Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Physicochemical Analysis of the Samples
2.2. DNA Extraction from AMD and Tailing Samples for Metagenomics and Statistical Analysis
2.3. Isolation of Arm-12
2.4. Identification of Arm-12
2.5. Phylogenetic Analysis of Arm-12
2.6. Morphology and SEM Studies
2.7. Optimal Conditions for Growth
2.8. Influence of Metal Ions
2.9. Bioleaching of Copper Concentrate
3. Results
3.1. Physicochemical Characteristics of AMD and Tailing Samples
3.2. Metagenomics Analysis and Microbial Community Composition
3.3. Metal Resistance Genes (MRGs)
3.4. CAZy Analysis and Gene Diversity
3.5. Phylogenetic Analysis of 16S rRNA and Identification of a New Strain
3.6. Cell Morphology and Growth Conditions
3.7. Influence of Heavy Metal Ions of Leptospirillum sp. Arm-12
3.8. Bioleaching of Copper Concentrate by Leptospirillum sp. Arm-12
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AA | Auxiliary Activities |
| AMD | Acid Mine Drainage |
| AT | Artsvanik Tailing |
| CAZy | Carbohydrate-Active Enzymes |
| CBM | Carbohydrate-Binding Modules |
| CE | Carbohydrate Esterases |
| CLs | Cell Lysis |
| EDTA | Ethylenediaminetetraacetic acid |
| EPS | Extracellular Polymeric Substances |
| GH | Glycoside Hydrolases |
| GT | Glycosyl Transferases |
| ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
| KAM | Kavart Abandoned Mine |
| KEM | Kapan Exploring Mine |
| MAC | Mackintosh |
| MRGs | Metal Resistance Genes |
| PD | Pulp density |
| PL | Polysaccharide Transferases |
| SEM | Scanning Electron Microscope |
| TOC | Total Organic Carbon |
References
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef]
- Johnson, D.B.; Quatrini, R. Acidophile microbiology in space and time. Curr. Issues Mol. Biol. 2020, 39, 63–76. [Google Scholar] [CrossRef]
- Méndez-García, C.; Mesa, V.; Sprenger, R.R.; Richter, M.; Diez, M.S.; Solano, J. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J. 2014, 8, 1259–1274. [Google Scholar] [CrossRef]
- Golyshina, O.V. Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl. Environ. Microbiol. J. 2011, 77, 5071–5078. [Google Scholar] [CrossRef]
- Chen, L.-X.; Huang, L.-N.; Méndez-García, C.; Kuang, J.-L.; Hua, Z.-S.; Liu, J.; Shu, W.-S. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr. Opin. Biotechnol. 2016, 38, 150–158. [Google Scholar] [CrossRef]
- Huang, L.-N.; Kuang, J.-L.; Shu, W.-S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 2016, 24, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.-L.; Huang, L.-N.; Chen, L.-X.; Hua, Z.-S.; Li, S.-J.; Hu, M.; Li, J.-T.; Shu, W.-S. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 2013, 7, 1038–1050. [Google Scholar] [CrossRef]
- Mesa, V.; Gallego, J.; González-Gil, R.; Lauga, B.; Sánchez, J.; Méndez-García, C.; Peláez, A.I. Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front. Microbiol. 2017, 8, 1756. [Google Scholar] [CrossRef] [PubMed]
- Lukhele, T.; Selvarajan, R.; Nyoni, H.; Mamba, B.; Msagati, T.A.M. Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles 2019, 23, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Vardanyan, A.; Vardanyan, N.; Khachatryan, A.; Zhang, R.; Sand, W. Adhesion to mineral surfaces by cells of Leptospirillum, Acidithiobacillus and Sulfobacillus from Armenian sulfide ores. Minerals 2019, 9, 69. [Google Scholar] [CrossRef]
- Toshchakov, S.V.; Yakimov, M.M.; Jones, D.L.; Golyshin, P.N.; Golyshina, O.V. High representation of archaea across all depths in oxic and low-pH sediment layers underlying an acidic stream. Front. Microbiol. 2020, 11, 2871, Erratum in Front. Microbiol. 2021, 12, 633015. [Google Scholar]
- Khachatryan, A.; Vardanyan, N.; Willscher, S.; Sevoyan, G.; Zhang, R.; Vardanyan, A. Bioleaching of chalcopyrite by a new strain Leptospirillum ferrodiazotrophum Ksh-L isolated from a dump-bioleaching system of Kashen copper-molybdenum mine. Minerals 2024, 14, 26. [Google Scholar] [CrossRef]
- Luo, Z.-H.; Li, Q.; Lai, Y.; Chen, H.; Liao, B.; Huang, L.-N. Diversity and genomic characterization of a novel parvarchaeota family in acid mine drainage sediments. Front. Microbiol. 2020, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Golyshina, O.V.; Lünsdorf, H.; Kublanov, I.V.; Goldenstein, N.I.; Hinrichs, K.-U.; Golyshin, P.N. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. Int. J. Syst. Evol. Microbiol. 2016, 66, 332–340. [Google Scholar] [CrossRef]
- Golyshina, O.V.; Pivovarova, T.A.; Karavaiko, G.I.; Kondratéva, T.F.; Moore, E.R.; Abraham, W.R.; Lünsdorf, H.; Timmis, K.N.; Yakimov, M.M.; Golyshin, P.N. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 2020, 3, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, S.N.; Korzhenkov, A.A.; Kublanov, I.V.; Bargiela, R.; Zamana, L.V.; Popova, A.A.; Toshchakov, S.V.; Golyshin, P.N.; Golyshina, O.V. Microbial communities of polymetallic deposits’ acidic ecosystems of continental climatic zone with high temperature contrasts. Front. Microbiol. 2019, 10, 1573. [Google Scholar] [CrossRef]
- Korzhenkov, A.; Toshchakov, S.V.; Bargiela, R.; Gibbard, H.; Ferrer, M.; Teplyuk, A.V.; Jones, D.L.; Kublanov, I.V.; Golyshin, P.N.; Golyshina, O.V. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome 2019, 7, 11. [Google Scholar] [CrossRef]
- Gomes, I.; Gomes, J.; Steiner, W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization. Bioresour. Technol. 2003, 90, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kawarabayasi, Y.; Satyanarayana, T. Acidophilic bacteria and archaea: Acid stable biocatalysts and their potential applications. Extremophiles 2012, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Adrio, J.L.; Demain, A.L. Microbial enzymes: Tools for biotechnological processes. Biomolecules 2014, 4, 117–139. [Google Scholar] [CrossRef]
- Hallberg, K.B. New perspectives in acid mine drainage microbiology. Hydrometallurgy 2010, 104, 448–453. [Google Scholar] [CrossRef]
- Auld, R.R.; Myre, M.; Mykytczuk, N.C.; Leduc, L.G.; Merritt, T.J. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J. Microbiol. Methods 2013, 93, 108–115. [Google Scholar] [CrossRef]
- Chen, L.-X.; Hu, M.; Huang, L.-N.; Hua, Z.-S.; Kuang, J.-L.; Li, S.-J.; Shu, W.-S. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 2015, 9, 1579–1592. [Google Scholar] [CrossRef]
- Bomberg, M.; Mäkinen, J.; Salo, M.; Kinnunen, P. High diversity in iron cycling microbial communities in acidic, iron-rich water of the Pyhäsalmi mine, Finland. Geofluids 2019, 2019, 7401304. [Google Scholar] [CrossRef]
- Coram, N.J.; Rawlings, D.E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl. Environ. Microbiol. 2002, 68, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.O.; Kurth, D.G.; Cid, F.D.; Ulacco, J.H. Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine. Extremophiles 2018, 22, 699–711. [Google Scholar] [CrossRef]
- Pakostova, E.; Johnson, D.B.; Bao, Z.; MacKenzie, P.M.; Ptacek, C.J.; Blowes, D.W. Bacterial and archaeal diversity in sulfide-bearing waste rock at Faro mine complex, Yukon territory, Canada. Geomicrobiol. J. 2020, 37, 511–519. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.-T.; Jiang, Z.; Liang, Z.-L.; Wang, P.; Liu, Z.-H.; Li, L.-Z.; Yin, H.-Q.; Jia, Y.; Huang, Z.-S.; et al. Key factors governing microbial community in extremely acidic mine drainage (pH < 3). Front. Microbiol. 2021, 12, 761579. [Google Scholar] [CrossRef]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Pan, Y.; Ye, H.; Li, X.; Yi, X.; Wen, Z.; Wang, H.; Lu, G.; Dang, Z. Spatial distribution characteristics of the microbial community and multi-phase distribution of toxic metals in the geochemical gradients caused by acid mine drainage, South China. Sci. Total Environ. 2021, 774, 145660. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, K.; Chen, X.; Zhao, Z.; Huang, Y.; Hu, L.; Liu, H.; Luan, T.; Chen, B. Characterization of metal resistance genes carried by waterborne free-living and particle-attached bacteria in the Pearl River Estuary. Environ. Pollut. 2023, 327, 121547. [Google Scholar] [CrossRef]
- Di Cesare, A.; Pjevac, P.; Eckert, E.; Curkov, N.; Šparica, M.M.; Corno, G.; Orlić, S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ. Pollut. 2020, 265, 114823. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Xu, H.; Cui, X.; Li, J.; Chen, J.; Zheng, B. Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China. Environ. Pollut. 2021, 280, 116947. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Yao, J.; Zhu, X.; Zhou, D.L.; Duran, R.; Mihucz, V.G.; Bashir, S.; Hudson-Edwards, K.A. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environ. Pollut. 2021, 273, 115667. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, X.; Zhang, S.; Zhang, L.; Li, X.; Hu, X.; Zhao, Q.; Wang, Q.; Yu, C. Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: A metagenomics approach. Sci. Total Environ. 2021, 779, 146502. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol. Environ. Saf. 2019, 170, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Mackintosh, M.E. Nitrogen fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 1978, 105, 215–218. [Google Scholar] [CrossRef]
- Manning, H. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl. Microbiol. 1975, 6, 1010–1016. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. Molecular evolutionary genetics analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Gerhardt, P.; Murray, R.G.E.; Costilow, R.N.; Nester, E.W.; Wood, W.A.; Krieg, N.R.; Phillips, G.B. Manual of Methods for General Bacteriology; ASM: Washington, DC, USA, 1981. [Google Scholar]
- Lucchesi, C.A.; Hirn, C.F. EDTA titration of total iron in iron (II) and iron (III) mixtures. Application to iron driers. Anal. Chem. 1960, 32, 1191–1193. [Google Scholar] [CrossRef]
- Hao, C.; Wei, P.; Pei, L.; Du, Z.; Zhang, Y.; Lu, Y.; Dong, H. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environ. Pollut. 2017, 223, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Xin, R.; Banda, J.F.; Hao, C.; Dong, H.; Pei, L.; Guo, D.; Wei, P.; Du, Z.; Zhang, Y.; Dong, H. Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui province, China. Environ. Pollut. 2021, 268, 115826. [Google Scholar] [CrossRef]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Hedrich, S.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952. [Google Scholar] [CrossRef] [PubMed]
- Plewniak, F.; Koechler, S.; Le Paslier, D.; Héry, M.; Bruneel, O.; Bertin, P.N. In situ metabolic activities of uncultivated Ferrovum sp. CARN8 evidenced by metatranscriptomic analysis. Res. Microbiol. 2020, 171, 37–43. [Google Scholar] [CrossRef]
- Tischler, J.S.; Jwair, R.J.; Gelhaar, N.; Drechsel, A.; Skirl, A.-M.; Wiacek, C.; Janneck, E.; Schlömann, M. New cultivation medium for “Ferrovum” and Gallionella-related strains. J. Microbiol. Methods 2013, 95, 138–144. [Google Scholar] [CrossRef]
- Moya-Beltrán, A.; Cárdenas, J.P.; Covarrubias, P.C.; Issotta, F.; Ossandon, F.J.; Grail, B.M.; Holmes, D.S.; Quatrini, R.; Johnson, D.B. Draft genome sequence of the nominated type strain of “Ferrovum myxofaciens,” an acidophilic, iron-oxidizing betaproteobacterium. Genome Announc. 2014, 4, e00834-14. [Google Scholar] [CrossRef]
- Muhadesi, J.-B.; Huang, Y.; Wang, B.-J.; Jiang, C.-Y.; Liu, S.-J. Acidibrevibacterium fodinaquatile gen. nov., sp. nov., isolated from acidic mine drainage. Int. J. Syst. Evol. Microbiol. 2019, 69, 3248–3255. [Google Scholar] [CrossRef]
- Ziegler, S.; Waidner, B.; Itoh, T.; Schumann, P.; Spring, S.; Gescher, J. Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int. J. Syst. Evol. Microbiol. 2013, 63, 1499–1504. [Google Scholar] [CrossRef]
- Pantke, C.; Obst, M.; Benzerara, K.; Morin, G.; Ona-Nguema, G.; Dippon, U.; Kappler, A. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 2012, 46, 1439–1446. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J.; Chi, R. Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 2013, 131–132, 138–143. [Google Scholar] [CrossRef]
- Zhu, N.; Xiang, Y.; Zhang, T.; Wu, P.; Dang, Z.; Li, P.; Wu, J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J. Hazard. Mater. 2011, 192, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Vardanyan, A.; Gaydardzhiev, S.; Vardanyan, N. Biological extraction of Cu and Ni from printed circuit boards via redoxolysis and concomitant substrate characterization. Hydrometallurgy 2023, 221, 106145. [Google Scholar] [CrossRef]
- Ghosh, S.; Mahapatra, N.R.; Banerjee, P.C. Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl. Environ. Microbiol. 1997, 63, 4523–4527. [Google Scholar] [CrossRef] [PubMed]
- Dopson, M.; Baker-Austin, C.; Koppineedi, P.R.; Bond, P.L. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic microorganisms. Microbiology 2003, 149, 1959–1970. [Google Scholar] [CrossRef]
- Arce-Rodríguez, A.; Puente-Sánchez, F.; Avendaño, R.; Libby, E.; Rojas, L.; Cambronero, J.C.; Pieper, D.H.; Timmis, K.N.; Chavarría, M. Pristine but metal-rich Río Sucio (Dirty River) is dominated by Gallionella and other iron-sulfur oxidizing microbes. Extremophiles 2017, 21, 235–243. [Google Scholar] [CrossRef]
- Hu, W.; Li, Z.; Ou, H.; Wang, X.; Wang, Q.; Tao, Z.; Huang, S.; Huang, Y.; Wang, G.; Pan, X. Novosphingobium album sp. nov., Novosphingobium organovorum sp. nov. and Novosphingobium mangrovi sp. nov. with the organophosphorus pesticides degrading ability isolated from mangrove sediments. Int. J. Syst. Evol. Microbiol. 2023, 73, 005843. [Google Scholar] [CrossRef]
- Xie, X.; Fu, J.; Wang, H.; Liu, J. Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr. J. Biotechnol. 2010, 26, 4056–4066. [Google Scholar]
- Davila, C.J.S.; Kate, E.; Abate, C.M.; Amoroso, M.J. Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 2012, 25, 905–917. [Google Scholar] [CrossRef]
- Hall, S.J.; Hitchcock, A.; Butler, C.S.; Kelly, D.J. A multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J. Bacteriol. 2008, 190, 8075–8085. [Google Scholar] [CrossRef] [PubMed]
- Fagan, M.J.; Saier, M.H., Jr. P-type ATPases of eukaryotes and bacteria: Sequence analyses and construction of phylogenetic trees. J. Mol. Evol. 1994, 38, 57–99. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, C.; Zhang, M.; Fan, C.; Guo, D.; An, Q.; Wang, G.; Xu, H.; Li, Y.; Zhang, W.; et al. Exploring the Cr(VI) removal mechanism of Sporosarcina saromensis M52 from a genomic perspective. Ecotoxicol. Environ. Saf. 2021, 225, 112767. [Google Scholar] [CrossRef] [PubMed]
- Egelund, J.; Ellis, M.; Doblin, M.; Qu, Y.; Bacic, A. Genes and enzymes of the GT31 family: Towards unravelling the function(s) of the plant glycosyltransferase family members. In Annual Plant Reviews: Plant Polysaccharides: Biosynthesis and Bioengineering; Ulvskov, P., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 41, pp. 213–234. [Google Scholar]
- Hallberg, K.B.; Coupland, K.; Kimura, S.; Johnson, D.B. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 2006, 72, 2022–2030. [Google Scholar] [CrossRef]
- Heinzel, E.; Hedrich, S.; Janneck, E.; Glombitza, F.; Seifert, J.; Schlömann, M. Bacterial diversity in a mine water treatment plant. Appl. Environ. Microbiol. 2009, 75, 858–861. [Google Scholar] [CrossRef]
- Vardanyan, A.; Achilleos, P.; Kafa, N.; Papadopoulou, M.; Vardanyan, N.; Vyrides, I. Effect of cell lysis (CLs) products on acidophilic chemolithotrophic microorganisms and role of Acidocella species. Geomicrobiol. J. 2017, 34, 916–922. [Google Scholar] [CrossRef]
- Li, M.; Tian, H.; Wang, L.; Duan, J. Bacterial diversity in Linglong gold mine, China. Geomicrobiol. J. 2016, 3, 267–273. [Google Scholar] [CrossRef]
- Sharma, M.; Khurana, H.; Singh, D.N.; Negi, R.K. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential. J. Environ. Manag. 2021, 280, 111744. [Google Scholar] [CrossRef]
- Sun, X.; Qiu, L.; Kolton, M.; Häggblom, M.; Xu, R.; Kong, T.; Gao, P.; Li, B.; Jiang, C.; Sun, W. VV reduction by Polaromonas spp. in vanadium mine tailings. Environ. Sci. Technol. 2020, 22, 14442–14454. [Google Scholar] [CrossRef]
- Hedrich, S.; Schlömann, M.; Johnson, D.B. The iron-oxidizing proteobacteria. Microbiology 2011, 157, 1551–1564. [Google Scholar] [CrossRef] [PubMed]
- Kaksonen, A.H.; Lakaniemi, A.-M.; Tuovinen, O.H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Clean. Prod. 2020, 264, 121586. [Google Scholar] [CrossRef]










| Samplings Sites | First Sampling | ||
|---|---|---|---|
| KEM | KAM | AT | |
| Summer 2023 | Winter 2023 | ||
| Sampling locations (GPS) | N39.203833, E46.429233 | N39.234800, E46.394133 | N39.231433, E46.447067 |
| pH/Eh | 2.0/630 | 1.8/580 | 2.5/430 |
| Temperature (°C) | 15 | 14 | 8 |
| Chemical elements | Chemical composition (=mg/kg = mg/L) | ||
| Al | 0.61 ± 0.037 | 61.0 ± 4.550 | 0.93 ± 0.004 |
| Ca | 155.0 ± 1.030 | 259.0 ± 5.194 | 3.8 ± 0.111 |
| Co | 0.02 ± 0.009 | 0.14 ± 0.001 | 0.01 ± 0.009 |
| As | 0.02 ± 0.009 | 0.01 ± 0.009 | 0.01 ± 0.009 |
| Cr | 0.01 ± 0.001 | 0.09 ± 0.009 | 0.01 ± 0.009 |
| Cu | 0.03 ± 0.001 | 11.6 ± 0.694 | 0.1 ± 0.009 |
| Fe | 0.9 ± 0.005 | 52.0 ± 1.888 | 0.6 ± 0.010 |
| K | 7.2 ± 0.620 | 2.8 ± 0.276 | 1.2 ± 0.045 |
| Mg | 27.4 ± 0.280 | 129.6 ± 1.087 | 2.9 ± 0.103 |
| Mn | 0.27 ± 0.020 | 5.82 ± 0.727 | 0.11 ± 0.010 |
| Na | 1.4 ± 0.064 | 1.04 ± 0.025 | 0.02 ± 0.009 |
| Ni | 0.02 ± 0.009 | 0.11 ± 0.008 | 0.01 ± 0.009 |
| Pb | 0.1 ± 0.024 | 0.16 ± 0.012 | 0.06 ± 0.009 |
| Se | 0.12 ± 0.005 | 0.04 ± 0.008 | 0.05 ± 0.002 |
| Sr | 0.62 ± 0.049 | 0.71 ± 0.034 | 0.8 ± 0.055 |
| Zn | 17.2 ± 1.070 | 30.1 ± 1.64 | 39.7 ± 0.579 |
| Kingdom | KEM | KAM | AT |
|---|---|---|---|
| Unknown | 0.2 | 0.08 | 0.2 |
| Archaea | 0.04 | 1.4 | 0.01 |
| Bacteria | 79.4 | 71.4 | 87.0 |
| Eukaryota | 0.2 | 2.0 | 0.005 |
| KEM (Al, Fe, Mg, Mn, Se, Pd) | AT (Al. Fe, Mg, Mn) | KAM (Al, Cu, Fe, Mg, Mn, Ni, Pb) | |||
|---|---|---|---|---|---|
| Genus | Species | Genus | Species | Genus | Species |
| Arenimonas | Arenimonas metallic | Limnobacter | Limnobacter sp. MED105 | Acidiphilum | Acidiphilium angustum |
| Aquabacterium | Aquabacterium pictum | Limnobacter sp. 130 | Acidiphilium iwatense | ||
| Betaproteobacteria | Rhodoferax sp. AJA081-3 | Limnobacter alexandrii | Acidiphilium multivorum | ||
| Fluviicoccus | Fluviicoccus keumensis | Massilia | Massilia sp. BSC 265 | Acidiphilium rubrum | |
| Novosphingobium | Novosphingobium ginsenosidimutans | Sediminibaterium | Sediminibacterium goheungense | Acidiphilium sp. 37-64-53 | |
| Optutus | Optitus sp. GAS368 | Polaromonas | Polaromonas sp. AER18D-145 | Acidiphilium sp. 21-60-14 | |
| Prevotella | Prevotella copri | Sphingopyxis | Sphinogopyxis bauzanensis | Metallibacterium | Metallibacterium scheffleri |
| Sphingomonas | Sphingomonas lacunae | Ferrovum | Ferrovum myxofaciens | ||
| Sphingopyxis | Sphingopyxis sp. L1A2A | ||||
| N | Metal Ions, mM | Fe, Oxidized, 3–5 Days | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cu2+ (CuSO4 × 5H2O) | Mo2+ (Na2MoO4 × 2H2O) | Cr2+ (CrSO4 × 5H2O) | Co2+ (CoSO4 × 7H2O) | Zn2+ (ZnSO4 × 7H2O) | Ni2+ (NiSO4 × 6H2O) | ||||||||
| g/L | % | g/L | % | g/L | % | g/L | % | g/L | % | g/L | % | ||
| 1 | Control | 4.2 | 100 | 4.2 | 100 | 4.2 | 100 | 4.2 | 100 | 4.2 | 100 | 4.2 | 100 |
| 2 | 5 | 3.9 | 92.8 | 1.2 | 29.0 | 0.80 | 19.0 | 1.6 | 33.0 | 2.8 | 67.0 | 3.2 | 76.1 |
| 3 | 10 | 3.2 | 76.1 | 0.8 | 19.0 | 0.5 | 12.0 | 1.2 | 25.0 | 2.1 | 50.0 | 2.8 | 67.0 |
| 4 | 25 | 2.5 | 60.0 | 0.5 | 12.0 | - | - | 0.8 | 16.3 | 1.6 | 33.0 | 2.0 | 48.0 |
| 5 | 50 | 1.5 | 36.0 | 0.5 | 12.0 | - | - | 0.5 | 12.0 | 1.0 | 24.0 | 1.2 | 25.0 |
| 6 | 100 | 0.8 | 16.3 | - | - | - | - | - | - | 0.5 | 12.0 | 0.8 | 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Khachatryan, A.; Vardanyan, A.; Zhang, R.; Zhang, Y.; Shi, X.; Willscher, S.; Nguyen, N.H.A.; Vardanyan, N. Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching. Microorganisms 2026, 14, 146. https://doi.org/10.3390/microorganisms14010146
Khachatryan A, Vardanyan A, Zhang R, Zhang Y, Shi X, Willscher S, Nguyen NHA, Vardanyan N. Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching. Microorganisms. 2026; 14(1):146. https://doi.org/10.3390/microorganisms14010146
Chicago/Turabian StyleKhachatryan, Anna, Arevik Vardanyan, Ruiyong Zhang, Yimeng Zhang, Xin Shi, Sabine Willscher, Nhung H. A. Nguyen, and Narine Vardanyan. 2026. "Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching" Microorganisms 14, no. 1: 146. https://doi.org/10.3390/microorganisms14010146
APA StyleKhachatryan, A., Vardanyan, A., Zhang, R., Zhang, Y., Shi, X., Willscher, S., Nguyen, N. H. A., & Vardanyan, N. (2026). Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching. Microorganisms, 14(1), 146. https://doi.org/10.3390/microorganisms14010146

