Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = cotton linters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6613 KiB  
Article
Optimized Design of Material Preparation for Cotton Linters-Based Carbon Black Dispersion Stabilizers Based on Response Surface Methodology
by Xiongfei An, Xupeng Yang, Canming Hu and Chengli Ding
Polymers 2024, 16(14), 1964; https://doi.org/10.3390/polym16141964 - 9 Jul 2024
Viewed by 1550
Abstract
Carbon black particles possess dimensions on the nanometer or sub-nanometer scale. When utilized, these particles have a tendency to aggregate, which compromises their stability under storage conditions. To address this issue, a dispersant was prepared using cotton short fibers as raw materials through [...] Read more.
Carbon black particles possess dimensions on the nanometer or sub-nanometer scale. When utilized, these particles have a tendency to aggregate, which compromises their stability under storage conditions. To address this issue, a dispersant was prepared using cotton short fibers as raw materials through etherification and graft polymerization with acrylamide (AM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as raw materials. The dispersant was then used to disperse carbon black to test its dispersing performance. A response surface optimization test was utilized to ascertain the influence of AMPS monomer mass, AM monomer mass, and potassium persulfate (KPS) initiator mass on the dispersibility of carbon black during dispersant preparation, and a set of optimal preparation conditions were obtained. The dispersion stability of carbon black in water was assessed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), elemental analysis (EA), thermogravimetric analysis (TG), zeta potential analysis, high magnification scanning electron microscopy (SEM), and contact angle measurements. Results revealed that the optimum mass ratio of carboxymethyl cellulose (CMC) to AMPS to AM was 1:0.69:1.67, with the KPS initiator comprising 1.56% of the total monomer mass. By incorporating the dispersant at a concentration of 37.50%, the particle size of carbon black particles was observed to decrease from 5.350 μm to 0.255 μm, and no agglomeration of carbon black particles occurred even after 3 weeks of storage. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Figure 1

19 pages, 5737 KiB  
Article
Characteristics of Dialdehyde Cellulose Nanofibrils Derived from Cotton Linter Fibers and Wood Fibers
by Qiyuan Tu, Wenhua Gao, Junjie Zhou, Jinglin Wu, Jinsong Zeng, Bin Wang and Jun Xu
Molecules 2024, 29(7), 1664; https://doi.org/10.3390/molecules29071664 - 7 Apr 2024
Cited by 4 | Viewed by 2141
Abstract
Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the [...] Read more.
Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the DACNFs during the concentration process were also explored. The AFM analysis results showed that the mean diameters of wood fiber-based CNFs and cotton fiber-based CNFs were about 52.03 nm and 69.51 nm, respectively. However, the periodate oxidation treatment process obviously reduced the nanofibril size and destroyed the crystalline region of the nanofibrils. Due to the high crystallinity of cotton fibers, the cotton fiber-based DACNFs exhibited a lower aldehyde content and suspension stability compared to the wood fiber-based DACNFs. For the concentration process of the DACNF suspension, the bound water content of the concentrated cotton fiber-based DACNFs was lowered to 0.41 g/g, which indicated that the cotton fiber-based DACNFs could have good redispersibility. Both the wood fiber-based and cotton fiber-based DACNF films showed relatively good transmittance and mechanical strength. In addition, to the cotton fiber-based DACNF films had a very low swelling ratio, and the barrier water vapor and oxygen properties of the redispersed cotton fiber-based DACNF films decreased by very little. In sum, this study has demonstrated that cotton fibers could serve as an effective alternative to wood fibers for preparing CNFs, and that cotton fiber-based DACNFs have huge application prospects in the field of packaging film materials due to their stable properties during the concentration process. Full article
Show Figures

Figure 1

13 pages, 2463 KiB  
Article
Enhancing Hydrophobic Properties in Olive Oil-Coated Papers through Thermal Treatment
by Amelia Loesch-Zhang, Tobias Meckel, Markus Biesalski and Andreas Geissler
Coatings 2024, 14(3), 364; https://doi.org/10.3390/coatings14030364 - 20 Mar 2024
Cited by 2 | Viewed by 2790
Abstract
Enhancing paper hydrophobicity is of key importance for many paper-based applications. Fatty acids or vegetable oils and their derivatives replace environmentally harmful conventional coating materials but still require challenging chemical reactions for covalent attachment onto paper. Here, we show that simple storage of [...] Read more.
Enhancing paper hydrophobicity is of key importance for many paper-based applications. Fatty acids or vegetable oils and their derivatives replace environmentally harmful conventional coating materials but still require challenging chemical reactions for covalent attachment onto paper. Here, we show that simple storage of olive oil-coated cotton linter paper at 70 °C and subsequent Soxhlet extraction is able to endow paper with hydrophobic properties, reaching water contact angles above 130°. In-depth chemical and morphological analytics show the relevance of temperature and air accessibility during the aging process compared with aging at ambient temperature and under the exclusion of oxygen, underlining the importance of assessing a coating’s long-term performance and stability under diverse storage conditions. Simple storage of vegetable oil-coated paper at elevated temperatures followed by extraction proves to be an easy way to produce stable covalently attached hydrophobic paper coatings with exceptionally low coating amounts. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

26 pages, 4116 KiB  
Review
Processes and Challenges for the Manufacturing of Lyocell Fibres with Alternative Agricultural Feedstocks
by Lelia Lawson, Madison Ford, Md. Saiful Hoque, Wade Chute, David C. Bressler and Patricia I. Dolez
Appl. Sci. 2023, 13(23), 12759; https://doi.org/10.3390/app132312759 - 28 Nov 2023
Cited by 5 | Viewed by 6280
Abstract
Lyocell man-made cellulosic fibres (L-MMCF) have been commercially available since the mid-1990’s, with the typical feedstock prepared from tree pulp or cotton linters. In recent years, there have been advancements in the utilisation of high alpha-cellulose agricultural biomass for L-MMCF feedstock. Industrial hemp [...] Read more.
Lyocell man-made cellulosic fibres (L-MMCF) have been commercially available since the mid-1990’s, with the typical feedstock prepared from tree pulp or cotton linters. In recent years, there have been advancements in the utilisation of high alpha-cellulose agricultural biomass for L-MMCF feedstock. Industrial hemp stalks offer a unique opportunity for L-MMCF since hemp is considered an environmentally conscious crop that can also help to bridge the gap in worldwide cellulose shortages; additionally, industrial hemp stalks are high in alpha-cellulose, making this an ideal feedstock for L-MMCF manufacturing. This review paper outlines the lyocell process in detail, including processes for preparation of feedstocks, pulp processing, removal of contaminants and nonessential plant components, pulp dissolution, dope preparation, and fibre spinning. Opportunities and challenges associated with the utilisation of industrial hemp stalks as an alternative feedstock are addressed through all steps of the manufacturing process. Incorporating alternative feedstock opens new perspectives for manufacturing sustainable L-MMCF. Full article
(This article belongs to the Special Issue Recent Trends in Biomass Materials)
Show Figures

Figure 1

14 pages, 5048 KiB  
Article
Preparation of Cotton Linters’ Aerogel-Based C/NiFe2O4 Photocatalyst for Efficient Degradation of Methylene Blue
by Chengli Ding, Huanhuan Zhao, Xiao Zhu and Xiaoling Liu
Nanomaterials 2022, 12(12), 2021; https://doi.org/10.3390/nano12122021 - 11 Jun 2022
Cited by 13 | Viewed by 2730
Abstract
At present, the research focus has been aimed at the pursuit of the design and synthesis of catalysts for effective photocatalytic degradation of organic pollutants in wastewater, and further exploration of novel materials of the photodegradation catalyst. In this paper, the Sol-gel route [...] Read more.
At present, the research focus has been aimed at the pursuit of the design and synthesis of catalysts for effective photocatalytic degradation of organic pollutants in wastewater, and further exploration of novel materials of the photodegradation catalyst. In this paper, the Sol-gel route after thermal treatment was used to produce NiFe2O4 carbon aerogel (NiFe2O4-CA) nanocomposites with cotton linter cellulose as the precursor of aerogel, by co-precipitating iron and nickel salts onto its substrate. The structure and composition of these materials were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Raman spectra, high-resolution scanning electron microscopy (HR-SEM), high-resolution scanning electron microscope mapping (SEM-mapping), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET)’s surface area. The magnetic properties of the material were analyzed by a vibrating-sample magnetometer (VSM). Moreover, diffuse reflectance spectra (DRS), electrochemical impedance spectroscopy (EIS) and photo-luminescence spectroscopy (PL) characterized the photoelectric properties of this cellulose-aerogels-based NiFe2O4-CA. Methylene blue (MB) acted as the simulated pollutant, and the photocatalytic activity of NiFe2O4-CA nanocomposites under visible light was evaluated by adjusting H2O2 content and the pH value. The results showed that the optical absorption range of nickel ferrite was broadened by doping cellulose-aerogels-based carbon, which exerted more positive effects on photocatalytic reactions. This is because the doping of this aerogel carbon promoted a more uniform distribution of NiFe2O4 particles. Given the Methylene blue (MB) degradation reaction conformed to the first-order kinetic equation, the NiFe2O4-CA nanocomposites conducted excellent catalytic activity by maintaining almost 99% of the removal of MB (60 mg/L) within 180 min and upheld excellent stability over four consecutive cycles. This study indicated that NiFe2O4-CA nanocomposites reserved the potential as a future effective treatment of dye wastewater. Full article
Show Figures

Figure 1

10 pages, 2490 KiB  
Article
Synthesis and Performance of a Novel Cotton Linter Based Cellulose Derivatives Dispersant for Coal–Water Slurries
by Chengli Ding, Xiao Zhu, Xue Ma and Hongsheng Yang
Polymers 2022, 14(6), 1103; https://doi.org/10.3390/polym14061103 - 10 Mar 2022
Cited by 8 | Viewed by 2831
Abstract
A novel sulfonic-cellulose succinate half ester (S-CSHE) dispersant for coal–water slurry (CWS) was successfully synthesized using cotton linters, sulfamic acid and succinic anhydride in DMF by a one-pot synthesis. The effects of the synthetic condition of S-CSHE as a dispersant for CWS were [...] Read more.
A novel sulfonic-cellulose succinate half ester (S-CSHE) dispersant for coal–water slurry (CWS) was successfully synthesized using cotton linters, sulfamic acid and succinic anhydride in DMF by a one-pot synthesis. The effects of the synthetic condition of S-CSHE as a dispersant for CWS were studied. An S-CSHE with a maximum degree of substitution of 0.98 was obtained under these optimized conditions. The synthesized samples were characterized by GPC, FT-IR spectroscopy, 13C-NMR, and SEM. The molecular weight was from 2.2 × 103 to 1.2 × 104, revealed by GPC; FT-IR spectra analysis revealed characteristic absorptions of the sulfonic-cellulose succinate half ester; SEM images showed smooth cellulose structures, while the S-CSHE had a compact surface. Effects of S-CSHE on the fluidity of application as the dispersants for the CWS prepared from Chinese Zhundong coal were studied further. The CWS application performance investigations showed that S-CSHE can most effectively reduce CWS viscosity, and perform excellent dispersity and stability. When the dosage of S-CSHE was up to 0.5 wt.%, the maximum coal content of CWS may reach 70 wt.%, and the apparent viscosity of CWS was 487 mPa·s. The CWS prepared using S-CSHE (0.38 wt.%) for Zhundong coal showed the rheological characteristics of shear-thinning, and is consistent with the Herschel–Bulkley model. This work found a new route for utilizing cotton linters cellulose and enlarged the selecting range of the dispersant for CWS. It has a positive significance for efficient and clean utilization of Xinjiang Zhundong coal. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 18189 KiB  
Article
Development of Cotton Linter Nanocellulose for Complexation of Ca, Fe, Mg and Mn in Effluent Organic Matter
by Vinícius de Jesus Carvalho de Souza, José Cláudio Caraschi, Wander Gustavo Botero, Luciana Camargo de Oliveira and Danielle Goveia
Water 2021, 13(19), 2765; https://doi.org/10.3390/w13192765 - 6 Oct 2021
Cited by 2 | Viewed by 2551
Abstract
Effluent organic matter (EfOM) is present in different domestic and industrial effluents, and its capacity to hold metallic ions can interfere in the wastewater treatment process. Due to the low quality of water, new sustainable technologies for this purpose have become extremely important, [...] Read more.
Effluent organic matter (EfOM) is present in different domestic and industrial effluents, and its capacity to hold metallic ions can interfere in the wastewater treatment process. Due to the low quality of water, new sustainable technologies for this purpose have become extremely important, with the development of renewable-source nanomaterials standing out in the literature. Nanocellulose (NC) deserves to be highlighted in this context due to its physicochemical characteristics and its natural and abundant origin. In this context, the interactions between NC extracted from cotton linter, organic matter fraction (humic substances) and metal ions have been evaluated. Free metal ions (Ca, Fe, Mg and Mn) were separated by ultrafiltration and quantified by atomic absorption spectrometry. The nanomaterial obtained showed potential for the treatment of effluents containing iron even in the presence of organic matter. The probable interaction of organic matter with NC prevents the efficient removal of calcium, magnesium and manganese. For these elements, it is desirable to increase the interaction between metal and NC by modifying the surface of the nanomaterial. Full article
Show Figures

Figure 1

18 pages, 5776 KiB  
Article
Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels
by Alexander Ritter von Stockert, Anna Luongo, Markus Langhans, Thomas Brandstetter, Jürgen Rühe, Tobias Meckel and Markus Biesalski
Sensors 2021, 21(19), 6348; https://doi.org/10.3390/s21196348 - 23 Sep 2021
Cited by 8 | Viewed by 3561
Abstract
Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators [...] Read more.
Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay. This interaction may significantly reduce the amount of analyte that reaches the detection zone of the microfluidic paper-based analytical device (µPAD), thereby reducing its overall sensitivity. Here, we introduce a novel approach on reducing the nonspecific adsorption of proteins to lab-made paper sheets for the use in µPADs. To this, cotton linter fibers in lab-formed additive-free paper sheets are modified with a surrounding thin hydrogel layer generated from photo-crosslinked, benzophenone functionalized copolymers based on poly-(oligo-ethylene glycol methacrylate) (POEGMA) and poly-dimethyl acrylamide (PDMAA). This, as we show in tests similar to lateral flow assays, significantly reduces unspecific binding of model proteins. Furthermore, by evaporating the transport fluid during the microfluidic run at the end of the paper strip through local heating, model proteins can almost quantitatively be accumulated in that zone. The possibility of complete, almost quantitative protein transport in a µPAD opens up new opportunities to significantly improve the signal-to-noise (S/N) ratio of paper-based lateral flow assays. Full article
(This article belongs to the Special Issue Lateral Flow Immunoassay: Advances and Applications)
Show Figures

Figure 1

9 pages, 233 KiB  
Article
Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties
by Jungsoo Han and Yungbum Seo
Materials 2021, 14(18), 5273; https://doi.org/10.3390/ma14185273 - 13 Sep 2021
Cited by 11 | Viewed by 2632
Abstract
Three alkaline mixtures (NaOH/thiourea, NaOH/urea/thiourea, NaOH/urea/ZnO) and sulfuric acid were used at low temperatures as cellulose solvents, and their cellulose solubility and films’ physical properties for bleached chemical wood pulps and cotton linter were compared. Their degree of polymerization (DP) was controlled to [...] Read more.
Three alkaline mixtures (NaOH/thiourea, NaOH/urea/thiourea, NaOH/urea/ZnO) and sulfuric acid were used at low temperatures as cellulose solvents, and their cellulose solubility and films’ physical properties for bleached chemical wood pulps and cotton linter were compared. Their degree of polymerization (DP) was controlled to 600–800 before dissolution. Among the alkaline solvents, NaOH/urea/ZnO gave the film the highest tensile strength and stretch. When compared to sulfuric acid, NaOH/urea/ZnO gave lower strength properties but higher crystallinity indices in the films. While alkaline solvents could not dissolve the high DP cellulose (DP ~ 2000), sulfuric acid could dissolve the high DP cellulose at below zero Celsius temperature, and the strength properties of the films were not much different from that of the low DP one. It appeared that the low-temperature sulfuric acid treatment did away with the cellulose’s DP controlling stage; it decreased cellulose DP very quickly for the high-DP cellulose at the initial stage, and as soon as the cellulose DP reached a DP low enough for dissolution, it began to dissolve the cellulose to result in stable cellulose solution. Full article
(This article belongs to the Section Biomaterials)
13 pages, 24622 KiB  
Article
Synthesis and Application of N-methylphthalimidylazo Disperse Dyes to Cellulose Diacetate for High Wash Fastness
by Sanghyun Yoon, Hyunjung Kim, Eunkyo Lee, Nahyun Oh, Sangcheon Kim, Kyung Hwa Hong and Joonseok Koh
Materials 2020, 13(21), 4924; https://doi.org/10.3390/ma13214924 - 2 Nov 2020
Cited by 6 | Viewed by 2730
Abstract
Cellulose diacetate fibers were prepared from cellulosic biomass with high α-cellulose contents such as purified cotton linters and wood pulps. Cellulose diacetate fibers are sensitive to alkaline solution, which causes hydrolysis of the acetate ester to hydroxyl groups, especially at high temperatures. Thus, [...] Read more.
Cellulose diacetate fibers were prepared from cellulosic biomass with high α-cellulose contents such as purified cotton linters and wood pulps. Cellulose diacetate fibers are sensitive to alkaline solution, which causes hydrolysis of the acetate ester to hydroxyl groups, especially at high temperatures. Thus, the low alkali-resistance of cellulose acetate fibers makes it difficult to achieve high wash fastness by restricting the application of intense after-treatment, such as reduction clearing. A series of N-methylphthalimide-based high-washable azo disperse dyes were synthesized and their dyeing and fastness properties on cellulose diacetate fabrics were investigated. From the overall results obtained in this study, N-methylphthalimidylazo disperse dyes are expected to be a desirable alternative to high value-added dyes that can be used for high color fastness dyeing of cellulose diacetate with a minimal discharge of wastewater during washing process. Full article
(This article belongs to the Special Issue Dyeing Materials for Sustainable Textile Industry)
Show Figures

Figure 1

18 pages, 3916 KiB  
Article
Green Synthesis of Free Standing Cellulose/Graphene Oxide/Polyaniline Aerogel Electrode for High-Performance Flexible All-Solid-State Supercapacitors
by Yueqin Li, Zongbiao Xia, Qiang Gong, Xiaohui Liu, Yong Yang, Chen Chen and Changhao Qian
Nanomaterials 2020, 10(8), 1546; https://doi.org/10.3390/nano10081546 - 7 Aug 2020
Cited by 63 | Viewed by 7246
Abstract
The cellulose/graphene oxide (GO) networks as the scaffold of free-standing aerogel electrodes are developed by using lithium bromide aqueous solution, as the solvent, to ensure the complete dissolution of cotton linter pulp and well dispersion/reduction of GO nanosheets. Polyaniline (PANI) nanoclusters are then [...] Read more.
The cellulose/graphene oxide (GO) networks as the scaffold of free-standing aerogel electrodes are developed by using lithium bromide aqueous solution, as the solvent, to ensure the complete dissolution of cotton linter pulp and well dispersion/reduction of GO nanosheets. Polyaniline (PANI) nanoclusters are then coated onto cellulose/GO networks via in-situ polymerization of aniline monomers. By optimized weight ratio of GO and PANI, the ternary cellulose/GO3.5/PANI aerogel film exhibits well-defined three-dimensional porous structures and high conductivity of 1.15 S/cm, which contributes to its high areal specific capacitance of 1218 mF/cm2 at the current density of 1.0 mA/cm2. Utilizing this cellulose/GO3.5/PANI aerogel film as electrodes in a symmetric configuration supercapacitor can result in an outstanding energy density as high as 258.2 µWh/cm2 at a power density of 1201.4 µW/cm2. Moreover, the device can maintain nearly constant capacitance under different bending deformations, suggesting its promising applications in flexible electronics. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

17 pages, 3774 KiB  
Article
Implementation of High Gas Barrier Laminated Films Based on Cellulose Nanocrystals for Food Flexible Packaging
by Ghislain Fotie, Stefano Gazzotti, Marco Aldo Ortenzi and Luciano Piergiovanni
Appl. Sci. 2020, 10(9), 3201; https://doi.org/10.3390/app10093201 - 4 May 2020
Cited by 17 | Viewed by 4774
Abstract
In this work, three types of cellulose nanocrystals (CNCs) were used: CNCSO3H extracted from wood pulp by sulfuric acid (H2SO4), CNCCOOH extracted from cotton linters by ammonium persulfate (APS) and CNCCOOR obtained by esterification of the [...] Read more.
In this work, three types of cellulose nanocrystals (CNCs) were used: CNCSO3H extracted from wood pulp by sulfuric acid (H2SO4), CNCCOOH extracted from cotton linters by ammonium persulfate (APS) and CNCCOOR obtained by esterification of the previous two CNCCOOH and CNCSO3H. For a comparative assessment of gas barrier performance, plastic films such as PLA, PET, PE, PP, OPP and OPA were selected, coated with the three types of CNCs and finally laminated with a solvent-based polyurethanic adhesive. First, all dispersed CNCs were characterized by apparent hydrodynamic diameter and Z potential by means of dynamic light scattering (DLS) and electrophoretic light scattering (ELS) techniques, respectively, followed by the crystallinity index (XRD), thermogravimetric analysis (TGA) and evaluation of Fourier-transform infrared spectroscopy (FTIR), as well as the charges density. The surface chemistry of coated plastics (CNCs-P) was assessed by the Z potential through the electrokinetic technique (streaming potential method) and the optical contact angle (OCA). Lastly, laminated films (P-CNC-P) were evaluated by gas permeability measurements at 23 °C and 50–80% RH. It is worth noting that improvements between 90% and 100% of oxygen barrier were achieved after the lamination. This paper provides insights on the choice of cellulosic nanomaterials for the design and development of advanced and sustainable food packaging materials. Full article
(This article belongs to the Special Issue Applications of Advanced Nanomaterials)
Show Figures

Figure 1

15 pages, 4798 KiB  
Article
Radiation Synthesis of Pentaethylene Hexamine Functionalized Cotton Linter for Effective Removal of Phosphate: Batch and Dynamic Flow Mode Studies
by Jifu Du, Zhen Dong, Zhiyuan Lin, Xin Yang and Long Zhao
Materials 2019, 12(20), 3393; https://doi.org/10.3390/ma12203393 - 17 Oct 2019
Cited by 11 | Viewed by 2537
Abstract
A quaternized cotton linter fiber (QCLF) based adsorbent for removal of phosphate was prepared by grafting glycidyl methacrylate onto cotton linter and subsequent ring-opening reaction of epoxy groups and further quaternization. The adsorption behavior of the QCLF for phosphate was evaluated in a [...] Read more.
A quaternized cotton linter fiber (QCLF) based adsorbent for removal of phosphate was prepared by grafting glycidyl methacrylate onto cotton linter and subsequent ring-opening reaction of epoxy groups and further quaternization. The adsorption behavior of the QCLF for phosphate was evaluated in a batch and column experiment. The batch experiment demonstrated that the adsorption process followed pseudo-second-order kinetics with an R2 value of 0.9967, and the Langmuir model with R2 value of 0.9952. The theoretical maximum adsorption capacity reached 152.44 mg/g. The experimental data of the fixed-bed column were well fitted with the Thomas and Yoon–Nelson models, and the adsorption capacity of phosphate at 100 mg/L and flow rate 1 mL/min reached 141.58 mg/g. The saturated QCLF could be regenerated by eluting with 1 M HCl. Full article
(This article belongs to the Special Issue Environmentally Friendly Polymeric Blends from Renewable Sources)
Show Figures

Figure 1

14 pages, 3061 KiB  
Article
Cotton Cellulose-CdTe Quantum Dots Composite Films with Inhibition of Biofilm-Forming S. aureus
by Rohan S. Dassanayake, Poorna T. Wansapura, Phat Tran, Abdul Hamood and Noureddine Abidi
Fibers 2019, 7(6), 57; https://doi.org/10.3390/fib7060057 - 19 Jun 2019
Cited by 9 | Viewed by 6592
Abstract
A cellulose-cadmium (Cd)-tellurium (TE) quantum dots (QDs) composite film was successfully synthesized by incorporating CdTe QDs onto a cellulose matrix derived from waste cotton linters. Cellulose-CdTe QDs composite film was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, [...] Read more.
A cellulose-cadmium (Cd)-tellurium (TE) quantum dots (QDs) composite film was successfully synthesized by incorporating CdTe QDs onto a cellulose matrix derived from waste cotton linters. Cellulose-CdTe QDs composite film was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The antibacterial activity of the prepared composite film was investigated using the multidrug-resistance (MTR) Staphylococcus aureus bacteria. In vitro antibacterial assays demonstrated that CdTe QDs composite film can efficiently inhibit biofilm formation. Our results showed that the cellulose-CdTe QDs composite film is a promising candidate for biomedical applications including wound dressing, medical instruments, burn treatments, implants, and other biotechnology fields. Full article
(This article belongs to the Special Issue Recent Progress in Cellulose Dissolution and Regeneration)
Show Figures

Figure 1

13 pages, 4003 KiB  
Article
Fabrication of Cotton Linter-Based Adsorbents by Radiation Grafting Polymerization for Humic Acid Removal from Aqueous Solution
by Jifu Du, Zhen Dong, Yuxuan Pi, Xin Yang and Long Zhao
Polymers 2019, 11(6), 962; https://doi.org/10.3390/polym11060962 - 2 Jun 2019
Cited by 21 | Viewed by 3826
Abstract
Two kinds of cotton linter-based adsorbents were synthesized by grafting dimethylaminoethyl methacrylate (DMAEMA) on cotton linter via radiation grafting polymerization, followed by further quaternization (QCL) or protonation (PCL). The effect of radiation dose and monomer concentration on grafting yield was optimized. The synthesized [...] Read more.
Two kinds of cotton linter-based adsorbents were synthesized by grafting dimethylaminoethyl methacrylate (DMAEMA) on cotton linter via radiation grafting polymerization, followed by further quaternization (QCL) or protonation (PCL). The effect of radiation dose and monomer concentration on grafting yield was optimized. The synthesized adsorbents were characterized by Fourier transform infrared spectrometry (FT-IR), Thermogravimetric Analysis (TGA), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The adsorption behaviors of the two adsorbents toward humic acid (HA) were investigated and discussed. pH effect studies showed that QCL was pH-independent, whereas PCL was just suitable for HA adsorption with pH < 6. The adsorption kinetics of the PCL and QCL adsorbent for HA removal were better described by pseudo-second-order kinetic mode and reached equilibrium in 40 min. The adsorption isotherms of the PCL and QCL adsorbent were well fitted with both Langmuir and Freundlich isotherm models, for which adsorption capacity reached 250 mg/g and 333 mg/g at pH 6, respectively. XPS analysis revealed the ratio of two amino group species at different pH, suggesting that the interaction mechanism of the adsorbent and HA was electrostatic adsorption. Full article
(This article belongs to the Special Issue Radiation Polymers)
Show Figures

Figure 1

Back to TopTop