Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = coupled static-dynamic loading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 2765 KB  
Article
Efficiency-Oriented Gear Selection Strategy for Twin Permanent Magnet Synchronous Machines in a Shared Drivetrain Architecture
by Tamás Sándor, István Bendiák and Róbert Szabolcsi
Vehicles 2025, 7(4), 110; https://doi.org/10.3390/vehicles7040110 - 29 Sep 2025
Abstract
This article presents a gear selection methodology for electric vehicle powertrains employing two identical Permanent Magnet Synchronous Machines (PMSMs) arranged in a twin-drive configuration. Both machines are coupled through a shared output shaft and operate with coordinated torque–speed characteristics, enabling efficient utilization of [...] Read more.
This article presents a gear selection methodology for electric vehicle powertrains employing two identical Permanent Magnet Synchronous Machines (PMSMs) arranged in a twin-drive configuration. Both machines are coupled through a shared output shaft and operate with coordinated torque–speed characteristics, enabling efficient utilization of the available gear stages. The proposed approach establishes a control-oriented drivetrain framework that incorporates mechanical dynamics together with real-time thermal states and loss mechanisms. Unlike conventional strategies, which rely mainly on static or speed-based shifting rules, the method integrates detailed thermal and electromagnetic loss modeling directly into the gear-shifting logic. By accounting for the dynamic thermal behavior of PMSMs under variable load conditions, the strategy aims to reduce cumulative drivetrain losses, including electromagnetic, thermal, and mechanical, while maintaining high efficiency. The methodology is implemented in a MATLAB/Simulink R2024a and LabVIEW 2024Q2 co-simulation environment, where thermal feedback and instantaneous efficiency metrics dynamically guide gear selection. Simulation results demonstrate measurable improvements in energy utilization, particularly under transient operating conditions. The resulting efficiency maps are broader and flatter, as the motors’ operating points are continuously shifted toward zones of optimal performance through adaptive gear ratio control. The novelty of this work lies in combining real-time loss modeling, thermal feedback, and coordinated gear management in a twin-motor system, validated through experimentally motivated efficiency maps. The findings highlight a scalable and dynamic control framework suitable for advanced electric vehicle architectures, supporting intelligent efficiency-oriented drivetrain strategies that enhance sustainability, thermal management, and system performance across diverse operating conditions. Full article
Show Figures

Figure 1

24 pages, 3537 KB  
Article
Deep Reinforcement Learning Trajectory Tracking Control for a Six-Degree-of-Freedom Electro-Hydraulic Stewart Parallel Mechanism
by Yigang Kong, Yulong Wang, Yueran Wang, Shenghao Zhu, Ruikang Zhang and Liting Wang
Eng 2025, 6(9), 212; https://doi.org/10.3390/eng6090212 - 1 Sep 2025
Viewed by 460
Abstract
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced [...] Read more.
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced load forces (disturbance inputs) on the six hydraulic actuators; unbalanced load forces exacerbate the time-varying nature of the acceleration and velocity of the six hydraulic actuators, causing instantaneous changes in the pressure and flow rate of the electro-hydraulic system, thereby enhancing the pressure–flow nonlinearity of the hydraulic actuators. Considering the advantage of artificial intelligence in learning hidden patterns within complex environments (strong coupling and strong nonlinearity), this paper proposes a reinforcement learning motion control algorithm based on deep deterministic policy gradient (DDPG). Firstly, the static/dynamic coordinate system transformation matrix of the electro-hydraulic Stewart parallel mechanism is established, and the inverse kinematic model and inverse dynamic model are derived. Secondly, a DDPG algorithm framework incorporating an Actor–Critic network structure is constructed, designing the agent’s state observation space, action space, and a position-error-based reward function, while employing experience replay and target network mechanisms to optimize the training process. Finally, a simulation model is built on the MATLAB 2024b platform, applying variable-amplitude variable-frequency sinusoidal input signals to all 6 degrees of freedom for dynamic characteristic analysis and performance evaluation under the strong coupling and strong nonlinear operating conditions of the electro-hydraulic Stewart parallel mechanism; the DDPG agent dynamically adjusts the proportional, integral, and derivative gains of six PID controllers through interactive trial-and-error learning. Simulation results indicate that compared to the traditional PID control algorithm, the DDPG-PID control algorithm significantly improves the tracking accuracy of all six hydraulic cylinders, with the maximum position error reduced by over 40.00%, achieving high-precision tracking control of variable-amplitude variable-frequency trajectories in all 6 degrees of freedom for the electro-hydraulic Stewart parallel mechanism. Full article
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Viewed by 547
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

15 pages, 2044 KB  
Article
Influence of Lubricant Properties on Elastohydrodynamic Oil Film Thickness in Angular Contact Ball Bearings: A Numerical Investigation
by Hikmet Bal
Appl. Mech. 2025, 6(3), 64; https://doi.org/10.3390/applmech6030064 - 26 Aug 2025
Viewed by 733
Abstract
Predicting oil film thickness at ball–raceway contacts under elastohydrodynamic lubrication (EHL) conditions remains a complex tribological challenge. This complexity arises from dynamic variations in contact load, rotational speed, hydrodynamic effects, and the nonlinear load–deformation characteristics of the contacting surfaces. This study presents a [...] Read more.
Predicting oil film thickness at ball–raceway contacts under elastohydrodynamic lubrication (EHL) conditions remains a complex tribological challenge. This complexity arises from dynamic variations in contact load, rotational speed, hydrodynamic effects, and the nonlinear load–deformation characteristics of the contacting surfaces. This study presents a numerical investigation of oil film thickness variations corresponding lubricant properties in rolling bearings using a 5-degree-of-freedom (5-DoF) shaft–bearing model. The model incorporates isothermal EHL and a rigid shaft supported by a pair of angular contact ball bearings. The governing nonlinear equations of motion are solved iteratively via a quasi-static approach, coupling oil film thickness and contact force calculations. Results indicate that oil film thickness increases proportionally with both lubricant viscosity and shaft speed. A twofold increase in shaft speed results in approximately 57% enhancement in film thickness. Similarly, increasing viscosity elevates film thickness proportionally, while the pressure–viscosity coefficient significantly enhances film formation. Notably, the outer raceway exhibits a 13% thicker film than the inner raceway, owing to its higher surface conformity. Furthermore, low-speed operation under heavy loads induces mixed lubrication regimes, compromising film integrity. Results provides insight for lubricant selection and bearing design to mitigate starvation in industrial applications. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

22 pages, 5990 KB  
Article
An Integrated Quasi-Zero-Stiffness Mechanism with Arrayed Piezoelectric Cantilevers for Low-Frequency Vibration Isolation and Broadband Energy Harvesting
by Kangkang Guo, Anjie Sun and Junhai He
Sensors 2025, 25(16), 5180; https://doi.org/10.3390/s25165180 - 20 Aug 2025
Viewed by 641
Abstract
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed [...] Read more.
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed of a linkage-horizontal spring (negative stiffness) and a vertical spring; the other is an energy-harvesting component with an array of parameter-differentiated piezoelectric cantilever beams. Aiming at the conflict between the structural dynamic stiffness approaching zero and broadening the effective working range, this paper establishes a dual-objective optimization function based on the Pareto principle on the basis of static analysis and uses the grid search method combined with actual working conditions to determine the optimal parameter combination. By establishing a multi-degree-of-freedom electromechanical coupling model, the harmonic balance method is used to derive analytical solutions, which are then verified by numerical simulations. The influence laws of external excitations and system parameters on vibration isolation and energy-harvesting performance are quantitatively analyzed. The results show that the optimized structure has an initial vibration isolation frequency below 2 Hz, with a vibration isolation rate exceeding 60% in the 3 to 5 Hz ultra-low frequency range and a minimum transmissibility of the order of 10−2 (vibration isolation rate > 98%). The parameter-differentiated piezoelectric array effectively broadens the energy-harvesting frequency band, which coincides with the vibration isolation range. Synergistic optimization of both performances can be achieved by adjusting system damping, parameters of piezoelectric vibrators, and load resistance. This study provides a theoretical reference for the integrated design of low-frequency vibration control and energy recovery, and its engineering implementation requires further experimental verification. Full article
(This article belongs to the Special Issue Wireless Sensor Networks with Energy Harvesting)
Show Figures

Figure 1

21 pages, 21776 KB  
Article
Seismic Safety Analysis of Nuclear Power Plant Pumping Stations Using the Compact Viscous-Spring Boundary via Maximum Initial Time-Step Method
by Xunqiang Yin, Min Zhao, Weilong Yang, Junkai Zhang and Jianbo Li
Buildings 2025, 15(16), 2951; https://doi.org/10.3390/buildings15162951 - 20 Aug 2025
Viewed by 407
Abstract
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and [...] Read more.
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and implements a novel, efficient, and accurate viscous-spring boundary methodology within the ANSYS 19.1 finite element software to assess the seismic safety of NPP pumping station structures. The Maximum Initial Time-step (MIT) method, based on Newmark’s integration scheme, is employed for nonlinear analysis under coupled static–dynamic excitation. To account for radiation damping in the infinite foundation, a Compact Viscous-Spring (CVs) element is developed. This element aggregates stiffness and damping contributions to interface nodes defined at the outer border of the soil domain. Implementation leverages of ANSYS User Programmable Features (UPFs), and a comprehensive static–dynamic coupled analysis toolkit is developed using APDL scripting and the GUI. Validation via two examples confirms the method’s accuracy and computational efficiency. Finally, a case study applies the technique to an NPP pumping station under actual complex Chinese site conditions. The results demonstrate the method’s capability to provide objective seismic response and stability indices, enabling a more reliable assessment of seismic safety during a Safety Shutdown Earthquake (SSE). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 13864 KB  
Article
Thermomechanical Analysis of the GTM 400 MOD Turbojet Engine Nozzle During Kerosene and Hydrogen Co-Combustion
by Łukasz Brodzik, Bartosz Ciupek, Andrzej Frąckowiak and Dominik Schroeder
Energies 2025, 18(16), 4382; https://doi.org/10.3390/en18164382 - 17 Aug 2025
Cited by 1 | Viewed by 552
Abstract
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging [...] Read more.
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging from 31,630 rpm to 65,830 rpm, providing data on the temperature and dynamic pressure at the nozzle outlet. These data served as input to numerical analyses using the ANSYS Fluent, Steady-State Thermal, and Static Structural modules to evaluate exhaust gas flow, temperature distribution, and stress and strain states. The paper performed a basic analysis with additional simplifications, and an extended analysis that took into account, among other things, thermal radiation in the flow. The results of the basic analysis show that, at comparable thrust levels, co-firing and pure kerosene combustion yield similar nozzle temperature distributions, with maximum wall temperatures ranging from 978 K to 1090 K, which remain below the allowable limit of 1193 K (920 °C). Maximum stresses reached approximately 261 MPa, close to but not exceeding the yield strength of 316 stainless steel. Maximum nozzle deformation did not exceed 0.8 mm. Small dynamic pressure fluctuations were observed; For example, at 31,630 rpm, co-firing increased the maximum dynamic pressure from 1.56 × 104 Pa to 1.63 × 104 Pa, while at 47,110 rpm, it decreased from 4.05 × 104 Pa to 3.89 × 104 Pa. The extended analysis yielded similar values for the nozzle temperature and pressure distributions. Stress and strain increased by more than 76% and 78%, respectively, compared to the baseline analysis. The results confirm that hydrogen co-firing does not significantly alter the nozzle thermomechanical loads, suggesting that this emission-free fuel can be used without negatively impacting the nozzle’s structural integrity under the tested conditions. The methodology, combining targeted experimental measurements with coupled CFD and FEM simulations, provides a reliable framework for assessing material safety margins in alternative fuel applications in small turbojet engines. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

19 pages, 3285 KB  
Article
Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints
by Yukang Cai, Yongsheng Jia, Shaobin Hu, Jinshan Sun and Yingkang Yao
Sustainability 2025, 17(16), 7297; https://doi.org/10.3390/su17167297 - 12 Aug 2025
Viewed by 421
Abstract
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and [...] Read more.
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and fluid dynamics during Sc-CO2 thermal shock fracturing. Key novel findings reveal the following: (1) The fracturing mechanism integrates transient hydrodynamic shock with quasi-static pressure loading, generating characteristic bimodal pressure curves where secondary peak amplification specifically indicates inhibited interwell fracture coalescence under anisotropic stress configurations. (2) Fracture paths undergo spatiotemporal reorientation—initial propagation aligns with in situ stress orientation, while subsequent growth follows thermal shock-induced principal stress trajectories. (3) Stress heterogeneity modulates fracture network complexity through confinement effects: elevated normal stresses perpendicular to fracture planes reduce pressure gradients (compared to isotropic conditions) and delay crack initiation, yet sustain higher pressure plateaus by constraining fracture connectivity despite fluid leakage. Numerical simulations systematically demonstrate that stress anisotropy plays a dual role—enhancing peak pressures while limiting fracture network development. This demonstrates the dual roles of the technology in enhancing environmental sustainability through waterless operations and reducing carbon footprint. Full article
Show Figures

Figure 1

49 pages, 10419 KB  
Review
State-of-the-Art Review and Prospect of Modelling the Dynamic Fracture of Rocks Under Impact Loads and Application in Blasting
by Muhammad Kamran, Hongyuan Liu, Daisuke Fukuda, Peng Jia, Gyeongjo Min and Andrew Chan
Geosciences 2025, 15(8), 314; https://doi.org/10.3390/geosciences15080314 - 12 Aug 2025
Viewed by 934
Abstract
The dynamic fracture of rocks under impact loads has many engineering applications such as rock blasting. This study reviews the recent achievements of investigating rock dynamic fracturing and its application in rock blasting using computational mechanics methods and highlights the prospects of modelling [...] Read more.
The dynamic fracture of rocks under impact loads has many engineering applications such as rock blasting. This study reviews the recent achievements of investigating rock dynamic fracturing and its application in rock blasting using computational mechanics methods and highlights the prospects of modelling them with a hybrid finite-discrete element method (HFDEM) originally developed by the authors. The review first summarizes the peculiarities of rock dynamic fracturing compared with static fracturing, which are that the physical-mechanical properties of rocks, including stress wave propagation, strength, fracture toughness, energy partition and cracking mechanism, depend on loading rate. Then the modelling of these peculiarities and their applications in rock blasting using fast developing computational mechanics methods are reviewed with a focus on the advantages and disadvantages of prevalent finite element method (FEM) as representative continuum method, discrete element method (DEM) as representative discontinuum method and combined finite-discrete element (FDEM) as representative hybrid method, which highlights FDEM is the most promising method for modelling rock dynamic fracture and blasting application as well as points out the research gaps in the field of modelling the dynamic fracture of rocks under impact loads. After that, the progress of shortening some of these gaps by developing and applying HFDEM, i.e., the authors’ version of FDEM, for modelling rock dynamic fracture and applications in rock blasting are reviewed, which include the features of modelling the effects of loading rate; stress wave propagation, reflection and absorbing as well as stress wave-induced fracture; explosive-rock interaction including detonation-induced gas expansion and flow through fracturing rock; coupled multiaxial static and dynamic loads; heterogeneous rock and rock mass with pre-existing discrete fracture network; and dynamic fracturing-induced fragment size distribution. Finally, the future directions of modelling the dynamic fracture of rocks under impact loads are highlighted and a systematic numerical approach is proposed for modelling rock blasting. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

30 pages, 6902 KB  
Article
CFD Investigation on Effect of Ship–Helicopter Coupling Motions on Aerodynamic Flow Field and Rotor Loads
by Zhouyang Liu, Yang Liu, Yingnan Ma, Zhanyang Chen and Weidong Zhao
J. Mar. Sci. Eng. 2025, 13(8), 1544; https://doi.org/10.3390/jmse13081544 - 12 Aug 2025
Viewed by 471
Abstract
As critical assets for surveillance, reconnaissance, and transport, shipborne helicopters play an indispensable role in modern maritime operations. Ensuring the safety and stability of shipboard landings is therefore of paramount importance, particularly under complex sea conditions. This study presents a comprehensive investigation into [...] Read more.
As critical assets for surveillance, reconnaissance, and transport, shipborne helicopters play an indispensable role in modern maritime operations. Ensuring the safety and stability of shipboard landings is therefore of paramount importance, particularly under complex sea conditions. This study presents a comprehensive investigation into the dynamic interaction between helicopters and moving ships during the landing phase, with a particular emphasis on the influence of ship motions on the unsteady aerodynamic flow field and rotor loads. A coupled numerical–theoretical framework is developed, which overcomes the limitations of traditional models that typically consider static or single-degree-of-freedom (SDOF) ship motions. This work systematically analyzes the effects of multi-degree-of-freedom (MDOF) ship motions—including roll, pitch, and heave—on the coupled aerodynamic environment and rotor dynamic response. The results demonstrate that each motion component imposes a distinct influence on the flow-field characteristics, with pitch identified as the dominant contributor to turbulence intensity, particularly during the mid-to-late landing phase. Furthermore, it is found that a linear superposition of individual motions cannot accurately represent the combined effect of MDOF motions. Instead, their interaction leads to complex nonlinear effects, which may attenuate certain flow instabilities. These findings provide critical insights into ship–helicopter dynamic coupling and offer a scientific basis for improving landing safety under adverse sea conditions. Full article
(This article belongs to the Special Issue Advances in Marine Computational Fluid Dynamics)
Show Figures

Figure 1

16 pages, 4426 KB  
Article
Analysis of Dynamic Properties and Johnson–Cook Constitutive Relationship Concerning Polytetrafluoroethylene/Aluminum Granular Composite
by Fengyue Xu, Jiabo Li, Denghong Yang and Shaomin Luo
Materials 2025, 18(15), 3615; https://doi.org/10.3390/ma18153615 - 31 Jul 2025
Viewed by 485
Abstract
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the [...] Read more.
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the research on mechanical properties of a series of composite materials based on PTFE/Al as the matrix. Firstly, the 26.5Al-73.5PTFE (wt.%) composite specimens are prepared by preprocessing, mixing, molding, high-temperature sintering, and cooling. Then, the quasi-static compression and Hopkinson bar tests are performed to explore the mechanical properties of the PTFE/Al composite. Influences of the strain rate of loading on the yield stress, the ultimate strength, and the limited strain are also analyzed. Lastly, based on the experimental results, the material parameters in the Johnson–Cook constitutive model are obtained by the method of piecewise fitting to describe the stress–strain relation of the PTFE/Al composite. Combining the experimental details and the obtained material parameters, the numerical simulation of the dynamic compression of the PTFE/Al composite specimen is carried out by using the ANSYS/LS-DYNA platform. The results show that the computed stress–strain curves present a reasonable agreement with the experimental data. It should be declared that this research does not involve the energy release behavior of the 26.5Al-73.5PTFE (wt.%) reactive material because the material is not initiated within the strain rate range of the dynamic test in this paper. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 3076 KB  
Article
Options and Scenarios for the Prishtina Wastewater Treatment Plant-Design Efficiency
by Sokol Xhafa, Tamás Koncsos and Miklós Patziger
Water 2025, 17(15), 2220; https://doi.org/10.3390/w17152220 - 25 Jul 2025
Viewed by 643
Abstract
This research assesses the design efficiency of the future centralized wastewater treatment plant (WWTP) in Prishtina, which also takes into consideration rapidly expanding suburban areas, such as Fushë Kosova, Obiliq, and Graçanica. Using a combination of both ATV-DVWK-A 131E deterministic calculations and dynamic [...] Read more.
This research assesses the design efficiency of the future centralized wastewater treatment plant (WWTP) in Prishtina, which also takes into consideration rapidly expanding suburban areas, such as Fushë Kosova, Obiliq, and Graçanica. Using a combination of both ATV-DVWK-A 131E deterministic calculations and dynamic simulation with IWASP, this study focuses on the planned configurations for the future Prishtina wastewater treatment plant (WWTP) to evaluate design efficiency alongside operational feasibility. The primary goal was to determine if meeting projected loads for the year 2040 would be possible with compliance requirements for a single-stage CAS system. Simulation data suggest that reliable nitrogen removal would not be possible with a sole CAS stage (aerobic), particularly considering seasonal and peak load dynamics. Alternatively, an optimized three-reactor CAS model, including one anoxic pre-denitrification zone coupled with two alternating aerobic zones, achieved an average total nitrogen (TN) removal efficiency of about 85%, maintaining effluent TN below 10 mg/L. Additional advantages saw COD being removed at rates between 90 and 92%, along with MLSS levels stabilizing around 3500 mg/L. The flexibly scalable design also provides adaptive operation features, including expanded tertiary nutrient removal in phase II. In scenario two’s site comparative analysis, Lismir’s centralized WWTP emerges as the most economically and technically rational option due to the enhanced reactor layout optimization. These findings confirm that enhanced configurations, validated through both static and dynamic analyses, are essential for long-term treatment efficiency and regulatory compliance. Full article
(This article belongs to the Special Issue Urban Sewer Systems: Monitoring, Modeling and Management)
Show Figures

Figure 1

25 pages, 4094 KB  
Article
Risk–Cost Equilibrium for Grid Reinforcement Under High Renewable Penetration: A Bi-Level Optimization Framework with GAN-Driven Scenario Learning
by Feng Liang, Ying Mu, Dashun Guan, Dongliang Zhang and Wenliang Yin
Energies 2025, 18(14), 3805; https://doi.org/10.3390/en18143805 - 17 Jul 2025
Viewed by 484
Abstract
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered [...] Read more.
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered by rare but structurally impactful renewable behaviors. This paper proposes a novel bi-level optimization framework for transmission planning under adversarial uncertainty, coupling a distributionally robust upper-level investment model with a lower-level operational response embedded with physics and market constraints. The uncertainty space was not exogenously fixed, but instead dynamically generated through a physics-informed spatiotemporal generative adversarial network (PI-ST-GAN), which synthesizes high-risk renewable and load scenarios designed to maximally challenge the system’s resilience. The generator was co-trained using a composite stress index—combining expected energy not served, loss-of-load probability, and marginal congestion cost—ensuring that each scenario reflects both physical plausibility and operational extremity. The resulting bi-level model was reformulated using strong duality, and it was decomposed into a tractable mixed-integer structure with embedded adversarial learning loops. The proposed framework was validated on a modified IEEE 118-bus system with high wind and solar penetration. Results demonstrate that the GAN-enhanced planner consistently outperforms deterministic and stochastic baselines, reducing renewable curtailment by up to 48.7% and load shedding by 62.4% under worst-case realization. Moreover, the stress investment frontier exhibits clear convexity, enabling planners to identify cost-efficient resilience strategies. Spatial congestion maps and scenario risk-density plots further illustrate the ability of adversarial learning to reveal latent structural bottlenecks not captured by conventional methods. This work offers a new methodological paradigm, in which optimization and generative AI co-evolve to produce robust, data-aware, and stress-responsive transmission infrastructure designs. Full article
Show Figures

Figure 1

17 pages, 2290 KB  
Article
Mechanical Response Analysis of High-Pile Wharf on Deep Soft Soil Foundation Under Complex Multi-Factor Interactions
by Kezheng Yang, Chenyue Cao, Rui Bai and Huihuan Ma
Buildings 2025, 15(13), 2379; https://doi.org/10.3390/buildings15132379 - 7 Jul 2025
Viewed by 336
Abstract
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of [...] Read more.
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of high-pile wharves. Therefore, this study, based on the engineering background of a bulk high-pile wharf in Zhanjiang, combined the finite element method with static and dynamic structural analysis to establish an integrated simulation model of the wharf structure and foundation. The structural response modes of the wharf under the coupling effects of multiple factors, such as soft soil softening, wave loading, and surface load distribution, were analyzed. The results show that, considering the softening characteristics of the soft soil, the safety factor of the structure decreased by up to 18.95%. Under wave loading, the maximum displacement and maximum bending moment of the wharf structure occurred in the region affected by the wave load. Under local surface loading, the structural deformation of the wharf was more pronounced than under global surface loading. In coupled conditions, surface loading had the most significant effect on deformation and internal forces, while wave loading and the soft foundation model mainly affected the maximum displacement, with little impact on the maximum bending moment. This study provides valuable insights for the optimization of service performance and safe operation and maintenance of high-pile wharves. Full article
(This article belongs to the Special Issue Non-linear Behavior and Design of Steel Structures)
Show Figures

Figure 1

Back to TopTop