Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints
Abstract
1. Introduction
2. Numerical Modeling Framework
2.1. Geometric Configuration and Boundary Conditions
2.2. Governing Equations
2.3. Simulation Protocol
3. Results
3.1. Damage Evolution Process
3.2. In Situ Stress Magnitude Effects
3.3. Lateral Pressure Coefficient Effects
4. Mechanistic Analysis
4.1. Model Validation
4.2. In Situ Stress Effects on Damage Evolution
4.3. In Situ Stress Effects on Fluid Pressure
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, M.; Li, J.; Wu, X.; Wang, S.; Guo, Q.; Chen, X.; Yu, J. Potential of Oil and Natural Gas Resources of Main Hydrocarbon Bearing Basins and Key Exploration Fields in China. Earth Sci. 2019, 03, 833–847. (In Chinese) [Google Scholar]
- Hu, S.; Cai, Y.; Zhang, L.; Yan, Z.; Pang, S. Numerical simulation of rock breaking by high-temperature and high-pressure water under thermal driving. Geofluids 2022. [Google Scholar] [CrossRef]
- Li, N.; Yu, J.; Zhang, H.; Zhang, Q.; Kang, J.; Zhang, N.; Wang, C. Simulation of wellbore temperature and pressure field in supercritical carbon dioxide fracturing. Pet. Sci. Technol. 2024, 42, 190–210. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, W.; Wei, C.; Elsworth, D.; Wang, J. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J. Pet. Sci. Eng. 2018, 164, 91–102. [Google Scholar] [CrossRef]
- Yin, B.; Lou, Y.; Liu, S. Mechanism of fracture propagation for SC-CO2 fracturing and phase-change process. J. CO2 Util. 2024, 80, 102691. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.; Meng, Q.; Zhao, Y.; He, L. Effects of supercritical carbon dioxide under different conditions on mechanical properties and energy evolution of coal. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 93. [Google Scholar] [CrossRef]
- Du, Y.; Wang, R.; Ning, H.; Huo, H.; Huang, Z.; Yue, W.; Zhao, H.; Zhao, B. Rock-breaking experiment with supercritical carbon dioxide jet. J. China Univ. Pet. 2012, 4, 93–96. (In Chinese) [Google Scholar]
- Cheng, Y.; Li, G.; Wang, H.; Shen, Z.; Tian, S.; Cai, C. Flow field character in cavity during supercritical carbon dioxide jet fracturing. J. China Univ. Pet. 2014, 4, 81–86. (In Chinese) [Google Scholar]
- Jia, Y.; Lu, Y.; Elsworth, D.; Fang, Y.; Tang, J. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. J. Pet. Sci. Eng. 2018, 165, 284–297. [Google Scholar] [CrossRef]
- Du, Y.; Wang, R.; Chen, X.; Ni, H.; Li, M.; Lin, P.; Chen, Y.; Ye, T. Determination of the effect of supercritical carbon dioxide jet on the rock strength. In Proceedings of the Second Conference of Global Chinese Scholars on Hydrodynamics, Wuxi, China, 12–13 November 2016. [Google Scholar]
- López-Comino, J.A.; Cesca, S.; Jarosławski, J.; Montcoudiol, N.; Heimann, S.; Dahm, T.; Lasocki, S.; Gunning, A.; Capuano, P.; Ellsworth, W.L. Induced seismicity response of hydraulic fracturing: Results of a multidisciplinary monitoring at the Wysin site, Poland. Sci. Rep. 2018, 8, 8653. [Google Scholar] [CrossRef]
- Pan, J.; Du, X.; Wang, X.; Hou, Q.; Wang, Z.; Yi, J.; Li, M. Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance. Energy 2024, 286, 129492. [Google Scholar] [CrossRef]
- Shi, W.; Zhu, L.; Guo, M.; Huang, Z.; Wang, G.; Lin, L.; He, L.; Liao, Y.; He, H.; Gong, J. Assessment of CO2 fracturing in China’s shale oil reservoir: Fracturing effectiveness and carbon storage potential. Resour. Conserv. Recycl. 2023, 197, 107101. [Google Scholar] [CrossRef]
- Fei, H.; Yiyu, L.; Jiren, T.; Xiang, A.; Yunzhong, J. Research on erosion of shale impacted by supercritical carbon dioxide jet. Chin. J. Rock Mech. Eng. 2015, 04, 787–794. (In Chinese) [Google Scholar]
- Zhang, Q.; Tian, S.; Chen, L.; Li, J.; Liu, H. Parameter sensitivity of supercritical CO2 swirling-round jet based on grey correlation degree method. Pet. Geol. Oilfield Dev. Daqing 2021, 04, 63–72. (In Chinese) [Google Scholar]
- Sun, K.M.; Xin, L.W.; Wang, T.T.; Wang, J.Y. Simulation research on law of coal fracture caused by supercritical CO2 explosion. J. China Univ. Min. Technol. 2017, 3, 501–506. (In Chinese) [Google Scholar]
- He, Y.; Yang, Z.; Jiang, Y.; Li, X.; Zhang, Y.; Song, R. A full three-dimensional fracture propagation model for supercritical carbon dioxide fracturing. Energy Sci. Eng. 2020, 8, 2894–2906. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wei, J.; Wang, C.; Cui, J. Impact pressure distribution of an SC-CO2 jet used in rock breakage. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 27. [Google Scholar] [CrossRef]
- Wang, R.; Huo, H.; Huang, Z.; Song, H.; Ni, H. Experimental and numerical simulations of bottom hole temperature and pre-ssure distributions of supercritical CO2 jet for well-drilling. J. Hydrodyn. Ser. B 2014, 2, 226–233. [Google Scholar] [CrossRef]
- Song, W.; Ni, H.; Wang, R.; Sun, B.; Shen, Z. Pressure transmission in the tubing of supercritical carbon dioxide fracturing. J. CO2 Util. 2017, 21, 467–472. [Google Scholar] [CrossRef]
- Yang, J.; Lian, H.; Li, L. Fracturing in coals with different fluids: An experimental comparison between water, liquid CO2, and supercritical CO2. Sci. Rep. 2020, 1, 18681. [Google Scholar] [CrossRef]
- Zuo, J.; Song, W.; Zou, D. Experimental Study on the Permeability Change of Sandstone Under Supercritical Carbon Dioxide Jet. J. Inst. Eng. India Ser. A. 2018, 4, 671–675. [Google Scholar] [CrossRef]
- SY/T 6285-2011; Evaluation Method of Oil and Gas Reservoir. Petroleum Industry Press: Beijing, China, 2011. (In Chinese)
- Chen, M.; Jin, N.; Zhang, G. (Eds.) Rock Mechanics of Petroleum Engineering; Science Press: Beijing, China, 2008. [Google Scholar]
- Golub, V.P. Constitutive Equations in Nonlinear Damage Mechanics. Int. Appl. Mech. 1993, 10, 794–804. [Google Scholar] [CrossRef]
- Chilingar, G.V. Relationship between porosity, permeability, and grain-Size distribution of sands and sandstones. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1964; pp. 71–75. [Google Scholar]
- Cheng, S. Surrounding Rock Deformation Mechanism and Application of Non-Penetrating Presplitting on Roof of Small Coal Pillar Roadway Under Stress Superposition. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2022. [Google Scholar]
- Zuo, L. Mechanism of Carbon Dioxide Phase Change Blasting with Side Wall Energy Release. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2023. [Google Scholar]
- Guo, Y.; Sun, C.; Kang, Y.; Meng, H.; Xue, L. Numerical Simulation Analysis of Rock Mass Blasting Under High Geo-stress. Railw. Eng. 2020, 12, 74–77. (In Chinese) [Google Scholar] [CrossRef]
Simulation Group | |||
---|---|---|---|
A | 6 | 6 | 1 |
B | 8 | 8 | 1 |
C | 10 | 10 | 1 |
D | 10 | 7 | 0.7 |
E | 10 | 5 | 0.5 |
Simulation Group | Average Permeability (×10−13m2) | ||||
---|---|---|---|---|---|
A | 6 | 6 | 1 | 5.7 | 3.67 |
B | 8 | 8 | 1 | 4.9 | 2.47 |
C | 10 | 10 | 1 | 4.8 | 2.21 |
D | 10 | 7 | 0.7 | 5.9 | 3.06 |
E | 10 | 5 | 0.5 | 6.2 | 4.44 |
Density | Poisson’s Ratio | Porosity | ||||
---|---|---|---|---|---|---|
2300 | 10.1 | 106 | 20 | 0.13 | 0.464 | 0.02 |
Simulation Group | |||
---|---|---|---|
A | 22.1 | 23.1 | 5 |
B | 26.1 | 27.5 | 5.4 |
C | 30.1 | 30.9 | 2.7 |
D | 33.1 | 31.6 | 4.5 |
E | 35.1 | 36.4 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Jia, Y.; Hu, S.; Sun, J.; Yao, Y. Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints. Sustainability 2025, 17, 7297. https://doi.org/10.3390/su17167297
Cai Y, Jia Y, Hu S, Sun J, Yao Y. Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints. Sustainability. 2025; 17(16):7297. https://doi.org/10.3390/su17167297
Chicago/Turabian StyleCai, Yukang, Yongsheng Jia, Shaobin Hu, Jinshan Sun, and Yingkang Yao. 2025. "Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints" Sustainability 17, no. 16: 7297. https://doi.org/10.3390/su17167297
APA StyleCai, Y., Jia, Y., Hu, S., Sun, J., & Yao, Y. (2025). Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints. Sustainability, 17(16), 7297. https://doi.org/10.3390/su17167297