Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Dynamic CT-MPI and CCTA Protocol
2.3. CT Data Reconstruction and Image Post-Processing
2.4. Image Analysis
2.5. ICA and FFR
2.6. Radiation Dose
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Diagnostic Performance of CCTA and CT-MPI
3.3. Quantitative MBF Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | obstructive coronary artery disease |
CT-MPI | computed tomography-myocardial perfusion imaging |
CT-FFR | computed tomography-fractional flow reserve |
CCTA | coronary computed tomography angiography |
CAC | coronary artery calcification |
CCS | coronary calcium score |
AUC | area under the receiver-operating characteristic curve |
MBF | myocardial blood flow |
PCI | percutaneous coronary intervention |
CABG | coronary artery bypass grafting |
MI | myocardial infarction |
ICA | invasive coronary angiography |
References
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar]
- Cury, R.C.; Leipsic, J.; Abbara, S.; Achenbach, S.; Berman, D.; Bittencourt, M.; Budoff, M.; Chinnaiyan, K.; Choi, A.D.; Ghoshhajra, B.; et al. CAD-RADS™ 2.0—2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J. Cardiovasc. Comput. Tomogr. 2022, 16, 536–557. [Google Scholar]
- Adamson, P.D.; Hunter, A.; Williams, M.C.; Shah, A.S.V.; McAllister, D.A.; Pawade, T.A.; Dweck, M.R.; Mills, N.L.; Berry, C.; A Boon, N.; et al. Diagnostic and prognostic benefits of computed tomography coronary angiography using the 2016 National Institute for Health and Care Excellence guidance within a randomised trial. Heart 2018, 104, 207–214. [Google Scholar]
- Sirajuddin, A.; Mirmomen, S.M.; Kligerman, S.J.; Groves, D.W.; Burke, A.P.; Kureshi, F.; White, C.S.; Arai, A.E. Ischemic heart disease: Noninvasive imaging techniques and findings. RadioGraphics 2021, 41, 990–1021. [Google Scholar]
- Jaarsma, C.; Leiner, T.; Bekkers, S.C.; Crijns, H.J.; Wildberger, J.E.; Nagel, E.; Nelemans, P.J.; Schalla, S. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: A meta-analysis. J. Am. Coll. Cardiol. 2012, 59, 1719–1728. [Google Scholar]
- de Jong, M.C.; Genders, T.S.; van Geuns, R.J.; Moelker, A.; Hunink, M.G. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: A systematic review and meta-analysis. Eur. Radiol. 2012, 22, 1881–1895. [Google Scholar]
- Yun, C.H.; Hung, C.L.; Wen, M.S.; Wan, Y.L.; So, A. CT assessment of myocardial perfusion and fractional flow reserve in coronary artery disease: A review of current clinical evidence and recent developments. Korean J. Radiol. 2021, 22, 1749–1763. [Google Scholar]
- Nieman, K.; Balla, S. Dynamic CT myocardial perfusion imaging. J. Cardiovasc. Comput. Tomogr. 2020, 14, 303–306. [Google Scholar]
- Vliegenthart, R.; De Cecco, C.N.; Wichmann, J.L.; Meinel, F.G.; Pelgrim, G.J.; Tesche, C.; Ebersberger, U.; Pugliese, F.; Bamberg, F.; Choe, Y.H.; et al. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: Insights from a multicenter registry. J. Cardiovasc. Comput. Tomogr. 2016, 10, 301–308. [Google Scholar]
- Bamberg, F.; Becker, A.; Schwarz, F.; Marcus, R.P.; Greif, M.; von Ziegler, F.; Blankstein, R.; Hoffmann, U.; Sommer, W.H.; Hoffmann, V.S.; et al. Detection of hemodynamically significant coronary artery stenosis: Incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 2011, 260, 689–698. [Google Scholar] [PubMed]
- Yu, M.; Shen, C.; Dai, X.; Lu, Z.; Wang, Y.; Lu, B.; Zhang, J. Clinical outcomes of dynamic computed tomography myocardial perfusion imaging combined with coronary computed tomography angiography versus coronary computed tomography angiography-guided strategy. Circ. Cardiovasc. Imaging 2020, 13, e009775. [Google Scholar]
- Andreini, D.; Mushtaq, S.; Trabattoni, D.; Conte, E.; Sonck, J.; Lorusso, G.; Galli, S.; Monizzi, G.; Belmonte, M.; Grancini, L.; et al. Diagnostic accuracy of dynamic stress myocardial CT perfusion compared with invasive physiology in patients with stents: The ADVANTAGE 2 study. Radiology 2024, 313, e232225. [Google Scholar]
- Mahnken, A.H.; Klotz, E.; Pietsch, H.; Schmidt, B.; Allmendinger, T.; Haberland, U.; Kalender, W.A.; Flohr, T. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: Preliminary animal experience. Investig. Radiol. 2010, 45, 298–305. [Google Scholar]
- Takafuji, M.; Kitagawa, K.; Ishida, M.; Goto, Y.; Nakamura, S.; Nagasawa, N.; Sakuma, H. Myocardial coverage and radiation dose in dynamic myocardial perfusion imaging using third-generation dual-source CT. Korean J. Radiol. 2020, 21, 58–67. [Google Scholar]
- Austen, W.G.; Edwards, J.E.; Frye, R.L.; Gensini, G.G.; Gott, V.L.; Griffith, L.S.; McGoon, D.C.; Murphy, M.L.; Roe, B.B. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for grading of coronary artery disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975, 51 (Suppl. 4), 5–40. [Google Scholar]
- Song, I.; Kang, J.H.; Kim, M.Y.; Hwang, H.K.; Kim, H.Y.; Ko, S.M. Diagnostic accuracy of electrocardiogram-gated thoracic computed tomography angiography without heart rate control for detection of significant coronary artery stenosis in patients with acute ischemic stroke: A comparative study. Korean J. Radiol. 2018, 19, 905–915. [Google Scholar]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S.; et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar]
- Yu, Y.; Yang, W.; Dai, X.; Yu, L.; Lan, Z.; Ding, X.; Zhang, J. Microvascular myocardial ischemia in patients with diabetes without obstructive coronary stenosis and its association with angina. Korean J. Radiol. 2023, 24, 1081–1092. [Google Scholar]
- Li, Y.; Yu, M.; Dai, X.; Lu, Z.; Shen, C.; Wang, Y.; Lu, B.; Zhang, J. Detection of hemodynamically significant coronary stenosis: CT myocardial perfusion versus machine learning CT fractional flow reserve. Radiology 2019, 293, 305–314. [Google Scholar]
- Hausleiter, J.; Meyer, T.; Hermann, F.; Hadamitzky, M.; Krebs, M.; Gerber, T.C.; McCollough, C.; Martinoff, S.; Kastrati, A.; Schömig, A.; et al. Estimated radiation dose associated with cardiac CT angiography. JAMA 2009, 301, 500–507. [Google Scholar]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [PubMed]
- Rudziński, P.N.; Kruk, M.; Kępka, C.; Schoepf, U.J.; Otani, K.; Leonard, T.J.; Dębski, M.; Dzielińska, Z.; Pręgowski, J.; Witkowski, A.; et al. Assessing the value of coronary artery computed tomography as the first-line anatomical test for stable patients with indications for invasive angiography due to suspected coronary artery disease. Initial cost analysis in the CAT-CAD randomized trial. J. Cardiovasc. Comput. Tomogr. 2020, 14, 75–79. [Google Scholar] [PubMed]
- Kruk, M.; Noll, D.; Achenbach, S.; Mintz, G.S.; Pręgowski, J.; Kaczmarska, E.; Kryczka, K.; Pracoń, R.; Dzielińska, Z.; Śleszycka, J.; et al. Impact of coronary artery calcium characteristics on accuracy of CT angiography. JACC Cardiovasc. Imaging 2014, 7, 49–58. [Google Scholar]
- Gonçalves Pde, A.; Rodríguez-Granillo, G.A.; Spitzer, E.; Suwannasom, P.; Loewe, C.; Nieman, K.; Garcia-Garcia, H.M. Functional evaluation of coronary disease by CT angiography. JACC Cardiovasc. Imaging 2015, 8, 1322–1335. [Google Scholar] [PubMed]
- Nous, F.M.A.; Geisler, T.; Kruk, M.B.P.; Alkadhi, H.; Kitagawa, K.; Vliegenthart, R.; Hell, M.M.; Hausleiter, J.; Nguyen, P.K.; Budde, R.P.; et al. Dynamic myocardial perfusion CT for the detection of hemodynamically significant coronary artery disease. JACC Cardiovasc. Imaging 2022, 15, 75–87. [Google Scholar]
- Kong, W.; Long, B.; Huang, H.; Li, F.; He, Y.; Chen, X.; Pu, H.; Zhang, G.; Shang, L. Diagnostic efficacy of absolute and relative myocardial blood flow of stress dynamic CT myocardial perfusion for detecting myocardial ischemia in patients with hemodynamically significant coronary artery disease. Front. Cardiovasc. Med. 2024, 11, 1398635. [Google Scholar]
Gender (M:F) | 59:15 (80%:20%) |
Age (years) | 66.8 ± 11.1 |
Heart Rate (bpm) | 64.5 ± 11.7 |
BSA (m2) | 1.7 ± 0.2 |
Risk Factors | |
HTN | 57 (77.0%) |
DM | 34 (45.9%) |
Hyperlipidemia | 27 (36.5%) |
Smoking | 32 (43.2%) |
CAD Family History | 2 (2.7%) |
COPD | 70 (94.6%) |
Heart Medication | 74 (100%) |
Chest Pain | Typical angina, 59 (80%) Atypical angina, 15 (20%) |
Intermediate Pretest Probability of CAD (15–85%) | 50.5 ± 19.0 |
Image Quality | |
Good to excellent | 70 (94.6%) |
Poor but acceptable | 4 (5.4%) |
Coronary Calcium Score (AU) | 508.5 (IQR: 1173–147) |
Classification of Coronary Calcium Score | |
None to moderate: 0–400 AU | 32 (43.2%) |
Severe: >400 AU | 42 (56.8%) |
Parameter | CCTA | CT-MPI | CCTA + CT-MPI |
---|---|---|---|
CTDIvol (mGy) | 15.5 (IQR:12.6–20.0) | 31.0 (IQR:25.3–42.4) | – |
DLP (mGy·cm) | 241 (IQR:193–315) | 331 (IQR:315–452) | – |
Effective Dose (mSv) | 3.37 (IQR:2.70–4.41) | 4.63 (IQR:3.74–6.33) | 8.05 (IQR:6.71–11.01) |
Sensitivity | Specificity | PPV | NPV | Accuracy | TP | TN | FP | FN | |
---|---|---|---|---|---|---|---|---|---|
CCTA stenosis of >50% | 96.7 (90.7–99.1) | 60.3 (51.4–68.6) | 64.4 (56.1–72.0) | 96.1 (89.0–98.9) | 75.8 (69.5–81.4) | 87 | 73 | 48 | 3 |
CCTA stenosis of >50% plus CT-MPI | 90.1 (82.7–94.5) | 84.3 (76.8–89.7) | 82.7 (74.6–88.7) | 91.1 (84.3–95.1) | 86.9 (81.8–91.1) | 91 | 102 | 19 | 10 |
Sensitivity | Specificity | PPV | NPV | Accuracy | TP | TN | FP | FN | |
---|---|---|---|---|---|---|---|---|---|
CCTA stenosis of >50% | 100 (68.0–100) | 0 | 35.0 (19.0–55.0) | 0 | 35.0 (19.0–55.0) | 8 | 0 | 15 | 0 |
CCTA stenosis of >50% plus CT-MPI | 100 (68.0–100) | 60.0 (36.0–80.0) | 57.0 (33.0–79.0) | 100 (70.0–100) | 74.0 (54.0–87.0) | 8 | 9 | 6 | 0 |
Sensitivity | Specificity | PPV | NPV | Accuracy | TP | TN | FP | FN | |
---|---|---|---|---|---|---|---|---|---|
CCS ≤ 400 | |||||||||
CCTA stenosis of >50% | 95.0 (83.5–98.6) | 75.0 (62.3–84.5) | 73.1 (59.7–83.2) | 95.5 (84.9–98.7) | 83.3 (74.6–89.5) | 38 | 42 | 14 | 2 |
CCTA stenosis of >50% plus CT-MPI | 90.0 (76.9–96.0) | 89.3 (78.5–95.0) | 85.7 (72.2–93.3) | 92.6 (82.4–100) | 89.6 (81.9–94.2) | 36 | 50 | 6 | 4 |
CCS > 400 | |||||||||
CCTA stenosis of >50% | 98.4 (91.3–99.7) | 47.7 (36.0–59.6) | 63.8 (53.8–72.8)) | 96.9 (84.3–99.4) | 77.2 (63.8–79.3) | 60 | 31 | 34 | 1 |
CCTA stenosis of >50% plus CT-MPI | 90.2 (80.2–95.4) | 80.0 (68.7–87.9) | 80.9 (70.0–88.5) | 89.7 (79.2–95.2) | 84.9 (77.6–90.1) | 55 | 52 | 13 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.M.; Cha, S.-J.; Kim, H.; Jeon, P.-H.; Jeon, S.-H.; Ahn, S.G.; Son, J.-W. Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2025, 12, 264. https://doi.org/10.3390/jcdd12070264
Ko SM, Cha S-J, Kim H, Jeon P-H, Jeon S-H, Ahn SG, Son J-W. Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease. Journal of Cardiovascular Development and Disease. 2025; 12(7):264. https://doi.org/10.3390/jcdd12070264
Chicago/Turabian StyleKo, Sung Min, Sung-Jin Cha, Hyunjung Kim, Pil-Hyun Jeon, Sang-Hyun Jeon, Sung Gyun Ahn, and Jung-Woo Son. 2025. "Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease" Journal of Cardiovascular Development and Disease 12, no. 7: 264. https://doi.org/10.3390/jcdd12070264
APA StyleKo, S. M., Cha, S.-J., Kim, H., Jeon, P.-H., Jeon, S.-H., Ahn, S. G., & Son, J.-W. (2025). Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease. Journal of Cardiovascular Development and Disease, 12(7), 264. https://doi.org/10.3390/jcdd12070264