozolomide is an important drug used for the treatment of glioblastoma multiforme. Covalent conjugation of temozolomide to triplex-forming oligonucleotides could facilitate better sequence discrimination when targeted to DNA to lessen off-target effects and potentially reduce side-effects associated with conventional chemotherapy. The base sensitivity of temozolomide precludes use of basic deprotection conditions that typify the solid-supported synthesis of oligonucleotides. Methods: A novel di-iso-propylsilylene-linked solid support was developed and used in solid-supported synthesis of oligonucleotide conjugates. Results: Conditions were established whereby fully deprotected, solid-supported oligonucleotides could be prepared for derivatisation. Cleavage of the di-iso-propylsilylene linker was possible using mild, acidic conditions. Conclusions: The di-iso-propylsilylene-linked solid support was developed and shown to be compatible with base-sensitive oligonucleotide conjugate formation. The DNA triplex formation exhibited by a temozolomide oligonucleotide conjugate was equal in stability to the unconjugated control, opening new possibilities for sequence selective delivery of temozolomide to targeted DNA. Full article
Show Figures

Graphical abstract

12 pages, 4279 KiB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 281
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 325
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

20 pages, 2612 KiB  
Article
Development and Evaluation of a Nanoparticle-Based Immunoassay for Rotavirus Detection: A Suitable Alternative to ELISA and PCR in Low-Income Setting
by Margaret Oluwatoyin Japhet, Adeogo Timilehin Bankole, Temiloluwa Ifeoluwa Omotade, Oyelola Eyinade Adeoye, Oladiran Famurewa and Simeon K. Adesina
Methods Protoc. 2025, 8(4), 81; https://doi.org/10.3390/mps8040081 - 17 Jul 2025
Viewed by 360
Abstract
Every year, diarrhoea is responsible for >1 million deaths in children with ages from 0 to 5 years, with rotavirus as the leading cause. The regions most affected lack routine rotavirus diagnosis due to high cost, lack of necessary equipment and shortage of [...] Read more.
Every year, diarrhoea is responsible for >1 million deaths in children with ages from 0 to 5 years, with rotavirus as the leading cause. The regions most affected lack routine rotavirus diagnosis due to high cost, lack of necessary equipment and shortage of trained-personnel for Enzyme-Link-Immunosorbent-Assay (ELISA) and molecular methods. We report the development and evaluation of a cheap, nanoparticle-based immunoassay for routine machine-free rotavirus diagnosis. In this work, optimal conditions for oxidation of cotton swabs and aldehyde production for kit development was confirmed by Fourier-Transform Infrared Spectroscopy (FTIR). Lactoferrin (LF) needed to bind the virus to the cotton swab was immobilised on activated cotton swabs, followed by the capture of commercial rotavirus antigen on LF-immobilised swabs. This was dipped in coloured nanobeads covalently coupled to rotavirus-group-specific monoclonal antibody for visual rotavirus detection. Subsequently, rotavirus detection by nanoassay, commercial ELISA and quantitative reverse transcription PCR were compared using same set of 186 stool samples and subjected to statistical analyses. Optimal oxidisation condition was observed using 48 mg/mL NaIO4 in 0.1 M sodium acetate buffer at 35 °C for 9 h. Rotavirus detection was confirmed visually by blue colour retention on swabs after several washings. Sensitivity, specificity, positive-predictive-value and negative-predictive-value of ELISA in rotavirus detection were 60%, 84%, 53% and 88%, respectively, while our immunoassay showed performance at 88%, 94%, 82% and 96%. This immunoassay will provide effective rotavirus public health interventions in low-and-middle-income countries with high morbidity/mortality. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

24 pages, 7899 KiB  
Review
Catalyst-Driven Improvements in Conventional Methods for Imine-Linked Covalent Organic Frameworks
by Maziar Jafari, Zhiyuan Peng, Ali Samie, Faezeh Taghavi, Amir Khojastehnezhad and Mohamed Siaj
Molecules 2025, 30(14), 2969; https://doi.org/10.3390/molecules30142969 - 15 Jul 2025
Viewed by 368
Abstract
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires [...] Read more.
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires sufficient time to proceed. This review critically examines the advancements in synthetic strategies for these valuable materials, focusing on catalytic versus conventional approaches. Traditional methods for synthesizing imine-linked COFs often involve harsh reaction conditions and prolonged reaction times, which can limit the scalability and environmental sustainability of these frameworks. In contrast, catalytic approaches offer more efficient pathways, enabling shorter reaction times, milder reaction conditions, and higher yields. This article elucidates the key differences between these methodologies and examines the impact of reduced reaction times and milder conditions on the crystallinity and porosity of COFs. By comparing the catalytic and conventional synthesis routes, this review aims to provide a comprehensive understanding of the advantages and limitations of each approach, offering insights into the optimal strategies for the development of high-performance COFs. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 4th Edition)
Show Figures

Graphical abstract

22 pages, 3733 KiB  
Article
Combating Traumatic Brain Injury: A Dual-Mechanism Hydrogel Delivering Salvianolic Acid A and Hydroxysafflor Yellow A to Block TLR4/NF-κB and Boost Angiogenesis
by Guoying Zhou, Yujia Yan, Linh Nguyen, Jiangkai Fan, Xiao Zhang, Li Gan, Tingzi Yan and Haitong Wan
Polymers 2025, 17(14), 1900; https://doi.org/10.3390/polym17141900 - 9 Jul 2025
Viewed by 388
Abstract
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. [...] Read more.
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. Therefore, a novel-designed multifunctional HT/SAA/HSYA hydrogel based on hyaluronic acid (HA) co-loaded with salvianolic acid A (SAA) and hydroxysafflor yellow A (HSYA) was developed in order to simultaneously target inflammation and vascular injury, addressing key pathological processes in TBI. The HT hydrogel was formed through covalent cross-linking of tyramine-modified HA catalyzed by horseradish peroxidase (HRP). Results demonstrated that the HT hydrogel possesses a porous structure, sustained release capabilities of loaded drugs, suitable biodegradability, and excellent biocompatibility both in vitro and in vivo. WB, immunofluorescence staining, and PCR results revealed that SAA and HSYA significantly reduced the expression level of pro-inflammatory cytokines (IL-1β and TNF-α) and inhibited M1 macrophage polarization through the suppression of the TLR4/NF-κB inflammatory pathway. In vivo experiments confirmed that the HT/SAA/HSYA hydrogel exhibited remarkable pro-angiogenic effects, as evidenced by increased expression of CD31 and α-SMA. Finally, H&E staining showed that the HT/SAA/HSYA hydrogel effectively reduced the lesion volume in a mouse TBI model, and demonstrated more pronounced effects in promoting brain repair at the injury site, compared to the control and single-drug-loaded hydrogel groups. In conclusion, the HT hydrogel co-loaded with SAA and HSYA demonstrates excellent anti-inflammatory and pro-angiogenic effects, offering a promising therapeutic approach for brain repair following TBI. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

6 pages, 2223 KiB  
Proceeding Paper
Photocatalytic Degradation of Dyes Using TpPa-COF-Cl2 Membrane
by Mayu Kawaguchi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 1; https://doi.org/10.3390/chemproc2025017001 - 4 Jul 2025
Viewed by 323
Abstract
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing [...] Read more.
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing the cross-linked structure of calcium alginate, we succeeded in forming the photocatalyst TpPa-COF-Cl2 into a membrane without destroying its structure. This was confirmed by characterization such as FT-IR. In addition, methyl orange was decolorized at 450 nm, confirming the photocatalytic activity of the membrane. Full article
Show Figures

Figure 1

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 321
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

15 pages, 535 KiB  
Review
Recent Advances in Bioconjugate Vaccine Development
by Brendan W. Wren, Catherine L. Hall, Vanessa S. Terra, Mark A. Harrison, Elizabeth Atkins, Fauzy Nasher and Ian J. Passmore
Vaccines 2025, 13(7), 703; https://doi.org/10.3390/vaccines13070703 - 28 Jun 2025
Viewed by 737
Abstract
Glycoconjugate vaccines, consisting of a protein component covalently linked to a glycan antigen, have led to a significant reduction in the global occurrence of bacterial meningitis and pneumonia. They provide robust, lasting immunity in all age groups. However, their production by traditional chemical [...] Read more.
Glycoconjugate vaccines, consisting of a protein component covalently linked to a glycan antigen, have led to a significant reduction in the global occurrence of bacterial meningitis and pneumonia. They provide robust, lasting immunity in all age groups. However, their production by traditional chemical conjugation approaches has drawbacks in terms of complexity, cost, and lack of flexibility in design, which explains their limited application to a few pathogenic bacteria in the past four decades. Protein glycan coupling technology (PGCT) or bioconjugation, where glycoconjugates are produced in purpose-engineered bacterial cells, is a useful alternative to chemical conjugation and promises an array of low-cost custom-made glycoconjugate vaccines with vast protein glycan combinations. The technology has undergone significant development since its inception, and new advances and refinements continually drive the field forward. Several bioconjugate vaccines are currently in clinical trials, demonstrating the potential of the technology. We will review the wide applicability of bioconjugation and recent developments in each of the components of the technology, namely, glycan expression, protein selection, and the coupling of selected glycan with proteins, all within custom-designed E. coli cells. These advances promise to deliver effective glycoconjugate vaccines for multiple unmet medical needs. Full article
Show Figures

Figure 1

34 pages, 5288 KiB  
Review
An Overview of Seafood Allergens: Structure–Allergenicity Relationship and Allergenicity Elimination Processing Techniques
by Yang Yang, Yehao Zhang, Xinrong He, Fei Huan, Jinli Chen, Meng Liu, Siyang He, Shinong Gu and Guangming Liu
Foods 2025, 14(13), 2241; https://doi.org/10.3390/foods14132241 - 25 Jun 2025
Viewed by 595
Abstract
Seafood (fish, crustacean, and mollusk) allergy represents a critical global health issue. Food processing offers a viable strategy for allergenicity mitigation and serves as a critical intervention for seafood allergy prevention. This paper reviews recent advances in seafood allergen research, with particular focus [...] Read more.
Seafood (fish, crustacean, and mollusk) allergy represents a critical global health issue. Food processing offers a viable strategy for allergenicity mitigation and serves as a critical intervention for seafood allergy prevention. This paper reviews recent advances in seafood allergen research, with particular focus on molecular properties, epitopes, and structure–allergenicity relationships, which are foundations for designing processing technologies to mitigate allergenicity. Furthermore, an analysis of how various food processing techniques modulate allergen structures and epitopes, ultimately affecting their allergenicity, was conducted. Current World Health Organization (WHO)/International Union of Immunological Societies (IUIS) listings include 44 fish allergens and 60 shellfish allergens, with their characterization enabling targeted processing approaches for allergenicity elimination. Physical processing techniques, including thermal and non-thermal treatment, can dramatically influence the conformational and linear epitopes by altering or destroying the structure of an allergen. Chemistry-based processing techniques (enzymatic-catalyzed cross-linking and glycation), which induce covalent/non-covalent interactions between allergens and various modifiers, can effectively mask epitopes through molecular complexation. Biological processing attenuates allergenicity by inducing protein unfolding, polypeptide chain uncoiling, and enzymatic degradation. Nevertheless, the structure–activity relationship of seafood allergens remains insufficiently elucidated, despite its critical role in guiding processing technologies for allergenicity elimination and elucidating the fundamental mechanisms involved. Full article
(This article belongs to the Special Issue Quality Changes of Blue Food During Preservation and Processing)
Show Figures

Figure 1

15 pages, 1458 KiB  
Article
Novel In Vitro Selection of Trans-Acting BCL-2 mRNA-Cleaving Deoxyribozymes for Cancer Therapy
by Veera Vijaya Basamshetty, Vijay Kumar Gangipangi, Uppulapu Shravan Kumar, Santhosh Shanthi Bhupathi, Sridhar Reddy Kaulagari, Prashant Giri, Swapnil Sinha, Utpal Mohan and Konstantinos Sdrimas
Cells 2025, 14(13), 945; https://doi.org/10.3390/cells14130945 - 20 Jun 2025
Viewed by 772
Abstract
The B Cell Lymphoma-2 (BCL-2) family proteins are central regulators of apoptosis, and their dysregulation is frequently associated with cancer progression and resistance to therapy. While small molecules like venetoclax have shown promise, nucleic acid-based therapeutics targeting BCL-2 remain underexplored. Here, [...] Read more.
The B Cell Lymphoma-2 (BCL-2) family proteins are central regulators of apoptosis, and their dysregulation is frequently associated with cancer progression and resistance to therapy. While small molecules like venetoclax have shown promise, nucleic acid-based therapeutics targeting BCL-2 remain underexplored. Here, we report a novel in vitro evolution strategy to generate trans-acting RNA-cleaving DNAzymes targeting natural BCL-2 mRNA without requiring covalent substrate-linking. Using a 50-base region of BCL-2 mRNA as a selection target, we evolved several DNAzymes that demonstrate significant RNA cleavage activity. These DNAzymes downregulated BCL-2 expression, induced apoptosis, and reduced cell viability in HepG2 and MCF-7 cancer cells. In vivo, our novel DNAzymes significantly suppressed tumor growth in a syngeneic mouse breast cancer model, with efficacy comparable to 5-Fluorouracil. This study presents a proof of concept for a novel strategy to evolve functional DNAzymes against native mRNA sequences and highlights their potential as gene-silencing tools in cancer therapy. Future studies will explore the therapeutic potential of these findings in cancer patients. Additionally, investigating the underlying molecular mechanisms in more complex cancer models will further validate the observed effects. Full article
Show Figures

Figure 1

Back to TopTop