Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Solvent Preparation
2.3. Dissolution and Film Casting
2.4. Characterization
2.4.1. Mechanical Properties
2.4.2. X-ray Diffraction (XRD)
2.4.3. Thermogravimetric Analysis
2.4.4. Cellulose Film Viscosity
3. Results
3.1. Comparision of Alkaline Cellulose Solvents
3.2. Comparision of Alkaline and Sulfuric Acid Cellulose Solvents
3.3. Properties of the Films Prepared from High and Low DP Cellulose
3.4. Measurement of Viscosity of the Films
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fink, H.P.; Ganster, J.; Lehmann, A. Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 2014, 21, 31–51. [Google Scholar] [CrossRef]
- Nishino, T.; Matsuda, I.; Hirao, K. All-cellulose composite. Macromolecules 2004, 37, 7683–7687. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Gabr, M.; Phong, N.T.; Kazuya, O.; Kiyoshi, U.; Isao, K.; Toru, F. Thermal and mechanical properties of electrospun nano-cellulose reinforced epoxy composites. Polym. Test. 2014, 37, 51–58. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Yang, S.Y.; Kim, J.H. Effects of Solvent Systems on Its Structure Properties and Electromechanical Behavior of Cellulose Electro-Active Paper. Curr. Org. Chem. 2013, 17, 83–88. [Google Scholar] [CrossRef]
- Lindman, B.; Karlström, G.; Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 2010, 156, 76–81. [Google Scholar] [CrossRef]
- Budtiva, T.; Navard, P. Cellulose in NaOH-water based solvents: A review. Cellulose 2016, 23, 5–55. [Google Scholar] [CrossRef] [Green Version]
- Patrick, W.M. Lyocell: The production process and market development. In Regenrated Cellulose Fibers, 1st ed.; Woodings, C., Ed.; Woodheard Publishing: Sawston, UK, 2001; Volume 1, pp. 62–86. [Google Scholar]
- McCormick, C.L.; Callais, P.A.; Hutchinson, B.H., Jr. Solution Studies of Cellulose in Lithium Chloride and N,N-Dimethylacetamide. Macromolecules 1985, 18, 2394–2401. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellulose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef]
- Kumar, H.; Christopher, L.P. Recent trends and developments in dissolving pulp production and application. Cellulose 2017, 24, 2347–2365. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macromol. Biosci. 2005, 5, 539–548. [Google Scholar] [CrossRef]
- Ruan, D.; Lue, A.; Zhang, L. Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 2008, 49, 1027–1036. [Google Scholar] [CrossRef]
- Yang, Q.; Qin, X.; Zhang, L. Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 2011, 18, 681–688. [Google Scholar] [CrossRef]
- Jin, H.; Zha, C.; Gu, L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr. Res. 2007, 342, 851–858. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, Q.; Kuga, S.; Matsumoto, Y. Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment. J. Agric. Food Chem. 2015, 63, 6113–6119. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Zhang, L.; Chen, L. Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose 2016, 23, 3463–3473. [Google Scholar] [CrossRef]
- Morton, J.H. Viscosity/DP relationships for cellulose dissolved in cuprammonium and cupriethylenediamine solvents. In The Chemistry and Processing of Wood and Plant Fibrous Material; Proceedings of Cellucon ’94; Woodhead Publishing: Sawston, UK, 1996; pp. 151–158. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Nam, S.H.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gindl, W.; Keckes, J. All-cellulose nanocomposite. Polymer 2005, 46, 10221–10225. [Google Scholar] [CrossRef]
- Sixta, H.; Michud, A.; Hauru, L.; Asaadi, S.; Ma, Y.; King, A.W.T.; Kilpeläinen, I.; Hummel, M. Ioncell-F: A High-strength regenerated cellulose fibre. Nord. Pulp. Pap. Res. J. 2015, 30, 43–57. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, F.; Chen, L.; Huang, L.; Cao, S.; Ma, X. Preparation of transparent film via cellulose regeneration: Correlations between ionic liquid and film properties. Carbohydr. Polym. 2019, 203, 214–218. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Cellulose Source | Characteristics and Pretreatment | CED Viscosity 1 (cPs) | DP 2 | α-Cellulose (%) |
---|---|---|---|---|---|
Sw | Softwood BKP | Mixture of hemlock, douglas fir, and cedar BKP from Canada | 15.6 | 2086 | 89.7 |
Hw | Hardwood BKP | Mixture of aspen and poplar BKP from Canada | 14.6 | 2003 | 85.8 |
Co | Cotton linter | China first cut, pretreated with pulping and bleaching | 16.6 | 2164 | 98.0 |
Co-E | Cotton linter | Cotton linter, electron beam treatment (20 kGy) | 4.0 | 607 | 97.2 |
Sw-E | Softwood BKP | Softwood BKP, electron beam treatment (20 kGy) | 3.8 | 560 | 85.1 |
Sw-A | Softwood BKP | Softwood BKP, diluted acid treatment (1 g pulp/20 mL 0.5 M H2SO4, 70°C, 90 min) | 4.8 | 780 | 82.8 |
Hw-A | Hardwood BKP | Hardwood BKP, diluted acid treatment (1 g pulp/20 mL 0.5 M H2SO4, 70 °C, 180 min) | 4.8 | 778 | 75.3 |
Solvent | Component Ratio (wt%) | Pre-Cooling Temperature (°C) | Solubility (%) 2 | Ref. |
---|---|---|---|---|
NaOH/urea/water 1 | 7:12:81 | −12 | 61.2 | [12] |
NaOH/urea/ZnO/water | 7:12:0.5:80.5 | −12 | >99 | [13] |
NaOH/thiourea/water | 9.5:4.5:86 | −6 | >99 | [14] |
NaOH/urea/thiourea/water | 8:8:6.5:77.5 | −6 | >99 | [15] |
Sulfuric acid | 64 | −20 | >99 | [17] |
Sample | Cellulose Solvent | Density (g/cm3) | Breaking Length (km) | Stretch (%) | Young’s Modulus (Gpa) | CrI (%) | TGA (°C) |
---|---|---|---|---|---|---|---|
Cotton linter, Co-E (4 cPs) | Blank | - | - | - | - | 64.1 | 361.4 |
NaOH/urea/thiourea | 1.16 ± 0.23 | 4.88 ± 0.44 | 3.37 ± 0.82 | 2.41 ± 0.12 | 51.9 | 322.2 | |
NaOH/urea/ZnO | 1.25 ± 0.14 | 5.33 ± 0.66 | 8.85 ± 3.53 | 2.89 ± 0.24 | 53.8 | 334.5 | |
NaOH/Thiourea | 1.18 ± 0.26 | 4.25 ± 0.49 | 4.01 ± 1.80 | 3.30 ± 0.21 | 58.2 | 327.5 |
Sample | Initial Cellulose DP | Density (g/cm3) | Cellulose Solvent | Breaking Length (km) | Stretch (%) (Strain to Failure) | Young’s Modulus (Gpa) | CrI (%) |
---|---|---|---|---|---|---|---|
Hw-A 1 | 778 | - | - | - | - | 72.85 ± 1.22 | |
Sw-A 1 | 780 | - | - | - | - | 76.12 ± 2.31 | |
Co-E 1 | 607 | - | - | - | - | 80.10 ± 2.56 | |
Hw-A 2 | 778 | 1.22 ± 0.10 | NaOH/urea/ZnO | 3.57 ± 0.30 | 4.82 ± 2.32 | 3.33 ± 0.44 | 49.15 ± 3.61 |
Sw-A 2 | 780 | 1.15 ± 0.13 | NaOH/urea/ZnO | 3.47 ± 0.11 | 4.31 ± 0.64 | 3.66 ± 0.34 | 54.06 ± 2.10 |
Co-E 2 | 607 | 1.25 ± 0.14 | NaOH/urea/ZnO | 5.33 ± 0.66 | 8.85 ± 3.53 | 2.89 ± 0.24 | 53.78 ± 1.30 |
Hw-A 2 | 778 | 1.17 ± 0.12 | H2SO4 | 4.72 ± 0.47 | 9.47 ± 2.00 | 2.78 ± 0.34 | 44.03 ± 1.05 |
Sw-A 2 | 780 | 1.16 ± 0.10 | H2SO4 | 4.46 ± 0.26 | 6.95 ± 1.14 | 2.79 ± 0.12 | 44.87 ± 2.01 |
Co-E 2 | 607 | 1.13 ± 0.13 | H2SO4 | 5.73 ± 0.54 | 10.09 ± 2.70 | 2.83 ± 0.33 | 38.48 ± 1.33 |
Hw 3 | 2003 | 1.18 ± 0.10 | H2SO4 | 4.35 ± 0.37 | 3.69 ± 0.39 | 2.91 ± 0.24 | 47.70 ± 1.05 |
Sw 3 | 2086 | 1.19 ± 0.11 | H2SO4 | 4.75 ± 0.25 | 4.92 ± 1.34 | 2.87 ± 0.28 | 48.70 ± 2.01 |
Co 3 | 2164 | 1.18 ± 0.10 | H2SO4 | 4.69 ± 0.40 | 5.31 ± 1.80 | 2.98 ± 0.17 | 42.80 ± 1.33 |
Initial Cellulose DP | Intrinsic Viscosity by DMAc/LiCl (mL/g) | CrI (%) | |
---|---|---|---|
High DP softwood (Sw) | 2086 | 757.17 | 79.90 |
Low DP softwood (Sw-E) | 780 | 463.72 | 76.12 |
Film from high DP softwood (Sw film-H2SO4) | - | 425.15 | 48.19 |
Film from low DP softwood(Sw-E film H2SO4) | - | 397.86 | 44.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Seo, Y. Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties. Materials 2021, 14, 5273. https://doi.org/10.3390/ma14185273
Han J, Seo Y. Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties. Materials. 2021; 14(18):5273. https://doi.org/10.3390/ma14185273
Chicago/Turabian StyleHan, Jungsoo, and Yungbum Seo. 2021. "Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties" Materials 14, no. 18: 5273. https://doi.org/10.3390/ma14185273
APA StyleHan, J., & Seo, Y. (2021). Comparison of Cellulose Dissolution Behavior by Alkaline and Sulfuric Acid Solvents and Their Films’ Physical Properties. Materials, 14(18), 5273. https://doi.org/10.3390/ma14185273