Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = copper tailings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6679 KB  
Article
Influence of Lignosulfonate on the Hydrothermal Interaction Between Pyrite and Cu(II) Ions in Sulfuric Acid Media
by Kirill Karimov, Maksim Tretiak, Uliana Sharipova, Tatiana Lugovitskaya, Oleg Dizer and Denis Rogozhnikov
Metals 2026, 16(2), 137; https://doi.org/10.3390/met16020137 - 23 Jan 2026
Abstract
Hydrometallurgical pretreatment of pyrite-bearing concentrates and tailings by hydrothermal interaction with Cu(II) solutions is a promising route for chemical beneficiation and mitigation of acid mine drainage but is limited by passivation caused by elemental sulfur and secondary copper sulfides. Here, the effect of [...] Read more.
Hydrometallurgical pretreatment of pyrite-bearing concentrates and tailings by hydrothermal interaction with Cu(II) solutions is a promising route for chemical beneficiation and mitigation of acid mine drainage but is limited by passivation caused by elemental sulfur and secondary copper sulfides. Here, the effect of sodium lignosulfonate (SLS) on the hydrothermal reaction between natural pyrite and CuSO4 in H2SO4 media at 180–220 °C was studied at [H2SO4]0 = 10–30 g/dm3, [Cu]0 = 6–24 g/dm3, and [SLS]0 = 0–1.0 g/dm3. Process efficiency was evaluated by Fe extraction into solution and Cu precipitation on the solid phase, and products were characterized by XRD and SEM/EDS. SLS markedly intensified pyrite conversion: at 200 °C and 120 min, Fe extraction increased from 14 to 26% and Cu precipitation from 5 to 23%, while at 220 °C, Fe extraction reached 33.4% and Cu precipitation 26.8%. XRD confirmed the sequential transformation CuS → Cu1.8S. SEM/EDS showed that SLS converts localized nucleation of CuxS on defect sites into the formation of a fine, loosely packed, and well-dispersed copper sulfide phase. The results demonstrate that lignosulfonate surfactants efficiently suppress passivation and enhance mass transfer, providing a basis for intensifying hydrothermal pretreatment of pyrite-bearing industrial materials. Full article
(This article belongs to the Special Issue Recent Progress in Metal Extraction and Recycling)
Show Figures

Figure 1

19 pages, 2598 KB  
Article
Study of Biosorption/Desorption of Copper from Solutions Leached from Soils Contaminated by Mining Activity Using Lessonia berteroana Alga Biomass
by Sonia Cortés, Liey-si Wong-Pinto and Javier I. Ordóñez
Minerals 2026, 16(1), 88; https://doi.org/10.3390/min16010088 - 16 Jan 2026
Viewed by 145
Abstract
Although mining activities are economically essential, they have led to significant environmental contamination, particularly in northern Chile. The discharge of untreated tailings has impacted coastal and soil ecosystems. This analysis investigates the biosorption and desorption of copper using the dried biomass of Lessonia [...] Read more.
Although mining activities are economically essential, they have led to significant environmental contamination, particularly in northern Chile. The discharge of untreated tailings has impacted coastal and soil ecosystems. This analysis investigates the biosorption and desorption of copper using the dried biomass of Lessonia berteroana, a brown alga, focusing on its reuse over multiple cycles. Biosorption experiments were conducted using synthetic copper sulfate solutions and real leachates (PLS) obtained from historically contaminated soils, obtaining maximum uptakes of 66.1 and 41.1 mg/g, respectively. In addition, four isotherm models—Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R)—were applied to describe equilibrium behavior. In synthetic systems, the Langmuir model described the data better. In the real matrix, the D–R model showed superior performance, indicating a more heterogeneous mechanism and a lower adsorption capacity. Desorption experiments, fundamental to evaluating the recyclability capacity of biosorbents, used HCl, HNO3, H2SO4, and C6H8O7 as desorbing agents. These experiments showed high initial efficiency (>95%) for all desorbents, and regeneration remained consistent over five cycles. In real PLS systems, nitric and citric acids maintained high desorption efficiencies with minimal degradation of biosorbent capacity. This study highlights the potential of L. berteroana as a sustainable biosorbent for copper recovery in both controlled and real-world applications, supporting its integration into circular economy strategies for mine-impacted environments. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Biohydrometallurgy)
Show Figures

Graphical abstract

17 pages, 4305 KB  
Article
Performance and Leaching Behavior of Hybrid Geopolymer–Cement Mortars Incorporating Copper Mine Tailings and Silt
by Dionella Jitka B. Quinagoran, James Albert Narvaez, Joy Marisol Maniaul, John Kenneth A. Cruz, Djoan Kate T. Tungpalan, Eduardo R. Magdaluyo and Karlo Leandro D. Baladad
Recycling 2026, 11(1), 20; https://doi.org/10.3390/recycling11010020 - 16 Jan 2026
Viewed by 211
Abstract
Mine waste remains a persistent challenge for the minerals industry, posing significant environmental concerns if not properly managed. The 1996 Marcopper Mining Disaster in Marinduque, Philippines, left a legacy of mine tailings that continue to threaten local ecosystems and communities. This study investigates [...] Read more.
Mine waste remains a persistent challenge for the minerals industry, posing significant environmental concerns if not properly managed. The 1996 Marcopper Mining Disaster in Marinduque, Philippines, left a legacy of mine tailings that continue to threaten local ecosystems and communities. This study investigates the valorization and stabilization of Marcopper river sediments laden with mine tailings using a combined geopolymerization and cement hydration approach. Hybrid mortar samples were prepared with 7.5%, 15%, 22.5%, and 30% mine tailings by weight, utilizing potassium hydroxide (KOH) as an alkaline activator at concentrations of 1 M and 3 M, combined with Ordinary Portland Cement (OPC). The mechanical properties of the hybrid geopolymer cement mortars were assessed via unconfined compression tests, and their crystalline structure, phase composition, surface morphology, and chemical bonding were also analyzed. Static leaching tests were performed to evaluate heavy metal mobility in the geopolymer matrix. The compression tests yielded strength values ranging from 24.22 MPa to 53.99 MPa, meeting ASTM C150 strength requirements. In addition, leaching tests confirmed the effective encapsulation and immobilization of heavy metals, demonstrating the potential of this method for mitigating the environmental risks associated with mine tailings. Full article
Show Figures

Graphical abstract

13 pages, 2957 KB  
Article
Experimental Study on the Removal of Copper Cyanide from Simulated Cyanide Leaching Gold Wastewater by Flocculation Flotation
by Chenhao Zhang, Dongxia Feng, Meng Dong, Heng Zhang, Xujie Wen, Yuanbin Liu and Wang Cai
Metals 2026, 16(1), 75; https://doi.org/10.3390/met16010075 - 9 Jan 2026
Viewed by 186
Abstract
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant [...] Read more.
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant polyferric sulfate (PFS) for purification. Simulated wastewater, prepared based on actual gold mine effluent, was treated under optimized conditions of reagent dosage, a solution pH of 6–10, and a flotation time of 1–5 min, achieving high removal efficiencies of 96.48% for copper and 94.68% for total cyanide. Mechanistic studies via FT-IR, Zeta potential, and XPS revealed that Fe3+ from PFS formed Fe-CN complexes with both free and copper-complexed cyanide. Simultaneously, copper ions coordinated with SCG to generate a hydrophobic Fe-CN-Cu-SCG ternary complex, which was subsequently removed by adsorption onto air bubbles via the hydrophobic chains of SCG. This work provides a novel, efficient, and mechanistically clear strategy for the advanced treatment of cyanide-containing tailing water with a gold content of 0.021 mg/L. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

22 pages, 4808 KB  
Article
Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching
by Anna Khachatryan, Arevik Vardanyan, Ruiyong Zhang, Yimeng Zhang, Xin Shi, Sabine Willscher, Nhung H. A. Nguyen and Narine Vardanyan
Microorganisms 2026, 14(1), 146; https://doi.org/10.3390/microorganisms14010146 - 9 Jan 2026
Viewed by 629
Abstract
The microbial ecology of acid mine drainage (AMD) systems in Armenia, with a long mining history, remains unexplored. This study aimed to characterize the microbial diversity and functional potential of AMD in the Syunik region and to isolate novel microorganisms with biotechnological value. [...] Read more.
The microbial ecology of acid mine drainage (AMD) systems in Armenia, with a long mining history, remains unexplored. This study aimed to characterize the microbial diversity and functional potential of AMD in the Syunik region and to isolate novel microorganisms with biotechnological value. A comprehensive analysis of the microbial communities’ structure of Kavart abandoned, Kapan exploring mines effluent, and Artsvanik tailing was conducted. Metagenomics revealed bacterial-dominated communities, comprising Pseudomonadota (previously “Proteobacteria”) (68–72%), with site-specific variations in genus abundance. A high abundance and diversity of metal resistance genes (MRGs), particularly for copper and arsenic, were identified. Carbohydrate-active enzyme (CAZy) analysis showed a dominance of GT2 and GT4 genes, suggesting a high potential for extracellular polymeric substances (EPS) production and biofilm formation. A novel strain of iron-oxidizing bacteria Arm-12 was isolated that shares only ~90% similarity with known Leptospirillum type species, indicating it may represent a new genus without culturable representatives. The strain exhibits enhanced copper extraction from concentrate. This study provides the first metagenomic insights into Armenian AMD systems and tailing, revealing a unique community rich in metal resistance and biofilm-forming genes. The isolation of a novel highly effective iron-oxidizer Arm-12 highlights the potential of AMD environments as a source of novel taxa with significant applications in biomining and bioremediation processes. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

26 pages, 2125 KB  
Article
Geochemical Profile Characterization of Mine Tailings by Exploited Element as Input for Receptor Models: Case of Chilean Tailings (Cu-Au-Ag-Mo-Fe-Zn-Pb-Kaolin-CaCO3)
by Felipe André Reyes Reyes, Sebastián Pérez Cortés and Ernesto Gramsch Labra
Minerals 2026, 16(1), 5; https://doi.org/10.3390/min16010005 - 20 Dec 2025
Viewed by 304
Abstract
Mine tailings management poses a major challenge, with up to 99% of the mined material remaining as finely ground residues. This study analyzes a SERNAGEOMIN database from 653 Chilean tailing deposits using a multivariate framework that integrates completeness assessments, descriptive statistics, and hierarchical [...] Read more.
Mine tailings management poses a major challenge, with up to 99% of the mined material remaining as finely ground residues. This study analyzes a SERNAGEOMIN database from 653 Chilean tailing deposits using a multivariate framework that integrates completeness assessments, descriptive statistics, and hierarchical clustering on log-transformed and standardized chemical concentrations of 56 elements in order to identify dominant geochemical patterns. This study aims to provide an integrated and systematic interpretation of the Chilean database, the most comprehensive public dataset on mine tailings in Chile. The results reveal four distinct geochemical profiles: (i) silicate copper tailings, rich in Cu and associated with a SiO2-Al2O3 matrix; (ii) Zn-Pb-Cd-As polymetallic tailings, with the highest concentrations of heavy metals and rare earth elements (REEs), representing both high environmental risk and potential economic value; (iii) carbonate-matrix tailings (CaCO3 and limestone), characterized by high CaO and loss of calcination (LOI) but low trace metal contents, suggesting buffering potential against acid mine drainage (AMD); and (iv) clay-rich tailings (kaolin and Au-Cu-Au), marked by high Al2O3 and anomalous Co enrichments, indicating unexploited potential for critical metal recovery. These profiles support applications such as their use as source signatures in receptor models and the classification of tailing deposits lacking geochemical information. Full article
Show Figures

Graphical abstract

28 pages, 10229 KB  
Article
Mechanical Properties of Copper Tailings Cemented Paste Backfill Incorporating Thermally and Mechanically Treated Saudi Natural Pozzolan
by Ardhymanto Am Tanjung, Haitham M. Ahmed and Hussin A. M. Ahmed
Appl. Sci. 2025, 15(24), 13205; https://doi.org/10.3390/app152413205 - 17 Dec 2025
Viewed by 320
Abstract
Cemented Paste Backfill (CPB) is a technique that utilizes mine tailings, mining-process water, and a binder, typically Ordinary Portland Cement (OPC), to backfill the opening created in underground mining. However, the use of cement in CPB increases operational costs and has adverse environmental [...] Read more.
Cemented Paste Backfill (CPB) is a technique that utilizes mine tailings, mining-process water, and a binder, typically Ordinary Portland Cement (OPC), to backfill the opening created in underground mining. However, the use of cement in CPB increases operational costs and has adverse environmental effects. To mitigate these effects, eco-friendly natural pozzolan can be used as a partial replacement for OPC, thereby reducing its consumption and environmental impact. The volcanic region of western Saudi Arabia contains extensive deposits of Saudi natural pozzolan (SNP), which is a promising candidate for this purpose. This study evaluates the mechanical performance of CPB under four scenarios: a control mixture (CTRL), a mixture with untreated SNP (UT), and mixtures with activated SNP, specifically heat-treated (HT) and mechanically treated (MT). Each scenario was tested at replacement levels of 5%, 10%, 15%, and 20% of OPC. The performance was assessed using Uniaxial Compressive Strength (UCS) with Elastic Modulus (E), Ultrasonic Pulse Velocity (UPV), and Indirect Tensile Strength (ITS/Brazilian) tests. The results indicate that the HT scenario at a 5% replacement level delivered the highest performance, slightly outperforming the MT scenario. Both activated scenarios (HT and MT) significantly surpassed the untreated mixture (UT). Overall, the HT scenario proved to be the most effective among all CPB mixtures tested. XRD diffractogram analysis supported HT as the material with the highest strength performance due to the occurrence of more strength phases than other CPB materials, including Alite, Quartz, and Calcite. While UCS and UPV showed a positive correlation across all CPB materials, the relationship between UPV and the modulus of elasticity (E) demonstrated a low correlation. The findings suggest that using activated SNP materials can enhance CPB sustainability by lowering cement demand, stabilizing operating costs, and reducing environmental impacts. Full article
(This article belongs to the Special Issue Mining Engineering: Present and Future Prospectives)
Show Figures

Figure 1

21 pages, 3832 KB  
Article
Restoration Potential of Vegetation: Soil Nutrient Responses and Heavy Metal Distribution in Coal Mine Tailings
by George Popescu, Cosmin Alin Popescu, Adina Horablaga, Florin Crista, Lucian Dragomir, Casiana Mihut, Adina Berbecea and Isidora Radulov
Land 2025, 14(11), 2274; https://doi.org/10.3390/land14112274 - 17 Nov 2025
Viewed by 539
Abstract
Coal mining leaves behind extensive tailing dumps that pose long-term ecological and soil degradation challenges. This study evaluates the restoration potential of vegetation on coal mine tailings in the Jiu Valley, Romania, focusing on soil nutrient dynamics and the heavy metal distribution. Field [...] Read more.
Coal mining leaves behind extensive tailing dumps that pose long-term ecological and soil degradation challenges. This study evaluates the restoration potential of vegetation on coal mine tailings in the Jiu Valley, Romania, focusing on soil nutrient dynamics and the heavy metal distribution. Field sampling was conducted across three vegetation types—unvegetated (UV), herbaceous (HV), and arboreal (AV, Robinia pseudoacacia)—at two intervals: three and six years post-plantation. Soil samples were analyzed for their pH, organic carbon, macronutrients, micronutrients, and heavy metals using standardized spectrometric and titrimetric methods. Between 2021 and 2024, AV plots showed a 9.5% increase in total nitrogen and a 5.2% rise in organic carbon, alongside a 6.9% reduction in soil pH. HV plots exhibited a 10.6% increase in magnesium availability and a 2.8% decrease in copper concentrations, indicating active nutrient cycling. In contrast, UV soils retained 68% higher total potassium and 24% more zinc than vegetated plots, likely due to limited biological uptake. Lead concentrations remained below the EU threshold of 60 mg kg−1, while nickel levels exceeded recommended limits across all variants, peaking at 76.08 mg kg−1. The vegetation type significantly influenced nutrient mobilization and metal stabilization, with arboreal cover demonstrating the most consistent ameliorative effects. These findings underscore the role of targeted revegetation—particularly with Robinia pseudoacacia—in improving soil quality and mitigating ecological risks in post-mining landscapes. Full article
(This article belongs to the Special Issue Land Use and Management for Waste Disposal and Wastewater Treatment)
Show Figures

Figure 1

11 pages, 1022 KB  
Article
Assessment of Cobalt Recovery from Copper Tailings by Leaching with a Choline Chloride–Citric Acid Deep Eutectic Solvent: Effects of Pretreatment and Oxidant Use
by Yahaira Barrueto, Juan Patricio Ibáñez, Miguel Veliz, Matias Santana, José Ojeda and Carlos Carlesi
Minerals 2025, 15(11), 1187; https://doi.org/10.3390/min15111187 - 12 Nov 2025
Viewed by 771
Abstract
The accelerating global demand for cobalt, driven primarily by lithium-ion batteries, has intensified the search for alternative sources of supply. Mine tailings represent a promising secondary resource, particularly in regions with extensive mining histories such as Chile. This study evaluates cobalt leaching from [...] Read more.
The accelerating global demand for cobalt, driven primarily by lithium-ion batteries, has intensified the search for alternative sources of supply. Mine tailings represent a promising secondary resource, particularly in regions with extensive mining histories such as Chile. This study evaluates cobalt leaching from copper tailings using a deep eutectic solvent (DES), choline chloride–citric acid (ChCl–CA), with controlled addition of hydrogen peroxide. The tailings were subjected to pretreatments (froth flotation, chlorination, and thermal roasting) and then leached with choline chloride–citric acid-based DES or H2SO4. Temperature, leaching time, and solid–liquid ratio were evaluated. Results show that roasting significantly enhanced cobalt recovery when followed by citric acid or DES leaching, reaching up to 100% Co recovery. Under optimized conditions, DES-based leaching was effective and selective in a polymetallic matrix and achieved recoveries comparable to or better than acid leaching without generating toxic emissions. Although flotation and chlorination had limited effects on overall recovery, the results demonstrate the viability of integrated and cleaner technologies for valorizing tailings that contain critical metals such as cobalt. Full article
Show Figures

Figure 1

18 pages, 3060 KB  
Article
Study on the Inhibition and Activation of Pyrite Under Low Alkalinity Conditions Created by Hydrogen Peroxide and Lime
by Yuankun Yang, Milena Kostović, Rongdong Deng and Yinying Liao
Minerals 2025, 15(11), 1177; https://doi.org/10.3390/min15111177 - 8 Nov 2025
Viewed by 565
Abstract
High alkalinity facilitates copper–sulfur flotation separation but also leads to issues such as high reagent consumption, pipeline scaling, and gold loss in tailings. The ore from a copper mine in Serbia contains 2.86% copper, 1.64 g/t gold, and 20.39% sulfur, with copper occurring [...] Read more.
High alkalinity facilitates copper–sulfur flotation separation but also leads to issues such as high reagent consumption, pipeline scaling, and gold loss in tailings. The ore from a copper mine in Serbia contains 2.86% copper, 1.64 g/t gold, and 20.39% sulfur, with copper occurring mainly in covellite and enargite. To achieve efficient separation and recovery of copper–sulfur, a systematic study was conducted using micro-flotation, Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle analysis to investigate the inhibition and activation patterns of pyrite under low and high alkalinity conditions. The results indicate that the combined use of hydrogen peroxide and lime as inhibitor enables efficient separation of pyrite and covellite under low-alkalinity conditions. This effect is attributed to its ability to enhance oxidation of the pyrite surface, which generates more hydrophilic substances. Under low-alkalinity conditions (slurry pH = 10) regulated with hydrogen peroxide and lime in a covellite flotation cycle, and under acidic conditions (slurry pH = 6) in the pyrite flotation cycle, satisfactory results are obtained in both flotation cycles in comparison with industrial data. The copper flotation index was similar, but pyrite and gold recovery increased by 2.3% and ~4%, respectively, over those using lime alone. This process reduced the activator dosage required for pyrite activation substantially, while improving gold recovery. Results demonstrate an efficient method for copper–sulfur separation and recovery, providing theoretical guidance or industrial production processes. Full article
(This article belongs to the Special Issue Mineral Processing and Recycling Technologies for Sustainable Future)
Show Figures

Figure 1

19 pages, 6531 KB  
Article
The Mechanical Properties and Microstructural Characterization of Copper Tailing Backfill Cemented with a Slag-Based Material
by Haina Zhang, Xiutao Zhang, Lingsheng Yan, Changsheng Xie, Zewen Zhu, Shunman Chen and Xinyue Jiang
Buildings 2025, 15(21), 4004; https://doi.org/10.3390/buildings15214004 - 6 Nov 2025
Viewed by 394
Abstract
To address the challenges associated with Ordinary Portland Cement (OPC) in mine backfilling, including high costs, the large carbon footprint, and performance limitations, a novel cementitious powder (CP) based on alkali-activated slag is developed in this work. The mechanical performance and microstructural strengthening [...] Read more.
To address the challenges associated with Ordinary Portland Cement (OPC) in mine backfilling, including high costs, the large carbon footprint, and performance limitations, a novel cementitious powder (CP) based on alkali-activated slag is developed in this work. The mechanical performance and microstructural strengthening mechanism of this CP as a substitute for OPC in cemented copper tailing backfill (CTB) were systematically evaluated. The effects of key parameters, including the solid content (SC), tailing-to-cement ratio (TCR), and curing age (CA), were investigated using uniaxial compressive strength (UCS) tests and scanning electron microscopy (SEM) analysis. The results demonstrate that the novel binder exhibits superior performance. At a solid content of 73%, the CTB prepared with CP at a TCR of 10 or 12 achieved a compressive strength comparable to or exceeding that of the OPC-based counterpart with a TCR of 8. This represents a 33% reduction in binder dosage without sacrificing performance. The UCS of the CTB increased significantly with a decreasing TCR and an increasing CA, with the most rapid strength development observed during the early curing stages (≤7 days). The stress–strain behavior transitioned from plastic yielding to strain-softening with prolonged curing, and the macroscopic failure was predominantly governed by tensile cracking. Microstructural analysis revealed that the strength development of the CTB originates from the continuous formation of hydration products, such as calcium-silicate-hydrate (C-S-H) gel and ettringite. These products progressively fill pores and encapsulate tailing particles, creating a dense and interlocking skeletal structure. A lower TCR and a longer CA promote the formation of a more integrated and compact micro-network, thereby enhancing the macroscopic mechanical strength. This study confirms the viability of the slag-based binder as a sustainable alternative to OPC in mining backfill applications, providing a critical theoretical basis and technical support for the low-cost, eco-friendly utilization of mining solid waste. Full article
Show Figures

Figure 1

23 pages, 2990 KB  
Article
Opportunities and Challenges for Green Mining on the Qinghai-Xizang Plateau: A Case-Based SWOT Analysis
by Niannian Li, Chonghao Liu, Jing Liu, Xiangying Jia, Xiaodi Ma and Jianan Zhao
Sustainability 2025, 17(19), 8752; https://doi.org/10.3390/su17198752 - 29 Sep 2025
Viewed by 1028
Abstract
In the context of global sustainable development, the construction of green mining facilities has emerged as a pivotal strategy for advancing sustainable mining practices. As a substantial mineral resource base in China, the Qinghai-Xizang Plateau (QXP) is of significant concern due to its [...] Read more.
In the context of global sustainable development, the construction of green mining facilities has emerged as a pivotal strategy for advancing sustainable mining practices. As a substantial mineral resource base in China, the Qinghai-Xizang Plateau (QXP) is of significant concern due to its importance for mineral exploitation. However, the natural conditions of the region, such as freezing temperatures, low oxygen levels, frequent freeze–thaw cycles, and fragile ecology, pose substantial challenges to mining activities, making green mine construction an inevitable choice for mining development on the QXP. This study uses SWOT analysis to macroscopically evaluate the strengths, weaknesses, opportunities, and threats of green mine construction on the QXP. This study adopts SWOT analysis to sort out, from a macro and systematic perspective, the internal resource endowments, technical reserves, external policy and market opportunities, as well as multiple challenges such as ecological vulnerability, harsh climate, regulation, and public opinion in the construction of green mining on the QXP. Furthermore, four typical cases, namely the Julong Copper Mine, Zhaxikang Lead–Zinc Mine, Zaozigou Gold Mine, and Duolong Copper Mine, are selected for analysis, and their differentiated paths in ecological restoration, digital mines, tailings disposal, and community-benefit sharing are summarized. International comparisons reveal the similarities and differences in policies, technologies, and other aspects between the QXP and other high-altitude regions. The study holds that it is necessary to promote the coordinated development of resource exploitation and ecological protection in green mining on the QXP through technological innovation, policy optimization, community collaboration, and the construction of a full-life-cycle environmental-monitoring system. At the same time, it points out the limitations of the current research in quantitative analysis and future research directions. Full article
Show Figures

Figure 1

17 pages, 3621 KB  
Article
Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation
by Rubén H. Olcay, Andréia B. Henriques, George E. Valadão, Iván A. Reyes, Julio C. Juárez, Martín Reyes, Miguel Pérez and Mizraim U. Flores
Polymers 2025, 17(19), 2613; https://doi.org/10.3390/polym17192613 - 27 Sep 2025
Viewed by 753
Abstract
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 [...] Read more.
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 µm, and a specific weight of 2.64 g/cm3. Seawater contained significantly higher ion concentrations Na+ 10,741 ppm, Mg2+ 1245 ppm, and Ca2+ 556 ppm compared with continental water (187, 32, and 127 ppm, respectively), which negatively affected polymer performance. Sedimentation tests showed that the anionic polymer (A3) increased settling rates by 33 times with continental water at 40 g/t, while with seawater the increase was 31 times at 60 g/t. In column thickener tests, discharge solids reached 65% with continental water and 62% with seawater, representing an annual reduction of ~17,000 m3 of recovered water when seawater is used. Consistency tests indicated that achieving slump <20% required 75% solids with continental water and 77.5% with seawater. With dewatering polymers, doses of 200 g/t achieved ~70% solids and slump values near 50%, surpassing column thickener performance. Primary flotation results showed that recirculated and filtered seawater improved copper recovery by 3–5% compared with fresh seawater, due to partial removal of interfering ions. In contrast, recirculated and filtered continental water reduced recovery by 2–4%, likely because of residual polymer effects on mineral surfaces. These findings highlight the importance of polymer selection and dosage optimization to ensure efficient water recovery and sustainable flotation performance under varying water chemistries. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Cited by 1 | Viewed by 1131
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 3349 KB  
Article
Development and Performance Evaluation of Translucent Concrete Incorporating Activated Copper Tailings as Cementitious Material
by Guangdong An, Siyang Li, Zhaorui Li, Zhaohui He, Kai Li, Ping Ning, Xiangyu Wang and Xin Sun
Appl. Sci. 2025, 15(18), 10228; https://doi.org/10.3390/app151810228 - 19 Sep 2025
Cited by 1 | Viewed by 760
Abstract
This study reports a method for producing translucent concrete using alkali-activated copper tailings, aiming to advance the valorization of solid waste and the development of sustainable construction materials. Under optimal conditions—600 °C calcination, 10 wt% CaO, and a 1:2 water-to-solid ratio—the material achieved [...] Read more.
This study reports a method for producing translucent concrete using alkali-activated copper tailings, aiming to advance the valorization of solid waste and the development of sustainable construction materials. Under optimal conditions—600 °C calcination, 10 wt% CaO, and a 1:2 water-to-solid ratio—the material achieved a maximum 28-day compressive strength of 52.7 MPa, accompanied by a significantly reduced setting time. Leaching tests indicated that Cu, Zn, Pb, and As concentrations were well below the standard limits, ensuring environmental safety. Further optimization revealed that incorporating 40 wt% cement and 2 wt% polypropylene fibers (1 mm in diameter) provided the best balance between light transmission and mechanical performance. Microstructural analyses (XRD and SEM) confirmed the formation of C–S–H and C–A–S–H gels with minor Ca(OH)2, which densified the matrix and enhanced strength. Despite these promising results, potential variations in the tailing composition and challenges associated with industrial-scale implementation must be considered. Overall, this work elucidates the hydration and solidification mechanisms of copper-tailing-based translucent concrete and highlights its potential for environmentally sustainable and functional construction materials. Full article
Show Figures

Figure 1

Back to TopTop