Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,971)

Search Parameters:
Keywords = cost-weighted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7335 KiB  
Article
COLREGs-Compliant Distributed Stochastic Search Algorithm for Multi-Ship Collision Avoidance
by Bohan Zhang, Jinichi Koue, Tenda Okimoto and Katsutoshi Hirayama
J. Mar. Sci. Eng. 2025, 13(8), 1402; https://doi.org/10.3390/jmse13081402 (registering DOI) - 23 Jul 2025
Abstract
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex [...] Read more.
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex multi-ship environments remain insufficiently investigated. To address this gap, this study proposes a novel collision-avoidance framework that integrates a quantitative COLREGs analysis with a distributed stochastic search mechanism. The framework consists of three core components: encounter identification, safety assessment, and stage classification. A cost function is employed to balance safety, COLREGs compliance, and navigational efficiency, incorporating a distance-based weighting factor to modulate the influence of each target vessel. The use of a distributed stochastic search algorithm enables decentralized decision-making through localized information sharing and probabilistic updates. Extensive simulations conducted across a variety of scenarios demonstrate that the proposed method can rapidly generate effective collision-avoidance strategies that fully comply with COLREGs. Comprehensive evaluations in terms of safety, navigational efficiency, COLREGs adherence, and real-time computational performance further validate the method’s strong adaptability and its promising potential for practical application in complex multi-ship environments. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
Show Figures

Figure 1

11 pages, 578 KiB  
Article
Effectiveness of a Nutrition Education Programme on Nutritional Knowledge in Young Football Players: A Pilot Study
by Filipa Vicente, Leandro Anastácio, Andreia Monteiro, José Brito, Renata Ramalho and Paula Pereira
Nutrients 2025, 17(15), 2404; https://doi.org/10.3390/nu17152404 - 23 Jul 2025
Abstract
Background: Adequate nutrition is fundamental to the health and performance of young athletes. However, many fail to meet nutritional recommendations. Nutrition education programmes are promising, cost-effective strategies for improving dietary habits. However, research gaps persist, coupled with notable variability amongst the intervention programmes [...] Read more.
Background: Adequate nutrition is fundamental to the health and performance of young athletes. However, many fail to meet nutritional recommendations. Nutrition education programmes are promising, cost-effective strategies for improving dietary habits. However, research gaps persist, coupled with notable variability amongst the intervention programmes targeting youth athletes. The aim of this study was to assess the nutritional knowledge of Portuguese youth athletes and to evaluate the effectiveness of a nutrition education programme in improving football players’ understanding of a healthy diet. Methods: Participants were recruited from a local football club through public announcement. Male youth football players aged 13 to 18 years, training at least 3 times per week and competing regularly over the past six months, were eligible. The baseline assessment included anthropometric measurements, an assessment of the adherence to the Mediterranean diet using the KIDMED questionnaire, and an assessment of general and sports nutrition knowledge via a structured questionnaire. Following the intervention—comprising three face-to-face educational sessions and two digital infographics—the KIDMED and nutrition knowledge questionnaires were re-administered. Results: A sample of 38 male footballers were eligible for this study. Most participants exhibited a healthy body weight, with a corresponding adequate body composition. The mean KIDMED score indicated moderate adherence to the Mediterranean diet with no statistically significant difference between the baseline and post-intervention (6.79 ± 1.52 versus 6.97 ± 2.01, p > 0.05). There was a significant enhancement in overall nutrition knowledge, accompanied by notable improvements in the comprehension of macro- and micronutrient sources and sports nutrition principles. Conclusions: This pilot programme proved effective in enhancing young football players’ knowledge of nutrient sources and sports nutrition. Full article
(This article belongs to the Special Issue Fueling the Future: Advances in Sports Nutrition for Young Athletes)
Show Figures

Figure 1

24 pages, 1295 KiB  
Article
A Performance-Based Ranking Approach for Optimizing NDT Selection for Post-Tensioned Bridge Assessment
by Carlo Pettorruso, Dalila Rossi and Virginio Quaglini
Infrastructures 2025, 10(8), 194; https://doi.org/10.3390/infrastructures10080194 - 23 Jul 2025
Abstract
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT [...] Read more.
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT systems. The ranking is based on four performance categories: measurement accuracy, ease of use, cost, and impact of disruption to bridge operations on traffic. For each NDT technique, a score is assigned for each evaluation category, and the final ranking is determined using the weighted sum model (WSM). This approach enables the final assessment to reflect the priorities of different decision-making contexts defined by the end-user such as accuracy-oriented, cost-oriented, and impact-oriented scenarios. The proposed method is then applied to an existing bridge in order to practically demonstrate its effectiveness and the flexibility of the proposed criteria. Full article
Show Figures

Figure 1

39 pages, 6893 KiB  
Article
A New Eco-Physical, Individual-Based Model of Humpback Whale (Megaptera novaeangliae, Borowski, 1781) Swimming and Diving
by Marisa González Félix, Jennifer Coston-Guarini, Pascal Rivière and Jean-Marc Guarini
J. Mar. Sci. Eng. 2025, 13(8), 1388; https://doi.org/10.3390/jmse13081388 - 22 Jul 2025
Abstract
Among marine organisms, baleen whale species like the humpback whale (Megaptera novaeangliae) are a case for which individual-based models are necessary to study population changes because individual trait variabilities predominate over average demographic rates to govern population dynamics. These models require [...] Read more.
Among marine organisms, baleen whale species like the humpback whale (Megaptera novaeangliae) are a case for which individual-based models are necessary to study population changes because individual trait variabilities predominate over average demographic rates to govern population dynamics. These models require quantification of individual organisms’ dynamics with respect to local conditions, which implies optimal strategy frameworks cannot be used. Instead, to quantify how individuals perform according to the environmental conditions they encounter, we formulated a model linking individual mechanical characteristics of swimming and diving with their aerobic metabolism and behavior. The model simulates the dynamics of swimming and diving for the reported range of whale sizes (1000 to 50,000 kg). Additional processes simulate foraging events including rapid accelerations and water engulfment, which modifies whale shape, weight and drag. Simulations show how the energy cost of swimming at equilibrium increases geometrically with velocity and linearly with mass. The duration and distance covered under apnea vary monotonically with mass but not with velocity; hence, there is a positive mass-dependent optimal velocity that maximizes the distance and duration of apnea. The dive limit was explored with a combination of the physiological state, mechanical force produced and distance to return to surface. This combination is imposed as an inequality constraint on the whale individual. The inequality constraint, transformed as a multi-layer perceptron, which continuously processes information about oxygen, depth and relative velocity, provides the whale individual with autonomous decision-making about whether or not to continue the dive. The results also highlight where missing metabolic information is needed to simulate the dynamics of a population of autonomous individuals at the scale of the Global Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

18 pages, 1696 KiB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

29 pages, 4031 KiB  
Article
Automatic Vibration Balancing System for Combine Harvester Threshing Drums Using Signal Conditioning and Optimization Algorithms
by Xinyang Gu, Bangzhui Wang, Zhong Tang, Honglei Zhang and Hao Zhang
Agriculture 2025, 15(14), 1564; https://doi.org/10.3390/agriculture15141564 - 21 Jul 2025
Abstract
The threshing drum, a core component in combine harvesters, experiences significant unbalanced vibrations during high-speed rotation, leading to severe mechanical wear, increased energy consumption, elevated noise levels, potential safety hazards, and higher maintenance costs. A primary challenge is that excessive interference signals often [...] Read more.
The threshing drum, a core component in combine harvesters, experiences significant unbalanced vibrations during high-speed rotation, leading to severe mechanical wear, increased energy consumption, elevated noise levels, potential safety hazards, and higher maintenance costs. A primary challenge is that excessive interference signals often obscure the fundamental frequency characteristics of the vibration, hampering balancing effectiveness. This study introduces a signal conditioning model to suppress such interference and accurately extract the unbalanced quantities from the raw signal. Leveraging this extracted vibration force signal, an automatic optimization method for the balancing counterweights was developed, solving calculation issues inherent in traditional approaches. This formed the basis for an automatic balancing control strategy and an integrated system designed for online monitoring and real-time control. The system continuously adjusts the rotation angles, θ1 and θ2, of the balancing weight disks based on live signal characteristics, effectively reducing the drum’s imbalance under both internal and external excitation states. This enables a closed loop of online vibration testing, signal processing, and real-time balance control. Experimental trials demonstrated a significant 63.9% reduction in vibration amplitude, from 55.41 m/s2 to 20.00 m/s2. This research provides a vital theoretical reference for addressing structural instability in agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
34 pages, 6958 KiB  
Article
Non-Intrusive Low-Cost IoT-Based Hardware System for Sustainable Predictive Maintenance of Industrial Pump Systems
by Sérgio Duarte Brito, Gonçalo José Azinheira, Jorge Filipe Semião, Nelson Manuel Sousa and Salvador Pérez Litrán
Electronics 2025, 14(14), 2913; https://doi.org/10.3390/electronics14142913 - 21 Jul 2025
Viewed by 11
Abstract
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and [...] Read more.
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and temperature data, performs local logging, and communicates wirelessly. An automated spectral band segmentation framework is introduced, comparing equal-energy, linear-width, nonlinear, clustering, and peak–valley partitioning methods, followed by a weighted feature scheme that emphasizes high-value bands. Three unsupervised one-class classifiers—transformer autoencoders, GANomaly, and Isolation Forest—are evaluated on these weighted spectral features. Experiments conducted on a custom pump test bench with controlled anomaly severities demonstrate strong anomaly classification performance across multiple configurations, supported by detailed threshold-characterization metrics. Among 150 model–segmentation configurations, 25 achieved perfect classification (100% precision, recall, and F1 score) with ROC-AUC = 1.0, 43 configurations achieved ≥90% accuracy, and the lowest-performing setup maintained 81.8% accuracy. The proposed end-to-end solution reduces the downtime, lowers maintenance costs, and extends the asset life, offering a scalable, predictive maintenance approach for diverse industrial settings. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

14 pages, 2370 KiB  
Article
DP-AMF: Depth-Prior–Guided Adaptive Multi-Modal and Global–Local Fusion for Single-View 3D Reconstruction
by Luoxi Zhang, Chun Xie and Itaru Kitahara
J. Imaging 2025, 11(7), 246; https://doi.org/10.3390/jimaging11070246 - 21 Jul 2025
Viewed by 26
Abstract
Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior–Guided Adaptive Multi-Modal and Global–Local Fusion framework that integrates high-fidelity depth priors—generated [...] Read more.
Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior–Guided Adaptive Multi-Modal and Global–Local Fusion framework that integrates high-fidelity depth priors—generated offline by the MARIGOLD diffusion-based estimator and cached to avoid extra training cost—with hierarchical local features from ResNet-32/ResNet-18 and semantic global features from DINO-ViT. A learnable fusion module dynamically adjusts per-channel weights to balance these modalities according to local texture and occlusion, and an implicit signed-distance field decoder reconstructs the final mesh. Extensive experiments on 3D-FRONT and Pix3D demonstrate that DP-AMF reduces Chamfer Distance by 7.64%, increases F-Score by 2.81%, and boosts Normal Consistency by 5.88% compared to strong baselines, while qualitative results show sharper edges and more complete geometry in challenging scenes. DP-AMF achieves these gains without substantially increasing model size or inference time, offering a robust and effective solution for complex single-view reconstruction tasks. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 41
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

21 pages, 1359 KiB  
Article
Enhanced Multi-Level Recommender System Using Turnover-Based Weighting for Predicting Regional Preferences
by Venkatesan Thillainayagam, Ramkumar Thirunavukarasu and J. Arun Pandian
Computers 2025, 14(7), 294; https://doi.org/10.3390/computers14070294 - 20 Jul 2025
Viewed by 125
Abstract
In the realm of recommender systems, the prediction of diverse customer preferences has emerged as a compelling research challenge, particularly for multi-state business organizations operating across various geographical regions. Collaborative filtering, a widely utilized recommendation technique, has demonstrated its efficacy in sectors such [...] Read more.
In the realm of recommender systems, the prediction of diverse customer preferences has emerged as a compelling research challenge, particularly for multi-state business organizations operating across various geographical regions. Collaborative filtering, a widely utilized recommendation technique, has demonstrated its efficacy in sectors such as e-commerce, tourism, hotel management, and entertainment-based customer services. In the item-based collaborative filtering approach, users’ evaluations of purchased items are considered uniformly, without assigning weight to the participatory data sources and users’ ratings. This approach results in the ‘relevance problem’ when assessing the generated recommendations. In such scenarios, filtering collaborative patterns based on regional and local characteristics, while emphasizing the significance of branches and user ratings, could enhance the accuracy of recommendations. This paper introduces a turnover-based weighting model utilizing a big data processing framework to mine multi-level collaborative filtering patterns. The proposed weighting model assigns weights to participatory data sources based on the turnover cost of the branches, where turnover refers to the revenue generated through total business transactions conducted by the branch. Furthermore, the proposed big data framework eliminates the forced integration of branch data into a centralized repository and avoids the complexities associated with data movement. To validate the proposed work, experimental studies were conducted using a benchmarking dataset, namely the ‘Movie Lens Dataset’. The proposed approach uncovers multi-level collaborative pattern bases, including global, sub-global, and local levels, with improved predicted ratings compared with results generated by traditional recommender systems. The findings of the proposed approach would be highly beneficial to the strategic management of an interstate business organization, enabling them to leverage regional implications from user preferences. Full article
Show Figures

Figure 1

14 pages, 1395 KiB  
Article
Cost–Consequence Analysis of Semaglutide vs. Liraglutide for Managing Obese Prediabetic and Diabetic Patients in Saudi Arabia: A Single-Center Study
by Najla Bawazeer, Seham Bin Ganzal, Huda F. Al-Hasinah and Yazed Alruthia
Healthcare 2025, 13(14), 1755; https://doi.org/10.3390/healthcare13141755 - 20 Jul 2025
Viewed by 173
Abstract
Background: Semaglutide and Liraglutide are medications in the Glucagon-like peptide-1 agonists (GLP-1 RAs) class used to manage type 2 diabetes mellitus and obesity in Saudi Arabia. Although the 1.0 mg once weekly dosage of Semaglutide does not have a labeled indication for [...] Read more.
Background: Semaglutide and Liraglutide are medications in the Glucagon-like peptide-1 agonists (GLP-1 RAs) class used to manage type 2 diabetes mellitus and obesity in Saudi Arabia. Although the 1.0 mg once weekly dosage of Semaglutide does not have a labeled indication for the management of obesity, many believe that this dosage is more effective than the 3.0 mg once daily Liraglutide dosage for the management of both diabetes and obesity. Objective: To compare the effectiveness of the dosage of 1.0 mg of Semaglutide administered once weekly versus 3.0 mg of Liraglutide administered once daily in controlling HbA1c levels, promoting weight loss, and evaluating their financial implications among obese patients in Saudi Arabia using real-world data. Methods: A retrospective review of Electronic Medical Records (EMRs) from January 2021 to June 2024 was conducted on patients prescribed Semaglutide or Liraglutide for at least 12 months. Exclusion criteria included pre-existing severe conditions (e.g., cardiovascular disease, stroke, or cancer) and missing baseline data. The primary outcomes assessed were changes in HbA1c, weight, and direct medical costs. Results: Two hundred patients (100 patients on the 1.0 mg once weekly dose of Semaglutide and 100 patients on the 3.0 mg once daily dose of Liraglutide) of those randomly selected from the EMRs met the inclusion criteria and were included in the analysis. Of the 200 eligible patients (65.5% female, mean age 48.54 years), weight loss was greater with Semaglutide (−8.09 kg) than Liraglutide (−5.884 kg). HbA1c reduction was also greater with Semaglutide (−1.073%) than Liraglutide (−0.298%). The use of Semaglutide resulted in lower costs of USD −1264.76 (95% CI: −1826.82 to 33.76) and greater reductions in weight of −2.22 KG (95% CI: −7.68 to −2.784), as well as lower costs of USD −1264.76 (95% CI: (−2368.16 to −239.686) and greater reductions in HbA1c of −0.77% (95% CI: −0.923 to −0.0971) in more than 95% of the cost effectiveness bootstrap distributions. Conclusions: Semaglutide 1.0 mg weekly seems to be more effective and cost-saving in managing prediabetes, diabetes, and obesity compared to Liraglutide 3.0 mg daily. Future studies should examine these findings using a more representative sample and a robust study design. Full article
Show Figures

Figure 1

35 pages, 954 KiB  
Article
Beyond Manual Media Coding: Evaluating Large Language Models and Agents for News Content Analysis
by Stavros Doropoulos, Elisavet Karapalidou, Polychronis Charitidis, Sophia Karakeva and Stavros Vologiannidis
Appl. Sci. 2025, 15(14), 8059; https://doi.org/10.3390/app15148059 - 20 Jul 2025
Viewed by 226
Abstract
The vast volume of media content, combined with the costs of manual annotation, challenges scalable codebook analysis and risks reducing decision-making accuracy. This study evaluates the effectiveness of large language models (LLMs) and multi-agent teams in structured media content analysis based on codebook-driven [...] Read more.
The vast volume of media content, combined with the costs of manual annotation, challenges scalable codebook analysis and risks reducing decision-making accuracy. This study evaluates the effectiveness of large language models (LLMs) and multi-agent teams in structured media content analysis based on codebook-driven annotation. We construct a dataset of 200 news articles on U.S. tariff policies, manually annotated using a 26-question codebook encompassing 122 distinct codes, to establish a rigorous ground truth. Seven state-of-the-art LLMs, spanning low- to high-capacity tiers, are assessed under a unified zero-shot prompting framework incorporating role-based instructions and schema-constrained outputs. Experimental results show weighted global F1-scores between 0.636 and 0.822, with Claude-3-7-Sonnet achieving the highest direct-prompt performance. To examine the potential of agentic orchestration, we propose and develop a multi-agent system using Meta’s Llama 4 Maverick, incorporating expert role profiling, shared memory, and coordinated planning. This architecture improves the overall F1-score over the direct prompting baseline from 0.757 to 0.805 and demonstrates consistent gains across binary, categorical, and multi-label tasks, approaching commercial-level accuracy while maintaining a favorable cost–performance profile. These findings highlight the viability of LLMs, both in direct and agentic configurations, for automating structured content analysis. Full article
(This article belongs to the Special Issue Natural Language Processing in the Era of Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop