Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = copper (I) selenide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3024 KiB  
Article
Rapid Microwave-Assisted Synthesis of CuSe Nanoparticles for High-Sensitivity Serotonin Biosensing in Serum
by Sankar Sekar, Ramalingam Manikandan, Shiva Kumar Arumugasamy, Saravanan Sekar, Youngmin Lee, Seung-Cheol Chang and Sejoon Lee
Chemosensors 2025, 13(7), 264; https://doi.org/10.3390/chemosensors13070264 - 21 Jul 2025
Viewed by 412
Abstract
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. [...] Read more.
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. The fabricated CuSe nanostructures exhibited an interconnected, cluster-like morphology composed of irregularly shaped particles with a distinct hexagonal crystal structure. The electrochemical results revealed that the CuSe/SPCE sensor showed better electrochemical activity and good analytical sensing performance towards serotonin detection. The sensor exhibited a linear response in the concentration range of 10 to 1000 nM, with an excellent correlation coefficient (R2 = 0.9998) and a low detection limit of 3 nM. Furthermore, the CuSe/SPCE showed better selectivity, impressive sensitivity (12.45 µM/µA cm−2), and good reproducibility toward serotonin detection, making it a promising electrochemical biosensor for serotonin detection in various real biological samples. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

12 pages, 9078 KiB  
Article
High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate
by Ying-Chu Chen, Michael Chen and Yu-Kuei Hsu
Nanomaterials 2025, 15(13), 998; https://doi.org/10.3390/nano15130998 - 27 Jun 2025
Viewed by 285
Abstract
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the [...] Read more.
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the preparation of Cu(OH)2 nanowires (NWs) via electrochemical oxidation, followed by chemical conversion to Cu1.8Se through a selenization process. The morphology, composition, and microstructure of the resulting Cu1.8Se NSs were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Cu1.8Se NSs exhibited excellent electrocatalytic activity for H2O2 reduction, achieving a notably low detection limit of 1.25 μM and demonstrating rapid response and high sensitivity with a linear relationship in amperometric detection. Additionally, SERS experiments using Rhodamine B as a probe molecule and the Cu1.8Se NS/Cu foil as a substrate displayed outstanding performance, with a detection limit as low as 1 μM. The flower-like structure of the Cu1.8Se NSs exhibited linear dependence between analyte concentration and detection signals, along with satisfactory reproducibility in dual-sensing applications. These findings underscore the scalability and potential of this fabrication approach for advanced sensor development. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

17 pages, 6339 KiB  
Article
Influence of Copper Stoichiometric Composition and Compaction Method on Mechanical Properties of CuxSe Thermoelectric Materials
by Fani Stergioudi, Georgios Skordaris, Maria Pappa, Nikolaos Michailidis, Vasileios Pavlidis, Dimitrios Stathokostopoulos, Aikaterini Teknetzi, Lamprini Malletzidou, George Vourlias, Georgios Maliaris and Ioanna K. Sfampa
Metals 2025, 15(6), 640; https://doi.org/10.3390/met15060640 - 6 Jun 2025
Viewed by 744
Abstract
This study investigates the structural and mechanical properties of Cu–Se-based thermoelectric materials with varying Cu:Se stoichiometries (1.8, 1.9, and 2.0). Phase composition was examined using X-ray diffraction (XRD), revealing a transition from a mixed α/β-phase in Cu:Se = 2.0 to a fully cubic [...] Read more.
This study investigates the structural and mechanical properties of Cu–Se-based thermoelectric materials with varying Cu:Se stoichiometries (1.8, 1.9, and 2.0). Phase composition was examined using X-ray diffraction (XRD), revealing a transition from a mixed α/β-phase in Cu:Se = 2.0 to a fully cubic β-phase Cu2−xSe in Cu:Se = 1.8. Crystallite size analysis showed a reduction with increasing Cu content, which strongly influenced mechanical behavior. Vickers microhardness and nanoindentation tests were employed to assess hardness, elastic modulus, and elastic recovery. The Cu:Se = 2.0 sample exhibited the highest hardness but the lowest elastic recovery and elastic modulus from indentation, suggesting strong intragrain cohesion but limited elastic deformation due to fine grain structure. In contrast, the sub-stoichiometric Cu:Se = 1.8 phase displayed higher elastic modulus and recovery, possibly due to a more rigid Se sub-lattice and defect-mediated deformation mechanisms. Compression tests confirmed the higher bulk modulus in the Cu-deficient phase. Bending tests also showed that the Cu-deficient phase exhibited the highest bending modulus, further supporting its enhanced stiffness under elastic deformation. These results highlight the significant role of stoichiometry and crystallite structure in tuning the mechanical response of thermoelectric Cu–Se compounds, with implications for their durability and performance in practical applications. Full article
Show Figures

Figure 1

38 pages, 3854 KiB  
Article
Application of Copper Indium Gallium Selenide Thin-Film Solar Technology in Green Retrofitting of Aging Residential Buildings
by Fan Lu, Mijeong Kwon and Jungsik Jang
Buildings 2025, 15(10), 1633; https://doi.org/10.3390/buildings15101633 - 13 May 2025
Viewed by 764
Abstract
The growing imperative for sustainable building retrofits has spurred significant interest in advanced photovoltaic (PV) solutions. This study evaluates the feasibility and competitiveness of incorporating CIGS thin-film photovoltaic (PV) modules into retrofit projects for aging buildings. By combining qualitative analyses of market and [...] Read more.
The growing imperative for sustainable building retrofits has spurred significant interest in advanced photovoltaic (PV) solutions. This study evaluates the feasibility and competitiveness of incorporating CIGS thin-film photovoltaic (PV) modules into retrofit projects for aging buildings. By combining qualitative analyses of market and environmental factors with a quantitative multi-criteria index model, this research assesses CIGS performance across five critical dimensions: aesthetic, economic, safety, energy saving, and innovation. The weights assigned to each criterion were determined through expert evaluations derived from structured focus group discussions. The results demonstrate that CIGS exhibits substantial strengths in aesthetic, economic, safety, energy saving, and innovation while maintaining reasonable economic feasibility. The quantitative assessment demonstrated that CIGS thin-film solar cells received the highest overall score (88.92), surpassing silicon-based photovoltaics (86.03), window retrofitting (88.83), and facade cladding (82.21) in all five key metrics of aesthetics, economic feasibility, safety, energy efficiency, and innovation. The findings indicate that CIGS technology exhibits not only exceptional visual adaptability but also attains balanced performance with regard to environmental and structural metrics. This renders it a highly competitive and comprehensive solution for sustainable building retrofits. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 15469 KiB  
Article
Electrolytic Recovery of Indium from Copper Indium Gallium Selenide Photovoltaic Panels: Preliminary Investigation of Process Parameters
by Monika Gajec, Anna Król, Jadwiga Holewa-Rataj, Ewa Kukulska-Zając and Tomasz Kuchta
Recycling 2025, 10(3), 86; https://doi.org/10.3390/recycling10030086 - 2 May 2025
Viewed by 618
Abstract
The European Green Deal emphasizes the development of renewable energy sources to combat climate change. However, as photovoltaic expansion accelerates, so does the potential for increased waste, necessitating effective material recycling strategies. Indium, a scarce and valuable element crucial to the production of [...] Read more.
The European Green Deal emphasizes the development of renewable energy sources to combat climate change. However, as photovoltaic expansion accelerates, so does the potential for increased waste, necessitating effective material recycling strategies. Indium, a scarce and valuable element crucial to the production of photovoltaic panels, underscores the necessity for efficient recycling practices to reduce reliance on virgin resources. In a recent laboratory analysis, a CIGS photovoltaic panel underwent a series of processes including crushing, grinding, and homogenization. The concentration of indium, vital for recycling, was meticulously analyzed using ICP-MS and validated through microscopic and composition analyses. Subsequent extraction utilizing 3 M HCl and H2O2, followed by electrolysis, yielded a remarkable up to 52% indium recovery within a 48-h timeframe. Importantly, the study encompassed both averaged panel samples and samples from the absorbing layer, emphasizing the comprehensive approach required for efficient recycling. This underscores the critical importance of optimizing recycling processes to mitigate the environmental impact associated with the disposal of photovoltaic panels. By maximizing indium recovery, not only are environmental impacts reduced, but the long-term sustainability of renewable energy technologies is also ensured. This highlights the interconnectedness of recycling practices with the broader goals of achieving a circular economy and securing the viability of renewable energy systems in the fight against climate change. Full article
Show Figures

Figure 1

12 pages, 2652 KiB  
Article
Rapid and Highly Selective Dopamine Sensing with CuInSe2-Modified Nanocomposite
by Jing Li, Guangzhong Xie, Luwei Dai, Min Yang and Yuanjie Su
J. Compos. Sci. 2025, 9(3), 123; https://doi.org/10.3390/jcs9030123 - 6 Mar 2025
Cited by 22 | Viewed by 1038
Abstract
As an important neurotransmitter, the concentration of dopamine (DA) reflects certain physiological conditions and DA-related diseases. Rapid monitoring of DA levels is of great significance in regulating body health. However, regular electrochemical DA sensors suffer from poor sensitivity, low selectivity and interference immunity, [...] Read more.
As an important neurotransmitter, the concentration of dopamine (DA) reflects certain physiological conditions and DA-related diseases. Rapid monitoring of DA levels is of great significance in regulating body health. However, regular electrochemical DA sensors suffer from poor sensitivity, low selectivity and interference immunity, as well as a complex preparation process. Herein, we developed an accessible and cost-effective electrochemical sensor with a copper indium selenide (CuInSe2 or CIS)-modified screen-printed carbon electrode for DA discrimination. This DA sensor was developed using a facile one-step hydrothermal method without high-temperature quenching. Benefitting from the inherent merits of CIS and the conversion of Cu2+ and Cu+ during the catalytic reaction, the sensor attained both excellent sensitivity (2.511 μA·µM−1·cm−1) and selectivity among multiple substances interfering with DA. This work demonstrates the potential to improve the analytical performance of traditional electrochemical sensors. Full article
Show Figures

Graphical abstract

21 pages, 2799 KiB  
Article
Numerical Simulation and Hole Transport Layers Optimization of a Lead Sulfide-Based Solar Cell with a Power Conversion Efficiency of Above 22%
by Edson L. Meyer, Inam Vulindlela, Athandwe Paca, Mojeed A. Agoro and Nicholas Rono
Coatings 2025, 15(3), 255; https://doi.org/10.3390/coatings15030255 - 20 Feb 2025
Viewed by 1208
Abstract
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized [...] Read more.
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized solar cells (QDSSCs), the power conversion efficiency (PCE) is still low when compared to other solar cells such as perovskite. This efficiency gap poses a substantial challenge in harnessing the full potential of QDSSCs for widespread adoption in renewable energy applications. Enhancing the efficiency of QDSSCs is imperative for their commercial viability and widespread deployment. In this work, SCAPS-1D was used in the simulation of QDSSCs. The solar cell with a general configuration of FTO/TiO2/PbS/HTL/Au was investigated. In the device, PbS quantum dots were inserted as the absorber layer, TiO2 as the electron transport layer (ETL), gold as the back contact, and the following inorganic materials, i.e., copper (I) iodide (CuI), copper (I) oxide (Cu2O), cadmium zinc telluride selenide (CZTSe), copper iron tin sulfide (CFTS), and copper zinc tin sulfide selenide (CZTSSe) were tested as HTL materials, and FTO acted as the conductive substrate. The best HTL material (CZTSSe) exhibited a PCE of 22.61%, with a fill factor (FF) of 84.67%, an open circuit voltage (Voc) of 0.753 V, and a current density (Jsc) of 35.48 mA cm−2. This study contributes to the field by employing SCAPS-1D simulations to optimize QDSSCs, exploring novel inorganic HTL materials for these solar cells and identifying CZTSSe as a promising low-cost HTL that significantly enhances both the performance and commercial viability of QDSSCs. Full article
Show Figures

Figure 1

12 pages, 1742 KiB  
Article
Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
by Saood Ali, Praveen Kumar, Khursheed Ahmad and Rais Ahmad Khan
Crystals 2025, 15(2), 171; https://doi.org/10.3390/cryst15020171 - 10 Feb 2025
Cited by 5 | Viewed by 1111
Abstract
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In [...] Read more.
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In recent years, the numerical simulation of perovskite solar cells (PVSKSCs) via the solar cell capacitance simulation (SCAPS) method has attracted the attention of the scientific community. In this work, we adopted SCAPS for the theoretical study of lead (Pb)-free PVSKSCs. A cesium bismuth iodide (CsBi3I10; CBI) perovskite-like material was used as an absorber layer. The thickness of the CBI layer was optimized. In addition, different electron transport layers (ETLs), such as titanium dioxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), and zinc selenide (ZnSe), and different hole transport layers, such as spiro-OMeTAD (2,2,7,7-tetrakis(N,N-di(4-methoxyphenylamine)-9,9′-spirobifluorene), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and copper oxide (Cu2O), were explored for the simulation of CBI-based PVSKSCs. A device structure of FTO/ETL/CBI/HTL/Au was adopted for simulation studies. The simulation studies showed the improved photovoltaic performance of CBI-based PVSKSCs using spiro-OMeTAD and TiO2 as the HTL and ETL, respectively. An acceptable PCE of 11.98% with a photocurrent density (Jsc) of 17.360258 mA/cm2, a fill factor (FF) of 67.10%, and an open-circuit voltage (Voc) of 1.0282 V were achieved under the optimized conditions. It is expected that the present study will be beneficial for researchers working towards the development of CBI-based PVSKSCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

39 pages, 2858 KiB  
Review
Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics
by Andrew R. Smith, Mehrdad Ghamari, Sasireka Velusamy and Senthilarasu Sundaram
Energies 2024, 17(24), 6363; https://doi.org/10.3390/en17246363 - 18 Dec 2024
Cited by 5 | Viewed by 3004
Abstract
This study investigates the incorporation of thin-film photovoltaic (TFPV) technologies in building-integrated photovoltaics (BIPV) and their contribution to sustainable architecture. The research focuses on three key TFPV materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS), examining their composition, [...] Read more.
This study investigates the incorporation of thin-film photovoltaic (TFPV) technologies in building-integrated photovoltaics (BIPV) and their contribution to sustainable architecture. The research focuses on three key TFPV materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS), examining their composition, efficiency, and BIPV applications. Recent advancements have yielded impressive results, with CdTe and CIGS achieving laboratory efficiencies of 22.10% and 23.35%, respectively. The study also explores the implementation of building energy management systems (BEMS) for optimizing energy use in BIPV-equipped buildings. Financial analysis indicates that despite 10.00–30.00% higher initial costs compared to conventional materials, BIPV systems can generate 50–150 kWh/m2 annually, with simple payback periods of 5–15 years. The research emphasizes the role of government incentives and innovative financing in promoting BIPV adoption. As BIPV technology progresses, it offers a promising solution for transforming buildings from energy consumers to producers, significantly contributing to sustainable urban development and climate change mitigation. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings)
Show Figures

Figure 1

18 pages, 1222 KiB  
Article
Computational Optimization for CdS/CIGS/GaAs Layered Solar Cell Architecture
by Satyam Bhatti, Habib Ullah Manzoor, Ahmed Zoha and Rami Ghannam
Energies 2024, 17(18), 4758; https://doi.org/10.3390/en17184758 - 23 Sep 2024
Cited by 3 | Viewed by 1826
Abstract
Multi-junction solar cells are vital in developing reliable, green, sustainable solar cells. Consequently, the computational optimization of solar cell architecture has the potential to profoundly expedite the process of discovering high-efficiency solar cells. Copper indium gallium selenide (CIGS)-based solar cells exhibit substantial performance [...] Read more.
Multi-junction solar cells are vital in developing reliable, green, sustainable solar cells. Consequently, the computational optimization of solar cell architecture has the potential to profoundly expedite the process of discovering high-efficiency solar cells. Copper indium gallium selenide (CIGS)-based solar cells exhibit substantial performance compared to those utilizing cadmium sulfide (CdS). Likewise, CIGS-based devices are more efficient according to their device performance, environmentally benign nature, and thus, reduced cost. Therefore, the paper introduces an optimization process of three-layered n-CdS/p-CIGS/p-GaAs (NPP)) solar cell architecture based on thickness and carrier charge density. An in-depth investigation of the numerical analysis for homojunction PPN-junction with the ’GaAs’ layer structure along with n-ZnO front contact was simulated using the Solar Cells Capacitance Simulator (SCAPS-1D) software. Subsequently, various computational optimization techniques for evaluating the effect of the thickness and the carrier density on the performance of the PPN layer on solar cell architecture were examined. The electronic characteristics by adding the GaAs layer on the top of the conventional (PN) junction further led to optimized values of the power conversion efficiency (PCE), open-circuit voltage (VOC), fill factor (FF), and short-circuit current density (JSC) of the solar cell. Lastly, the paper concludes by highlighting the most promising results of our study, showcasing the impact of adding the GaAs layer. Hence, using the optimized values from the analysis, thickness of 5 (μm) and carrier density of 1×1020 (1/cm) resulted in the maximum PCE, VOC, FF, and JSC of 45.7%, 1.16 V, 89.52%, and 43.88 (mA/m2), respectively, for the proposed solar cell architecture. The outcomes of the study aim to pave the path for highly efficient, optimized, and robust multi-junction solar cells. Full article
(This article belongs to the Special Issue Advances in High-Performance Perovskite Solar Cells)
Show Figures

Figure 1

25 pages, 9496 KiB  
Article
Enhancing Multi-Junction Solar Cell Performance: Advanced Predictive Modeling and Cutting-Edge CIGS Integration Techniques
by Zakarya Ziani, Moustafa Yassine Mahdad, Mohammed Zakaria Bessenouci, Mohammed Chakib Sekkal and Nacera Ghellai
Energies 2024, 17(18), 4669; https://doi.org/10.3390/en17184669 - 19 Sep 2024
Cited by 3 | Viewed by 2261
Abstract
Historically, multi-junction solar cells have evolved to capture a broader spectrum of sunlight, significantly enhancing efficiency beyond conventional solar technologies. In this study, we utilized Silvaco TCAD tools to optimize a five-junction solar cell composed of AlInP, AlGaInP, AlGaInAs, GaInP, GaAs, InGaAs, and [...] Read more.
Historically, multi-junction solar cells have evolved to capture a broader spectrum of sunlight, significantly enhancing efficiency beyond conventional solar technologies. In this study, we utilized Silvaco TCAD tools to optimize a five-junction solar cell composed of AlInP, AlGaInP, AlGaInAs, GaInP, GaAs, InGaAs, and Ge, drawing on advancements documented in the literature. Our research focused on optimizing these cells through sophisticated statistical modeling and material innovation, particularly examining the relationship between layer thickness and electrical yield under one sun illumination. Employing III-V tandem solar cells, renowned for their superior efficiency in converting sunlight to electricity, we applied advanced statistical models to a reference solar cell configured with predefined layer thicknesses. Our analysis revealed significant positive correlations between layer thickness and electrical performance, with correlation coefficients (R2 values) impressively ranging from 0.86 to 0.96 across different regions. This detailed statistical insight led to an improvement in overall cell efficiency to 44.2. A key innovation in our approach was replacing the traditional germanium (Ge) substrate with Copper Indium Gallium Selenide (CIGS), known for its adjustable bandgap and superior absorption of long-wavelength photons. This strategic modification not only broadened the absorption spectrum but also elevated the overall cell efficiency to 47%. Additionally, the optimization process involved simulations using predictive profilers and Silvaco Atlas tools, which systematically assessed various configurations for their spectral absorption and current–voltage characteristics, further enhancing the cell’s performance. These findings underscore the critical role of precise material engineering and sophisticated statistical analyses in advancing solar cell technology, setting new efficiency benchmarks, and driving further developments in the field. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

17 pages, 6042 KiB  
Article
Synthesis and Superficial Modification “In Situ” of Copper Selenide (Cu2-x Se) Nanoparticles and Their Antibacterial Activity
by José Manuel Mata-Padilla, José Ángel Ledón-Smith, Marissa Pérez-Alvarez, Gregorio Cadenas-Pliego, Enrique Díaz Barriga-Castro, Odilia Pérez-Camacho, Christian Javier Cabello-Alvarado and Rodolfo Silva
Nanomaterials 2024, 14(13), 1151; https://doi.org/10.3390/nano14131151 - 4 Jul 2024
Cited by 3 | Viewed by 2647
Abstract
Copper selenide nanoparticles (Cu2-x Se NPs) have received a lot of attention in recent decades due to their interesting properties and potential applications in various areas such as electronics, health, solar cells, etc. In this study, details of the synthesis and characterization [...] Read more.
Copper selenide nanoparticles (Cu2-x Se NPs) have received a lot of attention in recent decades due to their interesting properties and potential applications in various areas such as electronics, health, solar cells, etc. In this study, details of the synthesis and characterization of copper selenide nanoparticles modified with gum arabic (GA) are reported. Also, through transmission electronic microscopy (TEM) analysis, the transformation of the morphology and particle size of copper selenide nanoparticles in aqueous solution was studied. In addition, we present an antimicrobial study with different microorganisms such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albiacans (C. albicans). Copper selenide nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC) and TEM. XRD confirmed the crystal-line structure of the nanoparticles such as cubic berzelanite with a particle size of 6 nm ± 0.5. FTIR and TGA corroborated the surface modification of copper selenide nanoparticles with gum arabic, and DSC suggested a change in the structural phase from cubic to hexagonal. TEM analysis demonstrated that the surface modification of the Cu2-x Se NPs stabilized the nanostructure of the particles, preventing changes in the morphology and particle size. The antimicrobial susceptibility analysis of copper selenide nanoparticles indicated that they have the ability to inhibit the microbial growth of Staphylococcus aureus, Escherichia coli and Candida albicans. Full article
Show Figures

Figure 1

23 pages, 1552 KiB  
Article
Improving the Selection of PV Modules and Batteries for Off-Grid PV Installations Using a Decision Support System
by Luis Serrano-Gomez, Isabel C. Gil-García, M. Socorro García-Cascales and Ana Fernández-Guillamón
Information 2024, 15(7), 380; https://doi.org/10.3390/info15070380 - 29 Jun 2024
Cited by 2 | Viewed by 1666
Abstract
In the context of isolated photovoltaic (PV) installations, selecting the optimal combination of modules and batteries is crucial for ensuring efficient and reliable energy supply. This paper presents a Decision Support System (DSS) designed to aid in the selection process of the development [...] Read more.
In the context of isolated photovoltaic (PV) installations, selecting the optimal combination of modules and batteries is crucial for ensuring efficient and reliable energy supply. This paper presents a Decision Support System (DSS) designed to aid in the selection process of the development of new PV isolated installations. Two different multi-criteria decision-making (MCDM) approaches are employed and compared: AHP (Analytic Hierarchy Process) combined with TOPSIS (technique for order of preference by similarity to ideal solution) and Entropy combined with TOPSIS. AHP and Entropy are used to weight the technical and economic criteria considered, and TOPSIS ranks the alternatives. A comparative analysis of the AHP + TOPSIS and Entropy + TOPSIS methods was conducted to determine their effectiveness and applicability in real-world scenarios. The results show that AHP and Entropy produce contrasting criteria weights, yet TOPSIS converges on similar top-ranked alternatives using either set of weights, with the combination of lithium-ion batteries with the copper indium gallium selenide PV module as optimal. AHP allows for the incorporation of expert subjectivity, prioritising costs and an energy yield intuitive to PV projects. Entropy’s objectivity elevates criteria with limited data variability, potentially misrepresenting their true significance. Despite these discrepancies, this study highlights the practical implications of using structured decision support methodologies in optimising renewable energy systems. Even though the proposed methodology is applied to a PV isolated system, it can effectively support decision making for optimising other stand-alone or grid-connected installations, contributing to the advancement of sustainable energy solutions. Full article
(This article belongs to the Special Issue Artificial Intelligence and Decision Support Systems)
Show Figures

Figure 1

9 pages, 7476 KiB  
Communication
Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper
by Kaili Wang, Li Fan, Hongliang Zhu, Hao Liu, Yuxuan Wang and Shancheng Yan
Coatings 2024, 14(4), 431; https://doi.org/10.3390/coatings14040431 - 3 Apr 2024
Viewed by 1297
Abstract
In important applications, thermoelectric technology has been widely applied for precise temperature control in intelligent electronics. This work synthesized and characterized low-content copper-doped SnSe thermoelectric catalysts using an easy and effective hydrothermal method. It was discovered that doping increased the crystal plane spacing [...] Read more.
In important applications, thermoelectric technology has been widely applied for precise temperature control in intelligent electronics. This work synthesized and characterized low-content copper-doped SnSe thermoelectric catalysts using an easy and effective hydrothermal method. It was discovered that doping increased the crystal plane spacing of SnSe, increased the carrier concentration, and improved the thermoelectric properties. The best degradation was attained at x = 0.0025. The thermoelectric degradation performance of low-dose copper-doped tin selenide Sn1−xCuxSe (x = 0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003), for the degradation of methylene blue from organic wastewater at 75 °C, was examined. Our research indicates that by using this approach, we can create more high-performance catalysts. Full article
(This article belongs to the Special Issue Advanced Photo- and Electrocatalytic Surface Applications)
Show Figures

Figure 1

29 pages, 5686 KiB  
Review
Recent Progress and Challenges in Controlling Secondary Phases in Kesterite CZT(S/Se) Thin Films: A Critical Review
by Mohamed Yassine Zaki and Alin Velea
Energies 2024, 17(7), 1600; https://doi.org/10.3390/en17071600 - 27 Mar 2024
Cited by 13 | Viewed by 2728
Abstract
Kesterite-based copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) thin films have attracted considerable attention as promising materials for sustainable and cost-effective thin-film solar cells. However, the successful integration of these materials into photovoltaic devices is hindered by the coexistence [...] Read more.
Kesterite-based copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) thin films have attracted considerable attention as promising materials for sustainable and cost-effective thin-film solar cells. However, the successful integration of these materials into photovoltaic devices is hindered by the coexistence of secondary phases, which can significantly affect device performance and stability. This review article provides a comprehensive overview of recent progress and challenges in controlling secondary phases in kesterite CZTS and CZTSe thin films. Drawing from relevant studies, we discuss state-of-the-art strategies and techniques employed to mitigate the formation of secondary phases. These include a range of deposition methods, such as electrodeposition, sol-gel, spray pyrolysis, evaporation, pulsed laser deposition, and sputtering, each presenting distinct benefits in enhancing phase purity. This study highlights the importance of employing various characterization techniques, such as X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, for the precise identification of secondary phases in CZTS and CZTSe thin films. Furthermore, the review discusses innovative strategies and techniques aimed at mitigating the occurrence of secondary phases, including process optimization, compositional tuning, and post-deposition treatments. These approaches offer promising avenues for enhancing the purity and performance of kesterite-based thin-film solar cells. Challenges and open questions in this field are addressed, and potential future research directions are proposed. By comprehensively analyzing recent advancements, this review contributes to a deeper understanding of secondary phase-related issues in kesterite CZT(S/Se) thin films, paving the way for enhanced performance and commercial viability of thin-film solar cell technologies. Full article
(This article belongs to the Special Issue Advances on Solar Energy Materials and Solar Cells)
Show Figures

Figure 1

Back to TopTop