Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = coronary calcium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2691 KiB  
Article
Multidimensional Radiological Assessment of Delirium in the Emergency Department
by Alberto Francesco Cereda, Claudia Frangi, Matteo Rocchetti, Andrea Spangaro, Lorenzo Tua, Antonio Gabriele Franchina, Matteo Carlà, Lucia Colavolpe, Matteo Carelli, Anna Palmisano, Massimiliano Etteri and Stefano Lucreziotti
Healthcare 2025, 13(15), 1871; https://doi.org/10.3390/healthcare13151871 - 31 Jul 2025
Viewed by 200
Abstract
Background: Delirium is a common, underdiagnosed neuropsychiatric syndrome in older adults, associated with high mortality and functional decline. Given its multifactorial nature and overlap with frailty, radiological markers may improve risk stratification in the emergency department (ED). Methods: We conducted a retrospective study [...] Read more.
Background: Delirium is a common, underdiagnosed neuropsychiatric syndrome in older adults, associated with high mortality and functional decline. Given its multifactorial nature and overlap with frailty, radiological markers may improve risk stratification in the emergency department (ED). Methods: We conducted a retrospective study on a small sample of 30 patients diagnosed with delirium in the emergency department who had recently undergone brain, thoracic, or abdominal CT scans for unrelated clinical indications. Using post-processing software, we analyzed radiological markers, including coronary artery calcifications (to estimate vascular age), cerebral atrophy (via the Global Cortical Atrophy scale), and cachexia (based on abdominal fat and psoas muscle volumetry). Results: Five domains were identified as significant predictors of 12-month mortality in univariate Cox regression: vascular age, delirium etiology, cerebral atrophy, delirium subtype (hyperactive vs. hypoactive), and cachexia. Based on these domains, we developed an exploratory 10-point delirium score. This score demonstrated acceptable diagnostic accuracy for mortality prediction (sensitivity 0.93, specificity 0.73, positive predictive value 0.77, negative predictive value 0.91) in this limited cohort. Conclusions: While preliminary and based on a small, retrospective sample of 30 patients, this multidimensional approach integrating clinical and radiological data may help improve risk stratification in elderly patients with delirium. Radiological phenotyping, particularly in terms of vascular aging and sarcopenia/cachexia, offers objective insights into patient frailty and could inform more personalized treatment pathways from the ED to safe discharge home, pending further validation. Full article
Show Figures

Figure 1

18 pages, 333 KiB  
Review
Molecular Mechanisms of Cardiac Adaptation After Device Deployment
by Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni and Antonio Curcio
J. Cardiovasc. Dev. Dis. 2025, 12(8), 291; https://doi.org/10.3390/jcdd12080291 - 30 Jul 2025
Viewed by 147
Abstract
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through [...] Read more.
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Graphical abstract

16 pages, 1248 KiB  
Article
Coronary Artery Calcium Score as a Predictor of Anthracycline-Induced Cardiotoxicity: The ANTEC Study
by Anna Borowiec, Patrycja Ozdowska, Magdalena Rosinska, Agnieszka Maria Zebrowska, Sławomir Jasek, Beata Kotowicz, Joanna Waniewska, Hanna Kosela-Paterczyk, Elzbieta Lampka, Katarzyna Pogoda, Zbigniew Nowecki and Jan Walewski
Pharmaceuticals 2025, 18(8), 1102; https://doi.org/10.3390/ph18081102 - 25 Jul 2025
Viewed by 289
Abstract
Background: Many risk factors for cancer therapy-related cardiovascular toxicity overlap with risk factors for atherosclerosis. According to the ESC 2022 Cardio-Oncology Guidelines, coronary computed tomography angiography and coronary artery calcium score are not recommended as part of routine risk assessment prior to oncological [...] Read more.
Background: Many risk factors for cancer therapy-related cardiovascular toxicity overlap with risk factors for atherosclerosis. According to the ESC 2022 Cardio-Oncology Guidelines, coronary computed tomography angiography and coronary artery calcium score are not recommended as part of routine risk assessment prior to oncological treatment. The aim of this study was to prospectively assess the influence of coronary artery calcium score (CAC score) on cancer therapy-related cardiac dysfunction in patients with moderate and high risk of cardiovascular toxicity, qualified for anthracycline treatment. Methods: In all patients, risk factors were collected, laboratory tests, echocardiography with global longitudinal strain (GLS) assessment and coronary artery tomography with coronary artery calcium score were performed. A total of 80 patients were included in the study, of which 77 (96.25%) were followed for an average of 11.5 months. The mean age at baseline was 60.5 years and 72 (93.51%) were women. Results: During observation, five patients (6.49%) died, including two due to heart failure and three due to cancer progression. The majority of patients (59, 76.6%) had breast cancer, 11 (14.3%) were diagnosed with sarcoma and seven (9.1%) with lymphoma. According to the HFA-ICOS risk score, 40 patients (51.9%) were classified as moderate risk (MR), and 37 patients (48.1%) as high risk (HR) for cancer therapy-related cardiovascular toxicity. A CAC score greater than 100 was calculated in 17 (22.1%) patients and greater than 400 in three (3.9%) patients. The CAC score above zero was more common in older patients and in patients classified as high risk (p < 0.001). There was also a significant association between CAC score and hypertension, hyperlipidemia, chronic kidney disease, and the level of NT-proBNP. During 12-month follow-up, mild CTRCD occurred in 38 (49.4%) patients, moderate CTRCD was diagnosed in seven (9.1%), and severe in three (3.9%) patients. In the univariable analysis, CTRCD was more common in the high-risk group (p = 0.005) and in patients with a CAC score greater than zero (p = 0.036). In multivariable analysis, the incidence of CTRCD remains higher in the CAC score > 0 group, even after adjusting for age, hypertension, and hyperlipidemia. In this study group, the CTRCD rates increased with the HFA-ICOS risk score. Conclusions: In moderate and high-risk patients, a coronary artery calcium score greater than zero was identified as a significant risk factor for the development of cancer therapy-related cardiac dysfunction during anthracycline-based treatment. Furthermore, the HFA-ICOS risk score demonstrated good correlation with the incidence of CTRCD in this study, supporting its validity as a predictive tool in patients receiving anthracycline therapy. Full article
Show Figures

Figure 1

27 pages, 2385 KiB  
Review
Butyrate Produced by Gut Microbiota Regulates Atherosclerosis: A Narrative Review of the Latest Findings
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(14), 6744; https://doi.org/10.3390/ijms26146744 - 14 Jul 2025
Viewed by 641
Abstract
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques [...] Read more.
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques on the intima of arterial walls. Butyrate maintains gut barrier integrity and modulates immune responses. Butyrate regulates G-protein-coupled receptor (GPCR) signaling and activates nuclear factor kappa-B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factors (IFRs) involved in the production of proinflammatory cytokines. Depending on the inflammatory stimuli, butyrate may also inactivate NF-κB, resulting in the suppression of proinflammatory cytokines and the stimulation of anti-inflammatory cytokines. Butyrate modulates mitogen-activated protein kinase (MAPK) to promote or suppress macrophage inflammation, muscle cell growth, apoptosis, and the uptake of oxidized low-density lipoprotein (ox-LDL) in macrophages. Activation of the peroxisome proliferator-activated receptor γ (PPARγ) pathway plays a role in lipid metabolism, inflammation, and cell differentiation. Butyrate inhibits interferon γ (IFN-γ) signaling and suppresses NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) involved in inflammation and scar tissue formation. The dual role of butyrate in AS is discussed by addressing the interactions between butyrate, intestinal epithelial cells (IECs), endothelial cells (ECs) of the main arteries, and immune cells. Signals generated from these interactions may be applied in the diagnosis and intervention of AS. Reporters to detect early AS is suggested. This narrative review covers the most recent findings published in PubMed and Crossref databases. Full article
Show Figures

Figure 1

15 pages, 3765 KiB  
Article
Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease
by Sung Min Ko, Sung-Jin Cha, Hyunjung Kim, Pil-Hyun Jeon, Sang-Hyun Jeon, Sung Gyun Ahn and Jung-Woo Son
J. Cardiovasc. Dev. Dis. 2025, 12(7), 264; https://doi.org/10.3390/jcdd12070264 - 9 Jul 2025
Viewed by 350
Abstract
(1) Background: Our aim was to evaluate the diagnostic performance of combined coronary computed tomography angiography (CCTA) and dynamic CT myocardial perfusion imaging (CT-MPI) for detecting hemodynamically significant coronary artery disease (CAD) in patients with intermediate pretest probability. (2) Methods: Patients with an [...] Read more.
(1) Background: Our aim was to evaluate the diagnostic performance of combined coronary computed tomography angiography (CCTA) and dynamic CT myocardial perfusion imaging (CT-MPI) for detecting hemodynamically significant coronary artery disease (CAD) in patients with intermediate pretest probability. (2) Methods: Patients with an intermediate pretest probability of CAD were retrospectively enrolled. All patients underwent CCTA and dynamic CT-MPI using a third-generation dual-source CT scanner prior to invasive coronary angiography (ICA). Anatomically significant stenosis was defined as ≥50% luminal narrowing on both CCTA and ICA. Fractional flow reserve (FFR) was performed during ICA in selected cases. Hemodynamically significant CAD was defined per vessel as FFR ≤ 0.80, angiographic stenosis ≥70%, or having undergone revascularization. The diagnostic performance of CCTA alone and CCTA combined with CT-MPI was compared against this reference standard. (3) Results: Seventy-four patients (mean age, 66.8 ± 11.1 years; 59 men) were included. The median coronary calcium score was 508.5 Agatston units (interquartile range: 147–1173). ICA and CCTA detected anatomically significant stenoses in 137 (61.7%) and 146 (65.8%) coronary vessels, respectively, and in 62 (83.8%) and 71 (95.9%) patients, respectively. Hemodynamically significant stenosis was present in 56 patients (76%) and 99 vessels (45%). On a per-vessel basis, CCTA alone yielded a sensitivity of 96.7%, specificity of 60.3%, positive predictive value (PPV) of 64.4%, and negative predictive value (NPV) of 96.1%. Combined CCTA and CT-MPI demonstrated a sensitivity of 90.1%, specificity of 84.3%, PPV of 82.7%, and NPV of 91.1%. The area under the receiver operating characteristic curve improved from 0.787 (95% confidence interval: 0.73–0.84) for CCTA to 0.872 (95% confidence interval: 0.82–0.91) for the combined approach (p < 0.05). The median total radiation dose for both CCTA and CT-MPI was 8.05 mSv (interquartile range: 6.71–11.0). (4) Conclusions: In patients with intermediate pretest probability of CAD, combining CCTA with dynamic CT-MPI significantly enhances the diagnostic performance for identifying hemodynamically significant coronary stenosis compared to CCTA alone. Full article
Show Figures

Figure 1

13 pages, 933 KiB  
Article
Bisphosphonate Use and Cardiovascular Outcomes According to Kidney Function Status in Post-Menopausal Women: An Emulated Target Trial from the Multi-Ethnic Study of Atherosclerosis
by Elena Ghotbi, Nikhil Subhas, Michael P. Bancks, Sammy Elmariah, Jonathan L. Halperin, David A. Bluemke, Bryan R Kestenbaum, R. Graham Barr, Wendy S. Post, Matthew Budoff, João A. C. Lima and Shadpour Demehri
Diagnostics 2025, 15(13), 1727; https://doi.org/10.3390/diagnostics15131727 - 7 Jul 2025
Viewed by 469
Abstract
Background/Objectives: Bisphosphonates may influence vascular calcification and atheroma formation via farnesyl pyrophosphate synthase inhibition in the mevalonate pathway regulating bone and lipid metabolism. However, the clinical impact of NCB use on cardiovascular outcomes remains uncertain, largely due to methodological heterogeneity in prior studies. [...] Read more.
Background/Objectives: Bisphosphonates may influence vascular calcification and atheroma formation via farnesyl pyrophosphate synthase inhibition in the mevalonate pathway regulating bone and lipid metabolism. However, the clinical impact of NCB use on cardiovascular outcomes remains uncertain, largely due to methodological heterogeneity in prior studies. We aimed to evaluate the association between nitrogen-containing bisphosphonate (NCB) therapy and coronary artery calcium (CAC) progression, as well as the incidence of cardiovascular disease (CVD) and coronary heart disease (CHD) events. Methods: From 6814 participants in MESA Exam 1, we excluded males (insufficient male NCB users in the MESA cohort), pre-menopausal women, baseline NCB users, and users of hormone replacement therapy, raloxifene, or calcitonin. Among 166 NCB initiators and 1571 non-users with available CAC measurements, propensity score matching was performed using the available components of FRAX, namely age, race, BMI, LDL cholesterol, alcohol, smoking, and steroid use, and baseline CAC yielded 165 NCB initiators matched to 473 non-users (1:3 ratio). Linear mixed-effects models evaluated CAC progression, and Cox models analyzed incident CVD and CHD events. Results: In the overall cohort, NCB use was not significantly associated with CAC progression (annual change: −0.01 log Agatston units; 95% CI: −0.05 to 0.01). However, among participants with a baseline estimated glomerular filtration rate (eGFR) < 65 mL/min/1.73 m2, NCB use was associated with attenuated CAC progression compared with non-users (−0.06 log Agatston units/year; 95% CI: −0.12 to −0.007). No significant association was observed between NCB use and incident CVD events in the overall cohort (HR: 0.90; 95% CI: 0.60−1.36) or within kidney function subgroups. Conclusions: Incident NCB use among postmenopausal women with mild or no CAC at baseline was associated with reduced CAC progression only in women with impaired kidney function. However, this association did not correspond to a decreased risk of subsequent cardiovascular events, suggesting that the observed imaging benefit may not translate into meaningful clinical association. Full article
(This article belongs to the Special Issue Diagnosis and Management of Cardiovascular Diseases)
Show Figures

Figure 1

11 pages, 779 KiB  
Article
Effects of Ellagic Acid on Myocardial Contractility in Isolated and Perfused Rat Hearts
by Giada Benedetti, Leonardo Carbonetti, Vincenzo Calderone and Lara Testai
Biomedicines 2025, 13(7), 1645; https://doi.org/10.3390/biomedicines13071645 - 4 Jul 2025
Viewed by 323
Abstract
Background/Objectives: Ellagic acid (EA) is a polyphenol found in several fruits and vegetables, including pomegranate, nuts and berries. It exhibits significant health benefits, mainly cardio- and vaso-protective; indeed, EA protects the myocardium against infarction and inhibits cardiac fibrosis. These beneficial effects may [...] Read more.
Background/Objectives: Ellagic acid (EA) is a polyphenol found in several fruits and vegetables, including pomegranate, nuts and berries. It exhibits significant health benefits, mainly cardio- and vaso-protective; indeed, EA protects the myocardium against infarction and inhibits cardiac fibrosis. These beneficial effects may be, at least in part, promoted by calcium release from and uptake by the sarcoplasmic reticulum, which are crucial events for cardiac relaxation and contraction. Regardless, the exact mechanism is currently unclear. Methods: A deeper investigation of the role of EA in cardiac contractility and the underlying mechanism has been carried out by using an ex vivo model of isolated and perfused rat heart. Results and Discussion: EA perfusion (100 nM–10 µM) did not influence the coronary flow (CF), suggesting the absence of a vasoactivity, but significantly increased contractility parameters (LVDP and dP/dt). Interestingly, a more marked effect of EA on LVDP and dP/dt values was observed when it was perfused in the presence of AngII. Cyclopiazonic acid (CA) and red ruthenium (RR), specific antagonists of SERCA and RyRs, respectively, were used to explore the contribution of EA when the intracellular calcium handling was altered. In the presence of CA, EA, perfused at increasing concentrations, showed a very modest positive inotropism (significant only at 1 µM). Instead, RR, which significantly compromised all functional parameters, completely masked the effects of EA; furthermore, a marked reduction in CF and a dramatic impact on the positive inotropism occurred. Conclusions: These results demonstrate the positive inotropism of EA on isolated and perfused hearts and suggest that the RyRs may be a main target through which EA plays its effects, since inhibition with RR almost completely blocks the positive inotropism. Full article
Show Figures

Figure 1

11 pages, 504 KiB  
Communication
Role of Nitric Oxide in Cardioprotection by Poloxamer 188
by Zhu Li, Matthew B. Barajas, Takuro Oyama and Matthias L. Riess
Cells 2025, 14(13), 1001; https://doi.org/10.3390/cells14131001 - 30 Jun 2025
Viewed by 392
Abstract
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 [...] Read more.
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 still requires exploration. We examined if N(ω)-nitro-L-arginine methyl ester (LNAME), a non-specific nitric oxide (NO) synthase inhibitor, abolishes protection in the presence or absence of P188 and/or ECs. We co-cultured mouse coronary artery ECs in an insert atop mouse CMs plated at confluency on the bottom of a well. Normoxic controls remained in complete media while HR groups were exposed to 24 h hypoxia at 0.01% O2 in serum- and glucose-free media, followed by 2 h reoxygenation in complete media. P188 (300 μM), LNAME (40 mM), or vehicle were administered upon reoxygenation. ECs at the used lower density did not decrease HR-triggered lactate dehydrogenase release or calcium overload in CMs by themselves. P188 reduced both indicators after HR by 16/18% without and by 22/25% with ECs, respectively. LNAME abrogated CM protection by P188. Neither intervention had an effect under normoxia. Our co-culture data indicates that P188 requires NO, not necessarily of endothelial origin, to elicit CM protection. Full article
Show Figures

Figure 1

18 pages, 1004 KiB  
Article
Hair Calcium Levels in Relation to Coronary Artery Disease Severity and Systemic Inflammation Markers: A Pilot Study
by Ewelina A. Dziedzic, Aleksandra Czernicka, Jakub S. Gąsior, Anna Szamreta-Siwicka, Beata Wodejko-Kucharska, Paweł Maciński, Anna Arbaszewska, Konrad Adler, Andrzej Osiecki and Wacław Kochman
J. Clin. Med. 2025, 14(13), 4537; https://doi.org/10.3390/jcm14134537 - 26 Jun 2025
Viewed by 489
Abstract
Background: Coronary artery disease (CAD) is a leading global cause of mortality. The role of calcium (Ca), a key metabolic and structural element, in atherosclerosis and inflammation remains unclear. Ca influences immune cell function and is a component of atherosclerotic plaques. Hair [...] Read more.
Background: Coronary artery disease (CAD) is a leading global cause of mortality. The role of calcium (Ca), a key metabolic and structural element, in atherosclerosis and inflammation remains unclear. Ca influences immune cell function and is a component of atherosclerotic plaques. Hair analysis reflects long-term mineral exposure and may serve as a non-invasive biomarker. Objectives: This pilot study aimed to investigate the association between hair Ca levels and acute coronary syndrome (ACS), and to evaluate correlations with the Systemic Inflammatory Index (SII), Systemic Inflammatory Response Index (SIRI), and selected CAD risk factors. Methods: Ca levels were measured in hair samples from patients undergoing coronary angiography for suspected myocardial infarction. Associations with ACS diagnosis, Syntax score, SII, SIRI, and CVD risk factors were analyzed. Results: Serum calcium levels were not significantly associated with the presence of acute coronary syndrome (ACS) (p = 0.392) or with its clinical subtypes, including ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina (UA) (p = 0.225). Diagnosis of ACS was linked to higher SII (p = 0.028) but not SIRI (p = 0.779). Ca levels correlated negatively with Syntax score (R = −0.19, p = 0.035) and SII (R = −0.22, p = 0.021) and positively with HDL-C (R = 0.18, p = 0.046). Conclusions: Hair calcium content may reflect subclinical inflammation and CAD severity. Although no direct link to ACS was observed, the associations with SII, HDL-C, and Syntax score suggest a potential diagnostic role which should be further explored in larger, well-controlled studies. Full article
(This article belongs to the Special Issue Coronary Heart Disease: Causes, Diagnosis and Management)
Show Figures

Figure 1

33 pages, 2002 KiB  
Review
Network Pharmacology Approaches to Myocardial Infarction Reperfusion Injury: Exploring Mechanisms, Pathophysiology, and Novel Therapies
by Joy Das, Ashok Kumar Sah, Ranjay Kumar Choudhary, Rabab H. Elshaikh, Utpal Bhui, Shreya Chowdhury, Anass M. Abbas, Manar G. Shalabi, Nadeem Ahmad Siddique, Raji Rubayyi Alshammari, Navjyot Trivedi, Khoula Salim Ali Buwaiqi, Said Al Ghenaimi and Pranav Kumar Prabhakar
Biomedicines 2025, 13(7), 1532; https://doi.org/10.3390/biomedicines13071532 - 23 Jun 2025
Viewed by 1705
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. While timely reperfusion therapies such as percutaneous coronary intervention (PCI) and thrombolysis are essential for salvaging ischemic myocardium, they can paradoxically exacerbate tissue injury through a process known as myocardial infarction [...] Read more.
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. While timely reperfusion therapies such as percutaneous coronary intervention (PCI) and thrombolysis are essential for salvaging ischemic myocardium, they can paradoxically exacerbate tissue injury through a process known as myocardial infarction reperfusion injury (MIRI). MIRI can contribute to up to 50% of the final infarct size, significantly diminishing the benefits of revascularization and leading to worsened cardiac outcomes. The pathophysiology of MIRI involves complex, interrelated mechanisms including oxidative stress, calcium overload, mitochondrial dysfunction, inflammatory responses, apoptosis, and dysregulated autophagy. Post-reperfusion recovery is further complicated by structural and functional abnormalities such as microvascular obstruction, endothelial dysfunction, and myocardial stunning. Clinically, distinguishing reperfusion injury from ischemic damage is challenging and often requires the use of sensitive biomarkers, such as cardiac troponins, alongside advanced imaging modalities. Although a range of pharmacological (e.g., antioxidants, calcium channel blockers, mitochondrial stabilizers, anti-inflammatory agents) and non-pharmacological (e.g., hypothermia, gene therapy, stem cell-based therapies) interventions have shown promise in preclinical studies, their clinical translation remains limited. This is largely due to the multifactorial and dynamic nature of MIRI. In this context, network pharmacology offers a systems-level approach to understanding the complex biological interactions involved in MIRI, facilitating the identification of multi-target therapeutic strategies. Integrating network pharmacology with omics technologies and precision medicine holds potential for advancing cardioprotective therapies. This review provides a comprehensive analysis of the molecular mechanisms underlying MIRI, examines the current clinical challenges, and explores emerging therapeutic strategies. Emphasis is placed on bridging the translational gap through validated, multi-target approaches and large-scale, multicenter clinical trials. Ultimately, this work aims to support the development of innovative and effective interventions for improving outcomes in patients with myocardial infarction. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

54 pages, 2627 KiB  
Review
Calcium Signaling Dynamics in Vascular Cells and Their Dysregulation in Vascular Disease
by Chang Dai and Raouf A. Khalil
Biomolecules 2025, 15(6), 892; https://doi.org/10.3390/biom15060892 - 18 Jun 2025
Viewed by 1281
Abstract
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration [...] Read more.
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration is tightly regulated by a balance between Ca2+ mobilization mechanisms, including Ca2+ release from the intracellular stores in the sarcoplasmic/endoplasmic reticulum and Ca2+ entry via voltage-dependent, transient-receptor potential, and store-operated Ca2+ channels, and Ca2+ elimination pathways including Ca2+ extrusion by the plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger and Ca2+ re-uptake by the sarco(endo)plasmic reticulum Ca2+-ATPase and the mitochondria. Some cell membranes/organelles are multifunctional and have both Ca2+ mobilization and Ca2+ removal pathways. Also, the individual Ca2+ handling pathways could be integrated to function in a regenerative, capacitative, cooperative, bidirectional, or reciprocal feed-forward or feed-back manner. Disruption of these pathways causes dysregulation of the Ca2+ signaling dynamics and leads to pathological cardiovascular conditions such as hypertension, coronary artery disease, atherosclerosis, and vascular calcification. In the endothelium, dysregulated Ca2+ signaling impairs nitric oxide production, reduces vasodilatory capacity, and increases vascular permeability. In VSMCs, Ca2+-dependent phosphorylation of the myosin light chain and Ca2+ sensitization by protein kinase-C (PKC) and Rho-kinase (ROCK) increase vascular tone and could lead to increased blood pressure and hypertension. Ca2+ activation of matrix metalloproteinases causes collagen/elastin imbalance and promotes vascular remodeling. Ca2+-dependent immune cell activation, leukocyte infiltration, and cholesterol accumulation by macrophages promote foam cell formation and atherosclerotic plaque progression. Chronic increases in VSMCs Ca2+ promote phenotypic switching to mesenchymal cells and osteogenic transformation and thereby accelerate vascular calcification and plaque instability. Emerging therapeutic strategies targeting these Ca2+-dependent mechanisms, including Ca2+ channel blockers and PKC and ROCK inhibitors, hold promise for restoring Ca2+ homeostasis and mitigating vascular disease progression. Full article
(This article belongs to the Special Issue Calcium Signaling in Cell Function and Dysfunction)
Show Figures

Figure 1

22 pages, 1462 KiB  
Article
A Novel Concept of the “Standard Human” in the Assessment of Individual Total Heart Size: Lessons from Non-Contrast-Enhanced Cardiac CT Examinations
by Maciej Sosnowski, Zofia Parma, Marcin Syzdół, Grzegorz Brożek, Jan Harpula, Michał Tendera and Wojciech Wojakowski
Diagnostics 2025, 15(12), 1502; https://doi.org/10.3390/diagnostics15121502 - 13 Jun 2025
Viewed by 549
Abstract
Background: This single-center retrospective observational study reviewed data from 2305 persons examined for coronary artery calcium (CAC) with non-contrast-enhanced cardiac CT. Other cardiac structures, including chamber volumes, were evaluated besides the CAC scoring. We proposed a novel body size indexing measure that may [...] Read more.
Background: This single-center retrospective observational study reviewed data from 2305 persons examined for coronary artery calcium (CAC) with non-contrast-enhanced cardiac CT. Other cardiac structures, including chamber volumes, were evaluated besides the CAC scoring. We proposed a novel body size indexing measure that may outperform common indices for quantifying total heart volume (THV). Methods: This index is the sum of height and the difference between height (unitless) and body surface area (unitless), [h+(h-BSA)], and if the (h-BSA) equals “zero”, it is a feature of the “standard human”. Results: We found that, in subjects with a low cardiovascular (CV) risk, the THV normalized for the novel index was simply a function of BW gain, being the highest in obese. If high-CV-risk features (hypertension, diabetes) were present, the measured THV was larger than expected for BW gain, exceeding values observed in low-CV-risk ones. Differences were found to be sex-independent in all BMI categories. Conclusions: Common BSA correction hides these differences and makes the prognostication of CV risk error-introducing. The indexation we proposed might help distinguish the effects of body weight gain from the ones resulting from the presence of certain cardiovascular diseases. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

27 pages, 1213 KiB  
Systematic Review
Treatment Modalities for Angina with Non-Obstructive Coronary Arteries (ANOCA): A Systematic Review and Meta-Analysis
by Fabienne E. Vervaat, Annemiek de Vos, Jimmy Schenk, Pim A. L. Tonino and Inge F. Wijnbergen
J. Clin. Med. 2025, 14(12), 4069; https://doi.org/10.3390/jcm14124069 - 9 Jun 2025
Viewed by 711
Abstract
Background and Objectives: Up to 40% of patients undergoing a coronary angiogram due to angina pectoris have no obstructive coronary artery disease, also known as angina with non-obstructive coronary arteries (ANOCA). ANOCA is associated with significant impairment in patients’ quality of life, increased [...] Read more.
Background and Objectives: Up to 40% of patients undergoing a coronary angiogram due to angina pectoris have no obstructive coronary artery disease, also known as angina with non-obstructive coronary arteries (ANOCA). ANOCA is associated with significant impairment in patients’ quality of life, increased risk of myocardial infarction and all-cause mortality. Approximately 25% of patients with ANOCA have persisting symptoms despite optimal medical therapy. There is a lack of in-depth knowledge regarding tailored treatment for patients with ANOCA due to a scarcity of trials designed to assess the effect of treatment modalities. The aim of this systematic review and meta-analysis is to give clinicians an overview of the efficacy of current treatment modalities for patients with ANOCA. Methods: PudMed/MEDLINE, Embase, the Cochrane Library and clinical trial registries were searched for randomised controlled and cohort studies regarding treatment modalities for ANOCA. The main outcome was change in angina pectoris frequency for each treatment modality. Secondary outcomes included changes in exercise capacity, quality of life, Canadian Cardiovascular Society (CCS) class, coronary flow reserve (CFR) and survival. Results: In total, 80 studies were included and used in the meta-analysis, of which ten studies met the current definition of ANOCA. Angina pectoris frequency improved significantly in the majority of the treatment modalities, with neuromodulation resulting in −3.35 standardised mean difference (SMD) (95% CI: −5.13; −1.56), trimetazidine in −1.74 SMD (−2.63; −0.85), traditional Chinese medicine in −1.55 SMD (−2.36; −0.75), beta-blockers in −1.32 SMD (−1.88; −0.77), enhanced external counterpulsation in −1.27 SMD (−2.04; −0.49), stem cell therapy in −1.04 SMD (−1.51; −0.57), lifestyle interventions in −0.86 SMD (−1.15; −0.57), RAAS-inhibitors in −0.83 SMD (−1.31; −0.35) and calcium channel blockers in −0.64 SMD (−0.92; −0.35). Conclusions: This meta-analysis into treatment modalities for patients with ANOCA shows a significant improvement in angina pectoris frequency in the majority of included treatment modalities. However, these results should be interpreted cautiously, as only ten of the studies included in the meta-analysis meet the current definition of ANOCA. This review underlines the importance of undertaking new studies with existing treatment modalities to determine the efficacy in patients with ANOCA. Full article
Show Figures

Figure 1

15 pages, 2618 KiB  
Review
Development of Cardiac Computed Tomography for Evaluation of Aortic Valve Stenosis
by Hiroyuki Takaoka, Haruka Sasaki, Joji Ota, Yoshitada Noguchi, Moe Matsumoto, Kazuki Yoshida, Katsuya Suzuki, Shuhei Aoki, Satomi Yashima, Makiko Kinoshita, Noriko Suzuki-Eguchi and Yoshio Kobayashi
Tomography 2025, 11(6), 62; https://doi.org/10.3390/tomography11060062 - 28 May 2025
Viewed by 1184
Abstract
Aortic valve stenosis (AS) is a valvular heart disease that imposes a high afterload on the left ventricle (LV) due to restricted opening of the aortic valve, resulting in LV hypertrophy. Severe AS can lead to syncope, angina pectoris, and heart failure. The [...] Read more.
Aortic valve stenosis (AS) is a valvular heart disease that imposes a high afterload on the left ventricle (LV) due to restricted opening of the aortic valve, resulting in LV hypertrophy. Severe AS can lead to syncope, angina pectoris, and heart failure. The number of patients with AS has been increasing due to aging populations, the growing prevalence of lifestyle-related diseases, and advances in diagnostic technologies. Therefore, accurate diagnosis and appropriate treatment of AS are essential. In recent years, transcatheter aortic valve implantation (TAVI) has become feasible, and the number of procedures has rapidly increased, particularly among elderly patients. As treatment options for AS expand and diversify, detailed pre-procedural evaluation has become increasingly important. In particular, diagnostic imaging modalities such as computed tomography (CT) have advanced significantly, with notable improvements in image quality. With recent advancements in CT technology—such as increased detector rows, faster gantry rotation speeds, new image reconstruction methods, and the introduction of dual-energy imaging—the scope of cardiac assessment has expanded beyond the coronary arteries to include valves, myocardium, and the entire heart. This includes evaluating restricted AV opening and cardiac function using four-dimensional imaging, assessing AV annulus diameter and AS severity via calcium scoring with a novel motion correction algorithm, and detecting myocardial damage through late-phase contrast imaging using new reconstruction techniques. In cases of pre-TAVI evaluation or congenital bicuspid valves, CT is also valuable for assessing extracardiac structures, such as access routes and associated congenital heart anomalies. In addition, recent advancements in CT technology have made it possible to significantly reduce radiation exposure during cardiac imaging. CT has become an extremely useful tool for comprehensive cardiac evaluation in patients with aortic stenosis, especially those being considered for surgical treatment. Full article
(This article belongs to the Section Cardiovascular Imaging)
Show Figures

Figure 1

25 pages, 1297 KiB  
Review
Atherosclerosis and Insulin Resistance: Is There a Link Between Them?
by Alina Diduța Brie, Ruxandra Maria Christodorescu, Roxana Popescu, Ovidiu Adam, Alexandru Tîrziu and Daniel Miron Brie
Biomedicines 2025, 13(6), 1291; https://doi.org/10.3390/biomedicines13061291 - 23 May 2025
Viewed by 1320
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, especially in regions like Eastern Europe, South Asia, and Latin America. A significant portion of these cases (80%) is linked to atherosclerosis, which can lead to severe conditions like ischemic heart disease [...] Read more.
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, especially in regions like Eastern Europe, South Asia, and Latin America. A significant portion of these cases (80%) is linked to atherosclerosis, which can lead to severe conditions like ischemic heart disease and stroke, with atherosclerosis (ATS) responsible for the majority of cases. This review explores the multifaceted relationship between insulin resistance (IR) and ATS, highlighting their roles as both independent and interrelated contributors to cardiovascular risk. ATS is characterized by lipid accumulation and chronic inflammation within arterial walls, driven by factors such as hypertension, dyslipidemia, and genetic predisposition, with endothelial dysfunction as a key early event. The early detection of subclinical ATS is critical and can be achieved through a combination of non-invasive imaging techniques—such as coronary artery calcium scoring and carotid ultrasound—and comprehensive risk profiling. IR, marked by impaired glucose uptake in liver, muscle, and adipose tissue, often precedes early diabetes and is associated with metabolic disturbances, including dyslipidemia and chronic inflammation. The diagnosis of IR relies on surrogate indices such as HOMA-IR, the QUICKI, and the TyG index, which facilitate screening in clinical practice. Compelling evidence indicates that IR independently predicts the progression of atherosclerotic plaques, even in non-diabetic individuals, and operates through both traditional risk factors and direct vascular effects. Understanding and targeting the IR–ATS axis is essential for the effective prevention and management of cardiovascular disease. Full article
Show Figures

Figure 1

Back to TopTop