Atherosclerosis and Insulin Resistance: Is There a Link Between Them?
Abstract
1. Introduction
2. Atherosclerosis: General Considerations
3. Early Detection of Asymptomatic Atherosclerosis
4. Insulin Resistance
Index | HOMA-IR | QUICKI | Matsuda Index | TyG Index | TG/HDLc Ratio |
---|---|---|---|---|---|
Fasting glucose | X | X | - | X | |
Fasting insulin | X | X | |||
Fasting triglycerides | - | - | - | X | X |
Glucose tolerance test | - | - | X | - | |
HDLc | - | - | - | - | X |
Calculation formula | [glucose] (mmol/L) × [insulin] (µU/mL)/22.5 [94] | 1/[log (lµU/mL) + log (log (G(mg/dL)))] [95] | 10,000/√[(fasting G × fasting I) (mean G × mean I)] [65] | [ln (fasting triglycerides) (mg/dL) × fasting glucose (mg/dL)/2] [69] | TG/HDLc level |
Insulin resistance | NV < 2.0–2.5 | 0.382 ± 0.007 for non-obese, 0.331 ± 0.01 for obese, and 0.304 ± 0.007 for diabetic individuals | <4.3 predicts IR | NV < 4 >9 [72,96] | Ideal: less than 2 Moderate risk: between 2 and 4 High risk: 4 or higher |
Cost | Medium | Medium | High | Low | Low |
5. Biochemical Pathways Linking Insulin Resistance to Atherosclerosis
5.1. Endothelial Dysfunction
5.1.1. NO Pathway
5.1.2. Activity of Mitogen-Activated Protein Kinase (MAPK) Pathway
5.2. Insulin Resistance and Inflammation
5.3. Dyslipidemia and Lipid Metabolism
5.4. Hepatic Insulin Resistance and Inflammation
5.5. The Role of Estrogen Deficiency
5.6. Role of Vascular Smooth Muscle Cells (VSMCs)
5.7. The Role of Maladaptive Responses to the Disruption of Cellular Homeostasis
6. Genetic Factors in Insulin Resistance and Atherosclerosis
6.1. Genetic Predisposition to Metabolic Syndrome
6.2. Haplotypes and Protective Genetic Variants
6.3. Epigenetic and Environmental Interactions
7. Is There a Link Between Insulin Resistance and ATS?
8. Therapeutic Strategies for Insulin Resistance
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
ATS | Atherosclerosis |
GLUT | Glucose Transporter (e.g., GLUT-2, GLUT-3, GLUT-4) |
LDL | Low-Density Lipoprotein |
LDLc | Low-Density Lipoprotein Cholesterol |
HDL | High-Density Lipoprotein |
HDLc | High-Density Lipoprotein Cholesterol |
TG | Triglyceride |
TyG | Triglyceride Glucose Index |
CAD | Coronary Artery Disease |
CT | Computed Tomography |
JACC | Journal of the American College of Cardiology |
Lp(a) | Lipoprotein(a) |
MMP-9 | Matrix Metalloproteinase-9 |
IMT | Intima-Media Thickness |
CPs | Carotid Plaque Score |
cIMT | Combined Intima-Media Thickness |
baPWV | Brachial–Ankle Pulse Wave Velocity |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
QUICKI | Quantitative Insulin Sensitivity Check Index |
G | Glucose (in the Context of the Matsuda Index Formula) |
I | Insulin (in the Context of the Matsuda Index Formula) |
ln | Natural Logarithm |
log | Base 10 logarithm |
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, G.; Jing, W.; Liu, J.; Liu, M. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990−2019: Findings from 2019 global burden of disease study. Eur. J. Prev. Cardiol. 2023, 30, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Nedkoff, L.; Briffa, T.; Zemedikun, D.; Herrington, S.; Wright, F.L. Global Trends in Atherosclerotic Cardiovascular Disease. Clin. Ther. 2023, 45, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R.; Robertson, R.M.; Smith, R.; Eddy, D. The Impact of Prevention on Reducing the Burden of Cardiovascular Disease. Diabetes Care 2008, 31, 1686–1696. [Google Scholar] [CrossRef]
- Fakhrzadeh, H.; Sharifi, F.; Alizadeh, M.; Arzaghi, S.M.; Tajallizade-Khoob, Y.; Tootee, A.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar]
- Fakhrzadeh, H.; Sharifi, F.; Alizadeh, M.; Arzaghi, S.M.; Tajallizade-Khoob, Y.; Tootee, A.; Alatab, S.; Mirarefin, M.; Badamchizade, Z.; Kazemi, H. Relationship between insulin resistance and subclinical atherosclerosis in individuals with and without type 2 diabetes mellitus. J. Diabetes Metab. Disord. 2015, 15, 41. [Google Scholar] [CrossRef]
- Hanley, A.J.G.; Williams, K.; Stern, M.P.; Haffner, S.M. Homeostasis Model Assessment of Insulin Resistance in Relation to the Incidence of Cardiovascular Disease. Diabetes Care 2002, 25, 1177–1184. [Google Scholar] [CrossRef]
- Fragoso, A.; Mendes, F.; Silva, A.P.; Neves, P.L. Insulin resistance as a predictor of cardiovascular morbidity and end-stage renal disease. J. Diabetes Complicat. 2015, 29, 1098–1104. [Google Scholar] [CrossRef]
- Ke, Z.; Huang, R.; Xu, X.; Liu, W.; Wang, S.; Zhang, X.; Guo, Y.; Zhuang, X.; Zhen, L. Long-Term High Level of Insulin Resistance Is Associated with an Increased Prevalence of Coronary Artery Calcification: The CARDIA Study. J. Am. Heart Assoc. 2023, 12, e028985. [Google Scholar] [CrossRef]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A.; et al. HOMA-Estimated Insulin Resistance Is an Independent Predictor of Cardiovascular Disease in Type 2 Diabetic Subjects. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Pepin, M.E.; Gupta, R.M. The Role of Endothelial Cells in Atherosclerosis. Am. J. Pathol. 2024, 194, 499–509. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Benito-Vicente, A. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef] [PubMed]
- Alipov, V.I.; Sukhorukov, V.N.; Karagodin, V.P.; Grechko, A.V.; Orekhov, A.N. Chemical composition of circulating native and desialylated low density lipoprotein: What is the difference? Vessel Plus 2017, 1, 107–115. [Google Scholar] [CrossRef]
- Orekhov, A.N.; Ivanova, E.A.; Melnichenko, A.A.; Sobenin, I.A. Circulating desialylated low density lipoprotein. Cor Vasa 2017, 59, e149–e156. [Google Scholar] [CrossRef]
- Kashirskikh, D.; Chicherina, N.; Sobenin, I.; Orekhov, A. Effect of LDL desialylation on the development of atherosclerosis in mice. Atherosclerosis 2023, 379, S73. [Google Scholar] [CrossRef]
- Glanz, V.; Bezsonov, E.E.; Soldatov, V.; Orekhov, A.N. Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines 2022, 10, 1174. [Google Scholar] [CrossRef]
- Mezentsev, A.; Bezsonov, E.; Kashirskikh, D.; Baig, M.S.; Eid, A.H.; Orekhov, A. Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines 2021, 9, 600. [Google Scholar] [CrossRef]
- Libby, P.; Okamoto, Y.; Rocha, V.Z.; Folco, E. Inflammation in Atherosclerosis: Transition From Theory to Practice. Circ. J. 2010, 74, 213–220. [Google Scholar] [CrossRef]
- Packard, R.R.; Libby, P. Inflammation in Atherosclerosis: From Vascular Biology to Biomarker Discovery and Risk Prediction. Clin. Chem. 2008, 54, 24–38. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, A.; Gadhoke, N.V.; Ryan, K.; Hodonsky, C.J.; Mitchell, R.; Bihlmeyer, N.A.; Duong, T.; Chen, Z.; Dikongue, A.; Sakamoto, A.; et al. Polygenic Risk Score Associates with Atherosclerotic Plaque Characteristics at Autopsy. Arter. Thromb. Vasc. Biol. 2024, 44, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Aragam, K.G.; Natarajan, P. Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk. Circ. Res. 2020, 126, 1159–1177. [Google Scholar] [CrossRef]
- Klarin, D.; Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. 2022, 19, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Agbaedeng, T.A.; Noubiap, J.J.; Mato, E.P.M.; Chew, D.P.; Figtree, G.A.; Said, M.A.; van der Harst, P. Polygenic risk score and coronary artery disease: A meta-analysis of 979,286 participant data. Atherosclerosis 2021, 333, 48–55. [Google Scholar] [CrossRef]
- Koplev, S.; Seldin, M.; Sukhavasi, K.; Ermel, R.; Pang, S.; Zeng, L.; Bankier, S.; Di Narzo, A.; Cheng, H.; Meda, V.; et al. A mechanistic framework for cardiometabolic and coronary artery diseases. Nat. Cardiovasc. Res. 2022, 1, 85–100. [Google Scholar] [CrossRef]
- Nielsen, R.V.; Fuster, V.; Bundgaard, H.; Fuster, J.J.; Johri, A.M.; Kofoed, K.F.; Douglas, P.S.; Diederichsen, A.; Shapiro, M.D.; Nicholls, S.J.; et al. Personalized Intervention Based on Early Detection of Atherosclerosis. J. Am. Coll. Cardiol. 2024, 83, 2112–2127. [Google Scholar] [CrossRef]
- Steinberg, D.; Grundy, S.M. The Case for Treating Hypercholesterolemia at an Earlier Age. J. Am. Coll. Cardiol. 2012, 60, 2640–2642. [Google Scholar] [CrossRef]
- Serés-Noriega, T.; Perea, V.; Amor, A.J. Screening for Subclinical Atherosclerosis and the Prediction of Cardiovascular Events in People with Type 1 Diabetes. J. Clin. Med. 2024, 13, 1097. [Google Scholar] [CrossRef]
- Garg, P.K.; Bhatia, H.S.; Allen, T.S.; Grainger, T.; Pouncey, A.L.; Dichek, D.; Virmani, R.; Golledge, J.; Allison, M.A.; Powell, J.T. Assessment of Subclinical Atherosclerosis in Asymptomatic People In Vivo: Measurements Suitable for Biomarker and Mendelian Randomization Studies. Arter. Thromb. Vasc. Biol. 2024, 44, 24–47. [Google Scholar] [CrossRef]
- Frías Vargas, M.; Jarauta, E. Detección de aterosclerosis subclínica mediante ecografía vascular como método de evaluación de riesgo vascular. Protoc. Simpl. Clínica E Investig. En Arterioscler. 2024, 36, 195–199. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.; Cai, Q.; Chen, R.; Wu, W.; Wang, P.; Zhang, G.; Zhen, J. Relationship between Coronary Artery Calcium Score and Coronary Stenosis. Cardiol. Res. Pract. 2023, 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; Blaha, M.J.; Budoff, M.J.; Erbel, R.; Watson, K.E. Coronary Calcium Score and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 72, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bera, K.; Kikano, E.; Pierce, J.D.; Gan, J.; Rajdev, M.; Ciancibello, L.M.; Gupta, A.; Rajagopalan, S.; Gilkeson, R.C. Coronary Artery Calcium Scoring: Current Status and Future Directions. RadioGraphics 2022, 42, 947–967. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.B.; Gaur, S.; Frimmer, A.; Bøtker, H.E.; Sørensen, H.T.; Kragholm, K.H.; Peter, S.R.N.; Steffensen, F.H.; Jensen, R.V.; Mæng, M.; et al. Association of Age With the Diagnostic Value of Coronary Artery Calcium Score for Ruling Out Coronary Stenosis in Symptomatic Patients. JAMA Cardiol. 2022, 7, 36. [Google Scholar] [CrossRef]
- McClelland, R.L.; Jorgensen, N.W.; Budoff, M.; Blaha, M.J.; Post, W.S.; Kronmal, R.A.; Bild, D.E.; Shea, S.; Liu, K.; Watson, K.E.; et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors. J. Am. Coll. Cardiol. 2015, 66, 1643–1653. [Google Scholar] [CrossRef]
- Paixao, A.R.; Berry, J.D.; Neeland, I.J.; Ayers, C.R.; Rohatgi, A.; de Lemos, J.A.; Khera, A. Coronary Artery Calcification and Family History of Myocardial Infarction in the Dallas Heart Study. JACC Cardiovasc. Imaging 2014, 7, 679–686. [Google Scholar] [CrossRef]
- Erbel, R.; Möhlenkamp, S.; Moebus, S.; Schmermund, A.; Lehmann, N.; Stang, A.; Dragano, N.; Grönemeyer, D.; Seibel, R.; Kälsch, H.; et al. Coronary Risk Stratification, Discrimination, and Reclassification Improvement Based on Quantification of Subclinical Coronary Atherosclerosis. J. Am. Coll. Cardiol. 2010, 56, 1397–1406. [Google Scholar] [CrossRef]
- Nezu, T.; Hosomi, N.; Aoki, S.; Matsumoto, M. Carotid Intima-Media Thickness for Atherosclerosis. J. Atheroscler. Thromb. 2016, 23, 18–31. [Google Scholar] [CrossRef]
- Wada, S.; Koga, M.; Toyoda, K.; Minematsu, K.; Yasaka, M.; Nagai, Y.; Aoki, S.; Nezu, T.; Hosomi, N.; Kagimura, T.; et al. Factors Associated with Intima-Media Complex Thickness of the Common Carotid Artery in Japanese Noncardioembolic Stroke Patients with Hyperlipidemia: The J-STARS Echo Study. J. Atheroscler. Thromb. 2018, 25, 359–373. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Polak, J.F.; Kavousi, M.; Mathiesen, E.B.; Völzke, H.; Tuomainen, T.-P.; Sander, D.; Plichart, M.; Catapano, A.L.; Robertson, C.M.; et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet 2012, 379, 2053–2062. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Nakagawa, T.; Okada, H.; Nakahashi, T.; Mori, M.; Sakata, K.; Nohara, A.; Takamura, M.; Kawashiri, M.-A. Clinical Impact of Carotid Plaque Score rather than Carotid Intima-Media Thickness on Recurrence of Atherosclerotic Cardiovascular Disease Events. J. Atheroscler. Thromb. 2020, 27, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Wan, Y.; Barinas-Mitchell, E.; Fujiyoshi, A.; Cui, H.; Maimaiti, A.; Xu, R.; Li, J.; Suo, C.; Zaid, M. Varying Definitions of Carotid Intima-Media Thickness and Future Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2023, 12, e031217. [Google Scholar] [CrossRef] [PubMed]
- Yamashina, A.; Tomiyama, H.; Takeda, K.; Tsuda, H.; Arai, T.; Hirose, K.; Koji, Y.; Hori, S.; Yamamoto, Y. Validity, Reproducibility, and Clinical Significance of Noninvasive Brachial-Ankle Pulse Wave Velocity Measurement. Hypertens. Res. 2002, 25, 359–364. [Google Scholar] [CrossRef]
- Kawai, T.; Ohishi, M.; Onishi, M.; Ito, N.; Takeya, Y.; Maekawa, Y.; Rakugi, H. Cut-Off Value of Brachial-Ankle Pulse Wave Velocity to Predict Cardiovascular Disease in Hypertensive Patients: A Cohort Study. J. Atheroscler. Thromb. 2013, 20, 391–400. [Google Scholar] [CrossRef]
- Joo, H.J.; Cho, S.-A.; Cho, J.-Y.; Lee, S.; Park, J.H.; Hwang, S.H.; Hong, S.J.; Yu, C.W.; Lim, D.-S. Brachial-Ankle Pulse Wave Velocity is Associated with Composite Carotid and Coronary Atherosclerosis in a Middle-Aged Asymptomatic Population. J. Atheroscler. Thromb. 2016, 23, 1033–1046. [Google Scholar] [CrossRef]
- Ko, H.-J.M.; Liu, C.-C.; Hsu, P.-J.M.; Hu, K.-C.; Hung, C.-L.; Yu, L.-Y.; Huang, Y.-C.M.; Shih, S.-C. Risk assessment indicators and brachial-ankle pulse wave velocity to predict atherosclerotic cardiovascular disease. Medicine 2022, 101, e29609. [Google Scholar] [CrossRef]
- Iino, R.; Yokoyama, N.; Konno, K.; Naito, K.; Isshiki, T. Impact of Combined Assessment of Coronary Artery Calcium Score, Carotid Artery Plaque Score, and Brachial-Ankle Pulse Wave Velocity for Early Coronary Revascularization in Patients with Suspected Coronary Artery Disease. Int. Heart J. 2012, 53, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Investig. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Ogawa, W.; Araki, E.; Ishigaki, Y.; Hirota, Y.; Maegawa, H.; Yamauchi, T.; Yorifuji, T.; Katagiri, H. New classification and diagnostic criteria for insulin resistance syndrome. Endocr. J. 2022, 69, 107–113. [Google Scholar] [CrossRef]
- Greenhill, C. Sex differences in insulin resistance. Nat. Rev. Endocrinol. 2018, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, P.; Eckel, R.H. Pathogenesis of Lipid Disorders in Insulin Resistance: A Brief Review. Curr. Diab. Rep. 2018, 18, 127. [Google Scholar] [CrossRef]
- Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar]
- Lawal, Y.; Bello, F.; Kaoje, Y.S. Prediabetes Deserves More Attention: A Review. Clin. Diabetes 2020, 38, 328–338. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. 1979, 237, E214. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K. Hyperinsulinemic–Euglycemic Clamp to Assess Insulin Sensitivity In Vivo; Springer: Berlin/Heidelberg, Germany, 2009; pp. 221–238. [Google Scholar]
- Ayala, J.E.; Bracy, D.P.; Malabanan, C.; James, F.D.; Ansari, T.; Fueger, P.T.; McGuinness, O.P.; Wasserman, D.H. Hyperinsulinemic-euglycemic Clamps in Conscious, Unrestrained Mice. J. Vis. Exp. 2011, 57, 2188. [Google Scholar]
- Marques-Vidal, P.; Mazoyer, E.; Bongard, V.; Gourdy, P.; Ruidavets, J.-B.; Drouet, L.; Ferrières, J. Prevalence of Insulin Resistance Syndrome in Southwestern France and Its Relationship with Inflammatory and Hemostatic Markers. Diabetes Care 2002, 25, 1371–1377. [Google Scholar] [CrossRef]
- Bonora, E.; Kiechl, S.; Willeit, J.; Oberhollenzer, F.; Egger, G.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Muggeo, M. Prevalence of insulin resistance in metabolic disorders: The Bruneck Study. Diabetes 1998, 47, 1643–1649. [Google Scholar] [CrossRef]
- Sumner, A.E.; Finley, K.B.; Genovese, D.J.; Criqui, M.H.; Boston, R.C. Fasting Triglyceride and the Triglyceride–HDL Cholesterol Ratio Are Not Markers of Insulin Resistance in African Americans. Arch. Intern. Med. 2005, 165, 1395. [Google Scholar] [CrossRef]
- Antuna-Puente, B.; Disse, E.; Rabasa-Lhoret, R.; Laville, M.; Capeau, J.; Bastard, J.P. How can we measure insulin sensitivity/resistance? Diabetes Metab. 2011, 37, 179–188. [Google Scholar] [CrossRef]
- Kim-Dorner, S.J.; Deuster, P.A.; Zeno, S.A.; Remaley, A.T.; Poth, M. Should triglycerides and the triglycerides to high-density lipoprotein cholesterol ratio be used as surrogates for insulin resistance? Metabolism 2010, 59, 299–304. [Google Scholar] [CrossRef]
- Antuna-Puente, B.; Faraj, M.; Karelis, A.D.; Garrel, D.; Prud’homme, D.; Rabasa-Lhoret, R.; Bastard, J.-P. HOMA or QUICKI: Is it useful to test the reproducibility of formulas? Diabetes Metab. 2008, 34, 294–296. [Google Scholar] [CrossRef]
- Chen, H.; Sullivan, G.; Quon, M.J. Assessing the Predictive Accuracy of QUICKI as a Surrogate Index for Insulin Sensitivity Using a Calibration Model. Diabetes 2005, 54, 1914–1925. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Haffner, S.M.; Stančáková, A.; Kuusisto, J.; Laakso, M. Fasting and OGTT-derived Measures of Insulin Resistance as Compared With the Euglycemic-Hyperinsulinemic Clamp in Nondiabetic Finnish Offspring of Type 2 Diabetic Individuals. J. Clin. Endocrinol. Metab. 2015, 100, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Kurniawan, L.B. Triglyceride-Glucose Index as a Biomarker of Insulin Resistance, Diabetes Mellitus, Metabolic Syndrome, And Cardiovascular Disease: A Review. EJIFCC 2024, 35, 44–51. [Google Scholar]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodri, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef]
- Aman, M.; Resnawita, D.; Rasyid, H.; Kasim, H.; Bakri, S.; Umar, H.; Daud, N.A.; Seweng, A. The concordance of triglyceride glucose index (TyG index) and homeostatic model assessment for insulin resistance (Homa-IR) in non-diabetic subjects of adult Indonesian males. Clin. Epidemiol. Glob. Health 2021, 9, 227–230. [Google Scholar] [CrossRef]
- Salazar, J.; Bermúdez, V.; Calvo, M.; Olivar, L.C.; Luzardo, E.; Navarro, C.; Mencia, H.; Martínez, M.; Rivas-Ríos, J.; Wilches-Durán, S.; et al. Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population. F1000Research 2018, 6, 1337. [Google Scholar] [CrossRef]
- Avagimyan, A.; Pogosova, N.; Fogacci, F.; Aghajanova, E.; Djndoyan, Z.; Patoulias, D.; Sasso, L.L.; Bernardi, M.; Faggiano, A.; Mohammadifard, N.; et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int. J. Cardiol. 2025, 418, 132663. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, H.; Mohammadifard, N.; Nouri, F.; Tabatabaei, G.A.; Najafian, J.; Sadeghi, M.; Boshtam, M.; Roohafza, H.; Haghighatdoost, F.; Hassannejad, R.; et al. Association of triglyceride glucose index with cardiovascular events: Insights from the Isfahan Cohort Study (ICS). Eur. J. Med. Res. 2024, 29, 135. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Abudukeremu, A.; Jiang, Y.; Cao, Z.; Wu, M.; Ma, J.; Sun, R.; He, W.; Chen, Z.; Chen, Y.; et al. U-shaped association between the triglyceride–glucose index and atrial fibrillation incidence in a general population without known cardiovascular disease. Cardiovasc. Diabetol. 2023, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Azarboo, A.; Behnoush, A.H.; Vaziri, Z.; Daneshvar, M.S.; Taghvaei, A.; Jalali, A.; Cannavo, A.; Khalaji, A. Assessing the association between triglyceride-glucose index and atrial fibrillation: A systematic review and meta-analysis. Eur. J. Med. Res. 2024, 29, 118. [Google Scholar] [CrossRef]
- Gurbuz, D.C.; Varis, E. Correlation Between Coronary Artery Calcium Score and Triglyceride-Glucose Index in Post-menopausal Women. Cureus 2023, 15, e39034. [Google Scholar] [CrossRef]
- Sajdeya, O.; Beran, A.; Mhanna, M.; Alharbi, A.; Burmeister, C.; Abuhelwa, Z.; Malhas, S.-E.; Khader, Y.; Sayeh, W.; Assaly, R.; et al. Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-analysis of 37,780 Individuals. Curr. Probl. Cardiol. 2022, 47, 101390. [Google Scholar] [CrossRef]
- Won, K.-B.; Kim, Y.S.; Lee, B.K.; Heo, R.; Han, D.; Lee, J.H.; Lee, S.-E.; Sung, J.M.; Cho, I.; Park, H.-B.; et al. The relationship of insulin resistance estimated by triglyceride glucose index and coronary plaque characteristics. Medicine 2018, 97, e10726. [Google Scholar] [CrossRef]
- Ding, X.; Wang, X.; Wu, J.; Zhang, M.; Cui, M. Triglyceride–glucose index and the incidence of atherosclerotic cardiovascular diseases: A meta-analysis of cohort studies. Cardiovasc. Diabetol. 2021, 20, 76. [Google Scholar] [CrossRef]
- Primo, D.; Izaola, O.; de Luis, D.A. Triglyceride-Glucose Index Cutoff Point Is an Accurate Marker for Predicting the Prevalence of Metabolic Syndrome in Obese Caucasian Subjects. Ann. Nutr. Metab. 2023, 79, 238–245. [Google Scholar] [CrossRef]
- Nabipoorashrafi, S.A.; Seyedi, S.A.; Rabizadeh, S.; Ebrahimi, M.; Ranjbar, S.A.; Reyhan, S.K.; Meysamie, A.; Nakhjavani, M.; Esteghamati, A. The accuracy of triglyceride-glucose (TyG) index for the screening of metabolic syndrome in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2677–2688. [Google Scholar] [CrossRef]
- Jiang, M.; Li, X.; Wu, H.; Su, F.; Cao, L.; Ren, X.; Hu, J.; Tatenda, G.; Cheng, M.; Wen, Y. Triglyceride-Glucose Index for the Diagnosis of Metabolic Syndrome: A Cross-Sectional Study of 298,652 Individuals Receiving a Health Check-Up in China. Int. J. Endocrinol. 2022, 2022, 3583603. [Google Scholar] [CrossRef] [PubMed]
- Ling, Q.; Chen, J.; Liu, X.; Xu, Y.; Ma, J.; Yu, P.; Zheng, K.; Liu, F.; Luo, J. The triglyceride and glucose index and risk of nonalcoholic fatty liver disease: A dose–response meta-analysis. Front. Endocrinol. 2023, 13, 1043169. [Google Scholar] [CrossRef]
- Khamseh, M.E.; Malek, M.; Jahangiri, S.; Nobarani, S.; Hekmatdoost, A.; Salavatizadeh, M.; Soltanieh, S.; Chehrehgosha, H.; Taheri, H.; Montazeri, Z.; et al. Insulin Resistance/Sensitivity Measures as Screening Indicators of Metabolic-Associated Fatty Liver Disease and Liver Fibrosis. Dig. Dis. Sci. 2024, 69, 1430–1443. [Google Scholar] [CrossRef] [PubMed]
- Beran, A.; Ayesh, H.; Mhanna, M.; Wahood, W.; Ghazaleh, S.; Abuhelwa, Z.; Sayeh, W.; Aladamat, N.; Musallam, R.; Matar, R.; et al. Triglyceride-Glucose Index for Early Prediction of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of 121,975 Individuals. J. Clin. Med. 2022, 11, 2666. [Google Scholar] [CrossRef]
- Nayak, S.S.; Kuriyakose, D.; Polisetty, L.D.; Patil, A.A.; Ameen, D.; Bonu, R.; Shetty, S.P.; Biswas, P.; Ulrich, M.T.; Letafatkar, N.; et al. Diagnostic and prognostic value of triglyceride glucose index: A comprehensive evaluation of meta-analysis. Cardiovasc. Diabetol. 2024, 23, 310. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Lee, J.; Kim, H.S.; Kim, E.H.; Lee, M.J.; Yang, D.H.; Kang, J.-W.; Jung, C.H.; Park, J.-Y.; Kim, H.-K.; et al. Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study. J. Clin. Med. 2020, 10, 92. [Google Scholar] [CrossRef]
- Irace, C.; Carallo, C.; Scavelli, F.B.; De Franceschi, M.S.; Esposito, T.; Tripolino, C.; Gnasso, A. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int. J. Clin. Pract. 2013, 67, 665–672. [Google Scholar] [CrossRef]
- Tao, L.-C.; Xu, J.-N.; Wang, T.-T.; Hua, F.; Li, J.-J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Kahn, H.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Kyrou, I.; Panagiotakos, D.B.; Kouli, G.-M.; Georgousopoulou, E.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Lipid accumulation product in relation to 10-year cardiovascular disease incidence in Caucasian adults: The ATTICA study. Atherosclerosis 2018, 279, 10–16. [Google Scholar] [CrossRef]
- Anoop, S.S.; Dasgupta, R.; Rebekah, G.; Jose, A.; Inbakumari, M.P.; Finney, G.; Finney, G.; Thomas, N. Lipid accumulation product (LAP) as a potential index to predict risk of insulin resistance in young, non-obese Asian Indian males from Southern India: Observations from hyperinsulinemic-euglycemic clamp studies. BMJ Open Diabetes Res. Care 2021, 9, e002414. [Google Scholar] [CrossRef] [PubMed]
- Tamini, S.; Bondesan, A.; Caroli, D.; Sartorio, A. The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity. J. Clin. Med. 2024, 13, 2843. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Mather, K.J.; Hunt, A.E.; Steinberg, H.O.; Paradisi, G.; Hook, G.; Katz, A.; Quon, M.J.; Alain, D. Baron Repeatability Characteristics of Simple Indices of Insulin Resistance: Implications for Research Applications. J. Clin. Endocrinol. Metab. 2001, 86, 5457–5464. [Google Scholar] [CrossRef]
- Araújo, S.P.; Juvanhol, L.L.; Bressan, J.; Hermsdorff, H.H.M. Triglyceride glucose index: A new biomarker in predicting cardiovascular risk. Prev. Med. Rep. 2022, 29, 101941. [Google Scholar] [CrossRef]
- Rizza, S.; Cardellini, M.; Martelli, E.; Porzio, O.; Pecchioli, C.; Nicolucci, A.; Marx, N.; Lauro, D.; Ippoliti, A.; Romeo, F.; et al. Occult impaired glucose regulation in patients with atherosclerosis is associated to the number of affected vascular districts and inflammation. Atherosclerosis 2010, 212, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Consoli, C.; Martelli, E.; D’adamo, M.; Menghini, R.; Arcelli, D.; Porzio, O.; Pandolfi, A.; Pistolese, G.R.; Consoli, A.; Lauro, R.; et al. Insulin Resistance Affects Gene Expression in Endothelium. Arter. Thromb. Vasc. Biol. 2008, 28, e7–e9. [Google Scholar] [CrossRef]
- Kim, J.a.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal Relationships Between Insulin Resistance and Endothelial Dysfunction. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef]
- Schwartz, E.A.; Reaven, P.D. Molecular and Signaling Mechanisms of Atherosclerosis in Insulin Resistance. Endocrinol. Metab. Clin. N. Am. 2006, 35, 525–549. [Google Scholar] [CrossRef]
- Cubbon, R.M.; Kahn, M.B.; Wheatcroft, S.B. Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin. Sci. 2009, 117, 173–190. [Google Scholar] [CrossRef]
- Kearney, M.T.; Duncan, E.R.; Kahn, M.; Wheatcroft, S.B. Insulin resistance and endothelial cell dysfunction: Studies in mammalian models. Exp. Physiol. 2008, 93, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, W.A.; Lyon, C.J.; Quiñones, M.J. Insulin resistance and the endothelium. Am. J. Med. 2004, 117, 109–117. [Google Scholar] [CrossRef]
- Li, Q.; Park, K.; Li, C.; Rask-Madsen, C.; Mima, A.; Qi, W.; Mizutani, K.; Huang, P.; King, G.L. Induction of Vascular Insulin Resistance and Endothelin-1 Expression and Acceleration of Atherosclerosis by the Overexpression of Protein Kinase C-β Isoform in the Endothelium. Circ. Res. 2013, 113, 418–427. [Google Scholar] [CrossRef]
- Ashraf, F.U.N.; Ghouri, K.; Someshwar, F.; Kumar, S.; Kumar, N.; Kumari, K.; Bano, S.; Ahmad, S.; Khawar, M.H.; Ramchandani, L.; et al. Insulin Resistance and Coronary Artery Disease: Untangling the Web of Endocrine-Cardiac Connections. Cureus 2023, 15, e51066. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 5–12. [Google Scholar] [CrossRef]
- Potenza, M.A.; Addabbo, F.; Montagnani, M. Vascular actions of insulin with implications for endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E568–E577. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox. Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Meininger, C.J. Nitric oxide and vascular insulin resistance. BioFactors 2009, 35, 21–27. [Google Scholar] [CrossRef]
- Stühlinger, M.C. Relationship Between Insulin Resistance and an Endogenous Nitric Oxide Synthase Inhibitor. JAMA 2002, 287, 1420. [Google Scholar] [CrossRef]
- Wang, H.; Wang, A.X.; Aylor, K.; Barrett, E.J. Nitric Oxide Directly Promotes Vascular Endothelial Insulin Transport. Diabetes 2013, 62, 4030–4042. [Google Scholar] [CrossRef]
- Sansbury, B.E.; Hill, B.G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 2014, 73, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, S.; Ghasemi, A. Insulin secretion: The nitric oxide controversy. EXCLI J. 2020, 19, 1227–1245. [Google Scholar] [PubMed]
- Jansson, P.-A. Endothelial dysfunction in insulin resistance and type 2 diabetes. J. Intern. Med. 2007, 262, 173–183. [Google Scholar] [CrossRef]
- Muniyappa, R.; Chen, H.; Montagnani, M.; Sherman, A.; Quon, M.J. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: Insights from mechanistic modeling. Am. J. Physiol. Endocrinol. Metab.. 2020, 319, E629–E646. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Forteath, C.; Hussain, M.S.; Reyskens, K.; Belch, J.J.F.; Lang, C.C.; Mordi, I.R.; Bhalraam, U.; Arthur, J.S.C.; Khan, F. Mitogen and Stress-Activated Kinases 1 and 2 Mediate Endothelial Dysfunction. Int. J. Mol. Sci. 2021, 22, 8655. [Google Scholar] [CrossRef]
- Hoefen, R.J.; Berk, B.C. The role of MAP kinases in endothelial activation. Vasc. Pharmacol. 2002, 38, 271–273. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; He, T.; Zhang, Q.; Yang, X.; Lan, X.; Zhang, D.; Mei, H.; Che, B.; Huang, Y. P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury. Sci. Rep. 2015, 5, 8895. [Google Scholar] [CrossRef]
- Ramalingam, P.; Poulos, M.G.; Lazzari, E.; Gutkin, M.C.; Lopez, D.; Kloss, C.C.; Crowley, M.J.; Katsnelson, L.; Freire, A.G.; Greenblatt, M.B.; et al. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nat. Commun. 2020, 11, 666. [Google Scholar] [CrossRef]
- Huang, A.; Yang, Y.M.; Yan, C.; Kaley, G.; Hintze, T.H.; Sun, D. Altered MAPK Signaling in Progressive Deterioration of Endothelial Function in Diabetic Mice. Diabetes 2012, 61, 3181–3188. [Google Scholar] [CrossRef]
- Pino, D.A.; DeFronzo, R.A. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr. Rev. 2019, 40, 1447–1467. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Shimobayashi, M.; Albert, V.; Woelnerhanssen, B.; Frei, I.C.; Weissenberger, D.; Meyer-Gerspach, A.C.; Clement, N.; Moes, S.; Colombi, M.; Meier, J.A.; et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Investig. 2018, 128, 1538–1550. [Google Scholar] [CrossRef]
- Santos, G.D.B.; Goedeke, L. Macrophage immunometabolism in diabetes-associated atherosclerosis. Immunometabolism 2023, 5, e00032. [Google Scholar] [CrossRef]
- Liang, C.P.; Han, S.; Senokuchi, T.; Tall, A.R. The Macrophage at the Crossroads of Insulin Resistance and Atherosclerosis. Circ. Res. 2007, 100, 1546–1555. [Google Scholar] [CrossRef]
- Tabas, I.; Tall, A.; Accili, D. The Impact of Macrophage Insulin Resistance on Advanced Atherosclerotic Plaque Progression. Circ. Res. 2010, 106, 58–67. [Google Scholar] [CrossRef]
- Tabas, I.; Seimon, T.; Arellano, J.; Li, Y.; Forcheron, F.; Cui, D.; Han, S.; Liang, C.-P.; Tall, A.; Accili, D. The Impact of Insulin Resistance on Macrophage Death Pathways in Advanced Atherosclerosis. Novartis Found. Symp. 2007, 286, 99–112. [Google Scholar]
- Kraler, S.; Mueller, C.; Libby, P.; Bhatt, D.L. Acute coronary syndromes: Mechanisms, challenges, and new opportunities. Eur. Hear. J. 2025, ehaf289. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, R.; Federici, M. Insulin resistance and atherosclerosis: Convergence between metabolic pathways and inflammatory nodes. Biochem. J. 2013, 454, 1–11. [Google Scholar] [CrossRef]
- Larsson, J.; Auscher, S.; Shamoun, A.; Pararajasingam, G.; Heinsen, L.J.; Andersen, T.R.; Lindholt, J.S.; Diederichsen, A.C.P.; Lambrechtsen, J.; Egstrup, K. Insulin resistance is associated with high-risk coronary artery plaque composition in asymptomatic men between 65 and 75 years and no diabetes: A DANCAVAS cross-sectional sub-study. Atherosclerosis 2023, 385, 117328. [Google Scholar] [CrossRef]
- Iguchi, T.; Hasegawa, T.; Otsuka, K.; Matsumoto, K.; Yamazaki, T.; Nishimura, S.; Nakata, S.; Ehara, S.; Kataoka, T.; Shimada, K.; et al. Insulin resistance is associated with coronary plaque vulnerability: Insight from optical coherence tomography analysis. Eur. Hear. J. Cardiovasc. Imaging 2014, 15, 284–291. [Google Scholar] [CrossRef]
- Bornfeldt, K.E.; Tabas, I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Liang, C.-P.; DeVries-Seimon, T.; Ranalletta, M.; Welch, C.L.; Collins-Fletcher, K.; Accili, D.; Tabas, I.; Tall, A.R. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab. 2006, 3, 257–266. [Google Scholar] [CrossRef]
- Janoudi, A.; Shamoun, F.E.; Kalavakunta, J.K.; Abela, G.S. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur. Heart J. 2016, 37, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef]
- Bahrami, A.; Sathyapalan, T.; Sahebkar, A. The Role of Interleukin-18 in the Development and Progression of Atherosclerosis. Curr. Med. Chem. 2021, 28, 1757–1774. [Google Scholar] [CrossRef]
- Lahoute, C.; Herbin, O.; Mallat, Z.; Tedgui, A. Adaptive immunity in atherosclerosis: Mechanisms and future therapeutic targets. Nat. Rev. Cardiol. 2011, 8, 348–358. [Google Scholar] [CrossRef]
- Liuzzo, G.; Montone, R.A.; Gabriele, M.; Pedicino, D.; Giglio, A.F.; Trotta, F.; Galiffa, V.A.; Previtero, M.; Severino, A.; Biasucci, L.M.; et al. Identification of unique adaptive immune system signature in acute coronary syndromes. Int. J. Cardiol. 2013, 168, 564–567. [Google Scholar] [CrossRef]
- He, C.; Kim, H.I.; Park, J.; Guo, J.; Huang, W. The role of immune cells in different stages of atherosclerosis. Int. J. Med. Sci. 2024, 21, 1129–1143. [Google Scholar] [CrossRef]
- Butcher, M.J.; Filipowicz, A.R.; Waseem, T.C.; McGary, C.M.; Crow, K.J.; Magilnick, N.; Boldin, M.; Lundberg, P.S.; Galkina, E.V. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ + Th1/Tregs. Circ. Res. 2016, 119, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiang, X.; Nie, L.; Guo, X.; Zhang, F.; Wen, C.; Xia, Y.; Mao, L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front. Immunol. 2023, 13, 1079668. [Google Scholar] [CrossRef]
- Nigro, J.; Osman, N.; Dart, A.M.; Little, P.J. Insulin Resistance and Atherosclerosis. Endocr. Rev. 2006, 27, 242–259. [Google Scholar] [CrossRef] [PubMed]
- Vacek, T.; Rahman, S.; Yu, S.; Neamtu, D.; Givimani, S.; Tyagi, S. Matrix metalloproteinases in atherosclerosis: Role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc. Health Risk Manag. 2015, 173, 173–183. [Google Scholar] [CrossRef]
- Meshkani, R.; Adeli, K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem. 2009, 42, 1331–1346. [Google Scholar] [CrossRef]
- Toledo-Corral, C.M.; Alderete, T.L.; Goran, M.I. Dyslipidemia: Relationship to Insulin Resistance, Fatty Liver, and Sub-Clinical Atherosclerosis. In Lipid Management; Springer International Publishing: New York, NY, USA, 2015; pp. 65–79. [Google Scholar]
- Nordestgaard, B.G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef]
- Reyes-Soffer, G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease risk: Current status and treatments. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Santoleri, D.; Titchenell, P.M. Resolving the Paradox of Hepatic Insulin Resistance. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 447–456. [Google Scholar] [CrossRef]
- Bazotte, R.B.; Silva, L.G.; Schiavon, F.P. Insulin resistance in the liver: Deficiency or excess of insulin? Cell Cycle 2014, 13, 2494–2500. [Google Scholar] [CrossRef]
- Somani, Y.B.; Pawelczyk, J.A.; De Souza, M.J.; Kris-Etherton, P.M.; Proctor, D.N. Aging women and their endothelium: Probing the relative role of estrogen on vasodilator function. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H395–H404. [Google Scholar] [CrossRef]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Mattei, P.; Sudano, I.; Bernini, G.; Pinto, S.; Salvetti, A. Menopause Is Associated with Endothelial Dysfunction in Women. Hypertension 1996, 28, 576–582. [Google Scholar] [CrossRef]
- Wassmann, S.; Bäumer, A.T.; Strehlow, K.; van Eickels, M.; Grohé, C.; Ahlbory, K.; Rösen, R.; Böhm, M.; Nickenig, G. Endothelial Dysfunction and Oxidative Stress During Estrogen Deficiency in Spontaneously Hypertensive Rats. Circulation 2001, 103, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.K.; Das, S.; Jaarin, K. A detailed microscopic study of the changes in the aorta of experimental model of postmenopausal rats fed with repeatedly heated palm oil. Int. J. Exp. Pathol. 2009, 90, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, D.W.; Kim, K.S.; Lee, I.K. Effect of estrogen on endothelial dysfunction in postmenopausal women with diabetes. Diabetes Res. Clin. Pract. 2001, 54, S81–S92. [Google Scholar] [CrossRef]
- Wang, C.C.L.; Gurevich, I.; Draznin, B. Insulin Affects Vascular Smooth Muscle Cell Phenotype and Migration Via Distinct Signaling Pathways. Diabetes 2003, 52, 2562–2569. [Google Scholar] [CrossRef]
- Hitomi, H.; Mehta, P.K.; Taniyama, Y.; Lassègue, B.; Seidel-Rogol, B.; Martin, A.S.; Griendling, K.K. Vascular smooth muscle insulin resistance, but not hypertrophic signaling, is independent of angiotensin II-induced IRS-1 phosphorylation by JNK. Am. J. Physiol. Physiol. 2011, 301, C1415–C1422. [Google Scholar] [CrossRef] [PubMed]
- Lightell, D.J.; Moss, S.C.; Woods, T.C. Loss of Canonical Insulin Signaling Accelerates Vascular Smooth Muscle Cell Proliferation and Migration Through Changes in p27Kip1 Regulation. Endocrinology 2011, 152, 651–658. [Google Scholar] [CrossRef]
- Cersosimo, E.; Xu, X.; Musi, N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am. J. Physiol. Physiol. 2012, 302, C652–C657. [Google Scholar] [CrossRef]
- Santos, J.V.H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am. J. Physiol. Physiol. 2022, 322, C468–C481. [Google Scholar]
- Onyango, A.N. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. Oxid. Med. Cell Longev. 2018, 2018, 4321714. [Google Scholar] [CrossRef]
- Viola, J.; Soehnlein, O. Atherosclerosis–A matter of unresolved inflammation. Semin. Immunol. 2015, 27, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Semenkovich, C.F. Insulin resistance and atherosclerosis. J. Clin. Investig. 2006, 116, 1813–1822. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.; Schwartz, M.A. The Role of Cellular Adaptation to Mechanical Forces in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2008, 28, 2101–2107. [Google Scholar] [CrossRef]
- Abou Ziki, M.D.; Mani, A. Metabolic syndrome. Curr. Opin. Lipidol. 2016, 27, 162–171. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.-A.; Hong, J.; Kim, Y.; Hong, G.; Baik, S.; Choi, K.; Lee, M.-K.; Lee, K.-R. Identification of genetic variants related to metabolic syndrome by next-generation sequencing. Diabetol. Metab. Syndr. 2022, 14, 119. [Google Scholar] [CrossRef]
- Perumalsamy, S.; Huri, H.Z.; Abdullah, B.M.; Mazlan, O.; Wan Ahmad, W.A.; Vethakkan, S.R.D.B. Genetic Markers of Insulin Resistance and Atherosclerosis in Type 2 Diabetes Mellitus Patients with Coronary Artery Disease. Metabolites 2023, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Ling, C. Epigenetic regulation of insulin action and secretion–role in the pathogenesis of type 2 diabetes. J. Intern. Med. 2020, 288, 158–167. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Bousvarou, M.D.; Kostara, C.E.; Papakonstantinou, E.J.; Salamou, E.; Guzman, E. Insulin resistance and cardiovascular disease. J. Int. Med. Res. 2023, 51, 03000605231164548. [Google Scholar] [CrossRef]
- Færch, K.; Vaag, A.; Holst, J.J.; Hansen, T.; Jørgensen, T.; Borch-Johnsen, K. Natural History of Insulin Sensitivity and Insulin Secretion in the Progression From Normal Glucose Tolerance to Impaired Fasting Glycemia and Impaired Glucose Tolerance: The Inter99 Study. Diabetes Care 2009, 32, 439–444. [Google Scholar] [CrossRef]
- Sarwar, N.; Sattar, N.; Gudnason, V.; Danesh, J. Circulating concentrations of insulin markers and coronary heart disease: A quantitative review of 19 Western prospective studies. Eur. Heart J. 2007, 28, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, A.G.; Wong, N.D.; Shea, S.; Ma, S.; Liu, K.; Preethi, S.; Jacobs, D.R.; Wu, C.; Saad, M.F.; Szklo, M. Insulin Resistance, Metabolic Syndrome, and Subclinical Atherosclerosis. Diabetes Care 2007, 30, 2951–2956. [Google Scholar] [CrossRef]
- Iglesies-Grau, J.; Garcia-Alvarez, A.; Oliva, B.; Mendieta, G.; García-Lunar, I.; Fuster, J.J.; Devesa, A.; Pérez-Herreras, C.; Fernández-Ortiz, A.; Brugada, R.; et al. Early insulin resistance in normoglycemic low-risk individuals is associated with subclinical atherosclerosis. Cardiovasc. Diabetol. 2023, 22, 350. [Google Scholar] [CrossRef] [PubMed]
- Landowska, M.; Kałuża, B.; Watała, C.; Babula, E.; Żuk-Łapan, A.; Woźniak, K.; Kargul, A.; Jurek, J.; Korcz, T.; Cicha-Brzezińska, M.; et al. Is Insulin Resistance an Independent Predictor of Atherosclerosis? J. Clin. Med. 2025, 14, 969. [Google Scholar] [CrossRef]
- Scott, D.A.; Ponir, C.; Shapiro, M.D.; Chevli, P.A. Associations between insulin resistance indices and subclinical atherosclerosis: A contemporary review. Am. J. Prev. Cardiol. 2024, 18, 100676. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Li, Y.; Xu, F.; Liu, Y. Type 2 Diabetes and Myocardial Infarction: Recent Clinical Evidence and Perspective. Front. Cardiovasc. Med. 2021, 24, 8. [Google Scholar] [CrossRef]
- Snel, M.; Jonker, J.T.; Schoones, J.; Lamb, H.; de Roos, A.; Pijl, H.; Smit, J.W.A.; Meinders, A.E.; Jazet, I.M. Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions. Int. J. Endocrinol. 2012, 2012, 983814. [Google Scholar] [CrossRef]
- Hawley, J.A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 2004, 20, 383–393. [Google Scholar] [CrossRef]
- Fedewa, M.V.; Gist, N.H.; Evans, E.M.; Dishman, R.K. Exercise and Insulin Resistance in Youth: A Meta-Analysis. Pediatrics. 2014, 133, e163–e174. [Google Scholar] [CrossRef]
- van der Aa, M.P.; Elst, M.A.J.; van de Garde, E.M.W.; van Mil, E.G.A.H.; Knibbe, C.A.J.; van der Vorst, M.M.J. Long-term treatment with metformin in obese, insulin-resistant adolescents: Results of a randomized double-blinded placebo-controlled trial. Nutr. Diabetes 2016, 6, e228. [Google Scholar] [CrossRef]
- Herman, R.; Kravos, N.A.; Jensterle, M.; Janež, A.; Dolžan, V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int. J. Mol. Sci. 2022, 23, 1264. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Jun, H.S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, Z.; Ma, B.; Fan, L.; Yi, N.; Lu, B.; Wang, Q.; Liu, R. GLP-1 Improves Adipocyte Insulin Sensitivity Following Induction of Endoplasmic Reticulum Stress. Front. Pharmacol. 2018, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, M.; Nian, H.; Mayfield, D.; Devin, J.K.; Gamboa, J.L.; Yu, C.; Silver, H.J.; Niswender, K.; Luther, J.M.; Brown, N.J. Weight Loss–Independent Effect of Liraglutide on Insulin Sensitivity in Individuals with Obesity and Prediabetes. Diabetes 2024, 73, 38–50. [Google Scholar] [CrossRef]
- Corrao, S.; Pollicino, C.; Maggio, D.; Torres, A.; Argano, C. Tirzepatide against obesity and insulin-resistance: Pathophysiological aspects and clinical evidence. Front. Endocrinol. 2024, 15, 1402583. [Google Scholar] [CrossRef]
- Okura, T.; Fujioka, Y.; Nakamura, R.; Ito, Y.; Kitao, S.; Anno, M.; Matsumoto, K.; Shoji, K.; Okura, H.; Matsuzawa, K.; et al. Dipeptidyl peptidase 4 inhibitor improves insulin resistance in Japanese patients with type 2 diabetes: A single-arm study, a brief report. Diabetol. Metab. Syndr. 2022, 14, 78. [Google Scholar] [CrossRef]
- Zhuge, F.; Ni, Y.; Nagashimada, M.; Nagata, N.; Xu, L.; Mukaida, N.; Kaneko, S.; Ota, T. DPP-4 Inhibition by Linagliptin Attenuates Obesity-Related Inflammation and Insulin Resistance by Regulating M1/M2 Macrophage Polarization. Diabetes 2016, 65, 2966–2979. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 inhibitors for treating T2DM-hype or hope? An analysis based on the current literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef]
- Rasouli, N.; Raue, U.; Miles, L.M.; Lu, T.; Di Gregorio, G.B.; Elbein, S.C.; Kern, P.A. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E930–E934. [Google Scholar] [CrossRef]
- Liao, H.W.; Saver, J.L.; Wu, Y.L.; Chen, T.H.; Lee, M.; Ovbiagele, B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: A systematic review and meta-analysis. BMJ Open 2017, 7, e013927. [Google Scholar] [CrossRef] [PubMed]
- Mendez, C.E.; Eiler, C.; Walker, R.J.; Egede, L.E. Insulin Therapy for Insulin Resistant Patients—Harm or Benefit? Diabetes 2018, 1, 67. [Google Scholar] [CrossRef]
- Busch, C.B.E.; Meiring, S.; van Baar, A.C.G.; Holleman, F.; Nieuwdorp, M.; Bergman, J.J.G.H.M. Recellularization via electroporation therapy of the duodenum combined with glucagon-like peptide-1 receptor agonist to replace insulin therapy in patients with type 2 diabetes: 12-month results of a first-in-human study. Gastrointest. Endosc. 2024, 100, 896–904. [Google Scholar] [CrossRef]
- Schreyer, E.; Obringer, C.; Messaddeq, N.; Kieffer, B.; Zimmet, P.; Fleming, A.; Geberhiwot, T.; Marion, V. PATAS, a First-in-Class Therapeutic Peptide Biologic, Improves Whole-Body Insulin Resistance and Associated Comorbidities In Vivo. Diabetes 2022, 71, 2034–2047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brie, A.D.; Christodorescu, R.M.; Popescu, R.; Adam, O.; Tîrziu, A.; Brie, D.M. Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines 2025, 13, 1291. https://doi.org/10.3390/biomedicines13061291
Brie AD, Christodorescu RM, Popescu R, Adam O, Tîrziu A, Brie DM. Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines. 2025; 13(6):1291. https://doi.org/10.3390/biomedicines13061291
Chicago/Turabian StyleBrie, Alina Diduța, Ruxandra Maria Christodorescu, Roxana Popescu, Ovidiu Adam, Alexandru Tîrziu, and Daniel Miron Brie. 2025. "Atherosclerosis and Insulin Resistance: Is There a Link Between Them?" Biomedicines 13, no. 6: 1291. https://doi.org/10.3390/biomedicines13061291
APA StyleBrie, A. D., Christodorescu, R. M., Popescu, R., Adam, O., Tîrziu, A., & Brie, D. M. (2025). Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines, 13(6), 1291. https://doi.org/10.3390/biomedicines13061291