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Abstract: Kesterite-based copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) thin
films have attracted considerable attention as promising materials for sustainable and cost-effective
thin-film solar cells. However, the successful integration of these materials into photovoltaic devices
is hindered by the coexistence of secondary phases, which can significantly affect device perfor-
mance and stability. This review article provides a comprehensive overview of recent progress
and challenges in controlling secondary phases in kesterite CZTS and CZTSe thin films. Drawing
from relevant studies, we discuss state-of-the-art strategies and techniques employed to mitigate the
formation of secondary phases. These include a range of deposition methods, such as electrodeposi-
tion, sol-gel, spray pyrolysis, evaporation, pulsed laser deposition, and sputtering, each presenting
distinct benefits in enhancing phase purity. This study highlights the importance of employing
various characterization techniques, such as X-ray diffraction, Raman spectroscopy, scanning electron
microscopy, and energy-dispersive X-ray spectroscopy, for the precise identification of secondary
phases in CZTS and CZTSe thin films. Furthermore, the review discusses innovative strategies and
techniques aimed at mitigating the occurrence of secondary phases, including process optimization,
compositional tuning, and post-deposition treatments. These approaches offer promising avenues
for enhancing the purity and performance of kesterite-based thin-film solar cells. Challenges and
open questions in this field are addressed, and potential future research directions are proposed. By
comprehensively analyzing recent advancements, this review contributes to a deeper understanding
of secondary phase-related issues in kesterite CZT(S/Se) thin films, paving the way for enhanced
performance and commercial viability of thin-film solar cell technologies.
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1. Introduction

The kesterite family comprises copper zinc tin sulfide (CZTS), copper zinc tin selenide
(CZTSe), and their sulfoselenide variant, copper zinc tin sulfoselenide (CZTSSe). These
compounds belong to the class of quaternary semiconductors and share a kesterite crystal
structure. CZTS, CZTSe, and CZTSSe have drawn considerable interest in the realm of
solar energy due to their abundance, non-toxicity, and promising optical and electronic
characteristics [1]. CZTS, the sulfide counterpart, is composed of copper (Cu), zinc (Zn),
tin (Sn), and sulfur (S). On the other hand, CZTSe substitutes selenium (Se) for sulfur,
resulting in a selenide compound. CZTSSe, as the name suggests, is a combination of
both sulfur and selenium [2]. These compounds have been explored for their potential
in thin-film solar cells, offering a sustainable alternative to conventional materials [3].
The direct bandgap of these materials falls within the optimal range for solar absorption,
approximately 1.0–1.5 eV [4]. This aligns with the solar spectrum, allowing for efficient
conversion of sunlight into electricity. Additionally, the high absorption coefficient and high
extinction coefficient of kesterite make them promising for the development of thin-film
solar cells with a low thickness requirement [5]. However, achieving high performance
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kesterite solar cells is still challenging due to the narrow phase stability of the quaternary
phase, the formation of secondary phases, and the presence of defects [6].

Despite their promise, challenges such as phase stability, the formation of secondary
phases, and the presence of defects are obstacles in achieving high-performance solar
cells [7]. Various vacuum and non-vacuum deposition techniques have been explored to
synthesize CZTS and CZTSe thin films [8], such as evaporation, pulsed laser deposition,
magnetron sputtering, electrodeposition, sol-gel, and spray pyrolysis. However, different
deposition techniques and conditions can result in differences in the properties of the films,
such as phase purity, composition, morphology, and electronic properties [9]. This review
will focus on the synthesis methods of copper zinc tin sulfide (CZTS) and copper zinc tin
selenide (CZTSe), emphasizing key techniques to obtain single-phase films. Moreover,
this review aims to provide a comprehensive understanding of the impact of secondary
phases on the performance and stability of kesterite-based solar devices. By analyzing the
challenges associated with secondary phase occurrence, this study aims to identify effective
strategies for mitigating their formation and enhancing the efficiency of CZTS and CZTSe
thin-film solar cells. Additionally, we will explore the role of various deposition techniques
in controlling phase purity and discuss the importance of precise characterization methods
for identifying and quantifying secondary phases. This concise review aims to offer insights
into optimizing CZTS and CZTSe absorber layers for enhanced solar cell applications.

2. Deposition Techniques

Regarding CZT(S/Se) growth, diverse synthesis approaches have been employed for
depositing these absorber layers. In the more prevalent two-step fabrication techniques,
the initial phase involves the preparation of the Cu, Zn and Sn (CZT) metal precursor. This
precursor is then subjected to a sulfurization or selenization, followed annealing treatment,
ultimately leading to the formation of CZT(S/Se) by reaction of the elements. On the other
hand, one-step methods simplify the process by directly producing CZT(S/Se) in a single
step, which is subsequently refined through heat treatment. The efficacy of the resulting
solar cell device depends on critical factors such as the deposition rate, layer thickness,
and the specific synthesis method employed. Achieving optimal performance requires a
detailed understanding of these parameters, and the continuous exploration of synthesis
strategies.

2.1. Solution-Based Approaches
2.1.1. Electrodeposition

The electrodeposition technique has emerged as a versatile and promising approach
for the synthesis of high-quality Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) thin films in
solar cell applications. The process includes a three-electrode cell, consisting of a working
electrode (commonly a substrate on which deposition occurs), a counter electrode, and
a reference electrode. The working electrode is usually coated with a precursor solution
containing copper, zinc, tin, and sulfur or selenium sources. The electrochemical cell is
immersed in this precursor solution. A power supply is employed to apply a controlled
potential or current between the working and counter electrodes, facilitating the deposition
onto the working electrode. The reference electrode monitors the electrochemical potential
as sketched in Figure 1.

In recent years, electrochemical deposition techniques have gained importance as
cost-effective and environmentally friendly methods for depositing large-area thin films.
These techniques encompass both single-step and sequential electrodeposition approaches.
In the single-step method, all constituents are sourced from a single electrolyte, while in
sequential electrodeposition, different metal salts are sequentially deposited and annealed
to form the final film. Electrodeposition offers precise control over film composition and
thickness. Numerous studies have investigated the electrodeposition process, focusing on
optimizing various parameters to achieve desired film properties. One important aspect is
the composition of the electrolyte solution, where precise control over the concentration
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ratios of the metal ions to be electrodeposited is essential. Hreid et al. demonstrated
that adjusting these concentrations influences the stoichiometry and phase purity of de-
posited CZTSe films [10]. Another important parameter is the deposition potential, which
modulates the rate of electrodeposition and thereby influences the crystal structure and
phase composition of the films. Azmi et al. explored this aspect by varying the deposition
potential to tune the electrochemical reduction in metal ions, they revealed that adequate
potential for CZTS phase electrodeposition is −1.1 V [11]. Furthermore, deposition time
plays an important role in determining film thickness, morphology and composition as
shown by Valdes et al. [12]. They have concluded that a CZTSe absorber deposited in
10 min lead to the best performing solar cell, and increasing in deposition time decreases
device performance. The pH of the electrolyte solution also influences the ionization state of
metal ions during electrodeposition. Variations in pH can impact the chemical composition,
morphology, and crystallinity of the deposited films, maintaining a pH = 4.8 is optimal
for achieving high-quality CZTS absorber layers [13]. The role of additives, particularly
complexing agents, should also be taken into account. These agents form stable complexes
with metal ions, influencing deposition processes. Their inclusion has been explored to
enhance uniformity, to control grain size, and to modulate crystallinity. The choice of a
specific complexing agent, or combinations of different agents, and their concentration
plays a role in tailoring the electrodeposition process [14–17] for fine-tuning film properties.
Additionally, stirring or agitation during electrodeposition ensures uniform ion distribution
in the electrolyte solution, contributing to enhanced film quality and uniformity [17].
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Figure 1. Electrodeposition technique schematic for CZT(S/Se) thin films deposition.

2.1.2. Sol-Gel

The sol-gel deposition method is a cost-effective and relatively simple technique for
synthesizing CZT(S/Se) thin films. The process can be carried out in two steps, starting
with the preparation of an aqueous solution containing the sol-gel precursors, followed by
spin coating the solution onto the substrate to obtain the desired deposits as presented in
Figure 2. This technique is well-developed in the thin film industry due to its reproducibility
for large-scale fabrication. However, despite its advantages, very few studies have been
conducted on the synthesis of CZT(S/Se) thin films using sol-gel deposition.

The synthesis of CZTS and CZTSe thin films involves a meticulous exploration of
several critical parameters, each influencing the properties of the resulting films. The
precursor composition determines the elemental ratios and, consequently, the stoichiometry
of the compound. Variations in the precursors concentrations in the solution have been
studied to understand their impact on film composition. In a study conducted by Amrit
et al., sol-gel CZTS thin films were prepared without sulfurization. They investigated
the influence of precursor concentration on the properties of the films. Their findings
revealed that optimal concentrations resulted in well-defined kesterite phase formation,
uniform film surfaces, and variations in optical bandgap [18]. The substrate temperature
is influencing crystallinity, grain size, and structural properties. Khushaim et al., have
explored the effects of different deposition temperatures on the properties of CZTS films,
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and have found that a substrate temperature of 350 ◦C is ideal for obtaining adequate
properties [19]. Preheating annealing is a common practice to enhance crystallinity and
phase purity, and the variation in different environments, as explored by Ahmoum et al.,
demonstrating that CZTS films preheated in Ar and N2 exhibit enhanced crystallinity, larger
grains, uniform surface morphology and optimal elemental composition [20]. Furthermore,
additives and complexing agents in the precursor solution can influence nucleation and
growth as demonstrated by Chaudhari et al., can influence nucleation and growth [21].
Post-deposition annealing is commonly employed to enhance the crystallinity and phase
purity of CZTS and CZTSe films. The annealing conditions, including temperature and
duration, can significantly impact the structural and optoelectronic properties of the films.
Ahmed et al. investigated the effect of annealing temperatures on CZTS compounds [22].
They revealed that annealing at 450 ◦C results in high crystalline films, with a decrease
in optical band gap to 1.6 eV and improved electrical conductivity. On the other hand,
Shaikh et al., studied the impact of annealing time on the properties of CZTS films, and
demonstrated that longer annealing times leads to improvements in conductivity, light
absorption, and mechanical stability [23].
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2.1.3. Spray Pyrolysis

Spray pyrolysis deposition is a widely used technique in thin film production due to
its easy process and relatively simple manipulation. This method, thanks to its simplicity
and reproducibility, is well-known for its application in large-scale synthesis of thin film
semiconductors. One of the most significant advantages of this technique is that it does
not require any vacuum steps throughout the process, making it suitable for industrial
commercial production. Spray pyrolysis involves atomizing a precursor solution onto a
heated substrate. The equipment includes a substrate holder, spray nozzle, heater, and gas
delivery system (Figure 3).

Spray pyrolysis stands as a versatile method for CZTS thin film synthesis, offering a
multitude of adjustable parameters that influence the resulting film properties. Among
these parameters, substrate temperature holds significance, dictating crystallinity and grain
size development [24]. Additionally, precursor concentration serves as a critical factor,
impacting film thickness and elemental composition [25]. The pH of the solution can also
have an influence the different properties of the obtained CZTS films as stated by Kumar
et al. [26]. Furthermore, the choice of annealing conditions post-deposition is important
in determining the final film structure and properties [27]. Kamoun et al. shown that
variations in spray duration influences the resulting CZTS films, with the film having
the most adequate properties being obtained at an annealing temperature of 550 ◦C in
10 min [28].
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2.2. Physical-Based Approaches
2.2.1. Evaporation

Evaporation techniques have been widely employed by researchers for depositing
CZT(S/Se) absorber layers. The development of these layers through various evaporation
technologies such as electron beam evaporation, co-evaporation, rapid thermal evaporation,
and thermal evaporation has led to the fabrication of high-quality absorber materials. Evap-
oration methods are straightforward in principle and enable the production of films with
excellent quality. However, controlling the stoichiometry of the elements is challenging [29],
resulting in lower cell efficiency. Additionally, the vacuum-based deposition process wastes
source materials, leading to relatively high costs.

This technique utilizes a vacuum chamber and an evaporation source, typically a
heated crucible. In this process, the material is vaporized and deposited onto a substrate
placed strategically within the vacuum environment. The substrate may have controlled
movement for uniform film deposition (Figure 4). The deposition of CZT(S/Se) films
by evaporation can be achieved through two different approaches: single-step deposi-
tion [30,31], where all the precursors are simultaneously deposited and then followed by
sulfurization, and sequential two-step deposition using different metallic or binary precur-
sors, in different combinations and sequences, such as Cu/Sn/Zn/Cu, Cu/Sn/Cu/Zn [32],
Cu-ZnS-Sn [33] or CuSn/Zn/Se/CuSn/Se [34], followed by annealing with a sulfur or
selenium source.

2.2.2. Pulsed Laser Deposition

Pulsed Laser Deposition (PLD) remains one of the best methods for producing high-
quality CZT(S/Se) thin films with complex compositions. This technique is known for its
numerous advantages, such as its simplicity and process flexibility, improved crystallinity,
and the ability to obtain clean films owing to the absence of atmospheric gases. The PLD
comprises a laser system, target material, vacuum chamber, and a substrate holder. A
high-energy laser vaporizes the target, creating a plume that deposits onto a substrate
in the vacuum chamber (Figure 5). PLD systems manage deposition rate, temperature,
and pressure, often incorporating in situ monitoring tools for real-time analysis. However,
the literature shows limited work conducted using this method, despite its significant
advantages for CZT(S/Se) thin film deposition.
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PLD can be used for depositing thin films on diverse substrates, offering versatility [35].
Recognized for its high deposition rate and quality film growth facilitated by high-energy
processes [36], PLD presents a convenient method for CZTS film synthesis. This can occur
in a one-step process by employing a CZTS target and a heated substrates at elevated
temperatures, or in a two-step process involving the deposition of metallic (Cu, Zn, and
Sn) films followed by sulfurization [37]. Key parameters, including the substrate-to-target
distance, substrate orientation and temperature, laser energy, and target composition, influ-
ence film properties. The choice of metallic targets allows control over layer thickness and
roughness, while a single CZTS target, comprising is preferred for achieving stoichiometric
Cu2ZnSnS4 materials [38]. Despite its advantages, PLD encounters challenges such as
droplet formation leading to unwanted phases and inhomogeneity, especially when using
multiple crystalline phase targets. Drawbacks include extended processing times for large
film thicknesses and challenges in producing extensive area films [39,40].

2.2.3. Magnetron Sputtering

Sputtering is a widely used fabrication method offering uniformity and reproducibility
in large-scale production, particularly in solar cell manufacturing. Magnetron sputtering
system is a physical vapor deposition technique widely used for producing thin films
with excellent uniformity. This system employs a magnetron—a high-powered magnet
that enhances the sputtering process (Figure 6). Key parameters like pressure, power, and
deposition time can be adjusted for optimal film quality and desired properties. However,
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challenges such as the loss of tin during high-temperature post-deposition treatment and
the formation of secondary phases need to be addressed.

Energies 2024, 17, x FOR PEER REVIEW 7 of 30 
 

 

thickness and roughness, while a single CZTS target, comprising is preferred for achiev-
ing stoichiometric Cu2ZnSnS4 materials [38]. Despite its advantages, PLD encounters chal-
lenges such as droplet formation leading to unwanted phases and inhomogeneity, espe-
cially when using multiple crystalline phase targets. Drawbacks include extended pro-
cessing times for large film thicknesses and challenges in producing extensive area films 
[39,40]. 

2.2.3. Magnetron Sputtering 
Sputtering is a widely used fabrication method offering uniformity and reproduci-

bility in large-scale production, particularly in solar cell manufacturing. Magnetron sput-
tering system is a physical vapor deposition technique widely used for producing thin 
films with excellent uniformity. This system employs a magnetron—a high-powered mag-
net that enhances the sputtering process (Figure 6). Key parameters like pressure, power, 
and deposition time can be adjusted for optimal film quality and desired properties. How-
ever, challenges such as the loss of tin during high-temperature post-deposition treatment 
and the formation of secondary phases need to be addressed. 

 
Figure 6. Schematic diagram of Magnetron sputtering deposition method. 

Magnetron sputtering is renowned for its ability to synthesize thin films on extensive 
substrates [41]. In CZTS synthesis, the system allows for substrate heating during deposi-
tion or sulfurization after sputtering [42,43]. It supports diverse targets, including metallic 
precursors, binary sulfide targets, or single quaternary targets [44]. The choice of direct 
current (DC) sputtering for elemental conductive targets (Cu, Zn, Sn) and radio frequency 
(RF) for binary and quaternary targets ensures efficient deposition [45,46]. Magnetron 
sputtering provides control over chemical composition, film thickness, uniformity, adhe-
sion, and substrate coverage, achieving high deposition rates and purity [47,48]. Chal-
lenges such as target poisoning and cracking at high power need consideration [49,50]. 

3. Secondary Phases in CZT(S/Se) 
3.1. Formation of Secondary Phases 

The formation of secondary phases stands out as a significant challenge in the growth 
of CZTS and CZTSe absorber layers. Its primary source is the off-stoichiometric composi-
tion in the CZT(S/Se) films [51,52]. Various factors such as the decomposition of the 
CZT(S/Se) at high temperatures [53], variations in precursor deposition methods [54], or 
the sulfurization/selenization treatment parameters [55] influences the formation of sec-
ondary phases. While there are various secondary phases that can appear within the CZTS 
or CZTSe films, in this review we will focus on the most frequently occurring phases in 

Figure 6. Schematic diagram of Magnetron sputtering deposition method.

Magnetron sputtering is renowned for its ability to synthesize thin films on extensive
substrates [41]. In CZTS synthesis, the system allows for substrate heating during deposi-
tion or sulfurization after sputtering [42,43]. It supports diverse targets, including metallic
precursors, binary sulfide targets, or single quaternary targets [44]. The choice of direct
current (DC) sputtering for elemental conductive targets (Cu, Zn, Sn) and radio frequency
(RF) for binary and quaternary targets ensures efficient deposition [45,46]. Magnetron sput-
tering provides control over chemical composition, film thickness, uniformity, adhesion,
and substrate coverage, achieving high deposition rates and purity [47,48]. Challenges
such as target poisoning and cracking at high power need consideration [49,50].

3. Secondary Phases in CZT(S/Se)
3.1. Formation of Secondary Phases

The formation of secondary phases stands out as a significant challenge in the growth
of CZTS and CZTSe absorber layers. Its primary source is the off-stoichiometric compo-
sition in the CZT(S/Se) films [51,52]. Various factors such as the decomposition of the
CZT(S/Se) at high temperatures [53], variations in precursor deposition methods [54],
or the sulfurization/selenization treatment parameters [55] influences the formation of
secondary phases. While there are various secondary phases that can appear within the
CZTS or CZTSe films, in this review we will focus on the most frequently occurring phases
in the two compounds. Binary alloys like Cux(S/Se), Zn(S/Se), Snx(S/Se)y, Mo(S/Se)x or
ternary compositions such as Cu-Sn-(S/Se) are the most common phases to form during
CZT(S/Se) film growth. The delicate balance of precursor ratios and an overabundance of
the Cu, Zn, Sn and S/Se elements can influence the composition, introducing unwanted
phases and affecting the properties of the absorber layer.

The formation of copper-based phases such as CuS and Cu2S is common under excess
of copper conditions [56]. Cu-rich environment can lead to increased doping of CZTS,
proving harmful to solar cells. For this reason, the current focus is on growing CZTS with
a Cu-poor and Zn-rich composition. Moreover, the excess in zinc might contribute to
the appearance of zinc sulfide (ZnS) [57]. This phase is highly observed at both the front
and back interfaces within the CZTS compound. The impact of ZnS phase was found to
be detrimental to the solar device, especially on the surface of CZTS. Further, tin sulfide
compounds (SnxSy) and their impact on CZTS solar cells have been less explored. The
formation of the SnS, SnS2 and Sn2S3 phases is due to the presence of a surplus of tin in
the development of CZTS [58,59]. SnxSy can be detected on both the surface and back of
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the CZTS film. Additionally, the emergence of MoS2 can be attributed to the reaction of
the molybdenum back contact with sulfur, presenting another facet of secondary phase
formation influenced by the synthesis environment. In the case of CuxSnySz compounds
such as Cu2SnS3 (CTS), which the most frequent secondary phase in CZTS films, the
apparition of these phases is due to several reasons such as low zinc content, incomplete
reaction at low temperature during film growth, or the decomposition of the CZTS at high
temperature.

Similarly, in the context CZTSe thin films, secondary phases may arise due to the same
factors. Binary phases such as CuxSe, SnxSey, ZnSe and MoSe2 may form as a consequence
of the reaction of Se with the related elements if they are in excess [60], while the case
of CuxSnySez and mainly the Cu2SnSe3 (CTSe) phase is resembling its homologue CTS.
Similar to CZTS, the balance of precursor ratios plays a role in determining the composition
and subsequent phase evolution in CZTSe films.

Understanding and controlling the deposition parameters and chemical reactions are
essential for minimizing the presence of unwanted secondary phases, thereby optimiz-
ing the structural and electronic properties of CZT(S/Se) absorber layers for enhanced
photovoltaic performance. Additionally, consideration of annealing treatments becomes
imperative in managing secondary phase formation, adding another layer of complexity to
the fabrication process.

3.2. Identification of Secondary Phases

The characterization of secondary phases in CZTS and CZTSe thin films leads to the
understanding the structural and compositional properties. Several main characterization
techniques are employed for this purpose. X-ray diffraction (XRD) is a fundamental
technique that helps identify the crystalline phases present in the films by analyzing
their diffraction patterns. Raman spectroscopy is employed to study vibrational modes,
providing insights into the chemical composition and crystal structure. Scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) are essential for visualizing
the microstructure and morphology, aiding in the identification of secondary phases.
Energy-dispersive X-ray spectroscopy (EDS) coupled with SEM or TEM provides elemental
composition information, aiding in mapping the distribution of elements and phases
within the films. X-ray photoelectron spectroscopy (XPS) is valuable for determining the
chemical states of elements and detecting surface composition variations. These techniques
collectively offer a comprehensive understanding of secondary phases in CZTS and CZTSe
films, contributing to the optimization of their growth processes and enhancing their
potential in solar cell applications. Here, we will address how some of the most used
characterization techniques such as XRD, Raman, and SEM-EDX can be utilized to detect
the presence of secondary phases in CZT(S/Se) films.

3.2.1. Structural Analysis
X-ray Diffraction

X-ray diffraction (XRD) is employed to analyze the crystallographic structure of CZTS
thin films and identify the presence of unwanted secondary phases. The distinctive peaks
in the XRD pattern allow for the discrimination of various phases, such as CuxS, SnxSy,
ZnS, MoSx, CTS and others, based on their unique crystal structures. Challenges may
arise, particularly when secondary phases such as cubic ZnS and cubic, monoclinic or
tetragonal CTS have similar crystal structures to CZTS, making their identification more
complex. Despite these challenges, XRD remains a fundamental technique, providing
valuable information about the composition and crystalline nature of CZTS films. Several
studies have analyzed the XRD patterns of CZTS, ZnS, and CTS compounds, in order to
understand the main divergences of these phases [61–63]. Berg et al. prepared CZTS, ZnS
and CTS films by electrodeposition and compared the X-ray diffractograms of the different
samples. They confirmed that ZnS and CTS closely resemble CZTS in their X-ray patterns.
While cubic ZnS has the fewest peaks, the tetragonal CZTS phase and monoclinic ternary
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phase exhibit additional minor peaks due to lower symmetry [64]. Distinguishing between
CZTS, ZnS and CTS relies on identifying these minor peaks, although their absence does
not conclusively exclude the presence of the respective phase, especially in the context
of a textured film. In the same study, the group compared between the three phases’
main peak at approximately 2θ = 28.5◦. They found that the angular positions of ZnS,
CTS and CZTS main peaks, are differing within an angular range of 0.2◦, suggesting the
potential possibility to distinguish individual CTS and ZnS phases from the CZTS [12]. As
an example of secondary phases identification relying on minor peaks, Zaki et al., prepared
CZTS films by annealing in different atmospheres and for different durations sputtered
ZnS layers with two thicknesses (150 and 200 nm) deposited onto a CTS layer [13]. The
International Center for Diffraction Data (ICDD) were used to identify the CZTS and the
coexistent secondary phases. They reported that most the peaks in the diffractograms
belong to the CZTS phase, while a tiny peak at 2θ = 26.91◦ makes it possible to identify the
presence of the hexagonal ZnS phase. On the other hand, the SnS2 is easily distinguished
with a peak at around 2θ = 50◦ in the films annealed in Sn+S atmosphere, due to excess
in Sn. Contrarily, the CuS (2θ = 31.97◦) phase was observed in one of the sulfurized
(annealed in S only) CZTS films, due to the Sn-poor composition of the film as observed
in Figure 7 [65]. The case of copper sulfides such as CuS and Cu2S is different, since
they can be easily identified through XRD, as their unique diffraction peaks (2θ = 31.88◦,
52.58◦, and 48.23◦ for CuS; and 2θ = 27.83◦, 32.23◦, 46.28◦, and 54.78◦ for Cu2S) significantly
differ from those of CZTS. Furthermore, secondary phases like SnS, SnS2, and Sn2S3 are
readily detectable within CZTS films using X-ray diffraction. This detection is facilitated by
the distinct diffraction patterns exhibited by these phases, which differ significantly from
that of CZTS. Each secondary phase possesses characteristic diffraction peaks at specific
angles as presented in Table 1, providing clear signatures for their identification. For
instance, SnS typically displays intense peaks at 2θ angles of 22.01◦, 26.00◦, 27.47◦, 30.47◦,
31.53◦, 31.97◦, 39.04◦, 45.49◦, 48.50◦, 51.31◦, 53.14◦, and 56.67◦. Similarly, SnS2 presents
distinctive peaks at 2θ angles of 15.02◦, 28.19◦, 30.26◦, 32.12◦, 41.88◦, 46.12◦, 49.96◦, and
52.45◦. Moreover, Sn2S3 can be identified by its prominent peaks at 2θ angles of 12.63◦,
16.10◦, 21.49◦, 23.77◦, 27.33◦, 27.68◦, 30.91◦, 32.53◦, 33.53◦, 33.79◦, 35.89◦, 36.49◦, 37.93◦,
and 39.85◦. These distinctive diffraction patterns enable the straightforward detection and
characterization of Sn-containing secondary phases within CZTS films using XRD analysis.
These last three phases are rarely observed in the CZTS system probably due to the very
volatility aspect of tin. MoS2 has distinct peaks in its XRD pattern that can be differentiated
from the peaks of CZTS. MoS2 typically exhibits prominent peaks at specific angles, such as
14.4◦, 33.8◦, 39.6◦, and 58.1◦ (2θ), corresponding to its crystal structure. By comparing the
measured XRD pattern of the CZTS film with reference patterns for MoS2, one can identify
the presence of this secondary phase.

The detection of secondary phases in CZTSe films, it is quite similar with its homologue
CZTS, since CZTSe along with cubic ZnSe and cubic or monoclinic Cu2SnSe3 (CTSe) have
nearly identical XRD patterns. However, unlike Cu2S in CZTS system, the cubic Cu2Se
also share remarkably similar structures and unit cell sizes with CZTSe [66,67]. Despite
CZTSe having a tetragonal-based structure, its reflections often overlap with those of
the mentioned phases due to their common cubic structures, close lattice parameters, and
similar atomic scattering factors of Cu+ and Zn2+. In the case of CZTSe, similar observations
(as for CZTS, ZnS and CTS) can be made regarding the angular differences in main peaks
compared to ZnSe and CTSe. The largest difference observed for ZnSe is 0.15◦, while
for the cubic-CTSe, it is 0.16◦ as explained by Salome et al. [68]. These slight angular
variations, though relatively small, hint at the potential to distinguish between CZTSe
and its constituent phases, ZnSe and CTSe. In Figure 8, are presented the diffractograms
of annealed CTSe\ZnSe stacks prepared by magnetron sputtering along with the XRD
patterns of the most frequent secondary phases in CZTSe films. Catana et al., synthesized in
a first step CTSe films from different stacks (Sn\Cu, SnSe2\Cu, Sn\Cu2S, and SnSe2\Cu2Se),
then a ZnSe layer was added on top of the obtained CTSe films and the combinations were
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annealed in Se atmosphere at 550 ◦C [69]. The identification of the ZnSe phase was almost
impossible when they compared its XRD patterns to the prepared CZTSe films. While the
diffraction peaks of cubic-ZnSe and cubic-CTSe overlap with those of CZTSe, each of the
three phases exhibits additional tiny peaks, which can help in distinguishing between them.
On the other hand, CZTSe has double peaks near 65◦ and 72◦ with a very low intensity,
yet, the peaks at 53.39◦ and 53.53◦ are used for confirming the presence of CZTSe [68].
Here again, using only XRD measurements can be challenging to ascertain the existence of
these phases, and the absence of the unique peaks does not definitively imply their absence.
Some distinguishable phases, such as CuSe, monoclinic Cu2Se, SnSe, SnSe2, and Sn2S3 can
be differentiated from CZTSe in XRD due to their distinct structures and cell parameters
as observed in Figure 8. The identification of secondary phases, particularly CuSe and
monoclinic Cu2Se, in CZTSe using X-ray diffraction is a well-established process. The
unique crystal structures of CuSe and monoclinic Cu2Se contribute to their characteristic
XRD peaks at specific 2θ angles, making them easily distinguishable from the main CZTSe
phase. Similarly, the detection of tin selenide secondary phases, including SnSe and SnSe2,
in CZTSe is facilitated by XRD analysis. The distinctive crystal structures of these tin
selenides result in characteristic diffraction patterns with well-defined peaks at specific
angles. The main XRD characteristic peaks of the MoSe2 phase typically include prominent
peaks at 2θ around 14.4◦, 33.8◦, 39.6◦, and 58.1◦. Detecting MoSe2 in CZTSe films using
XRD can be both feasible and challenging. Feasibility depends on factors such as the
concentration of MoSe2, film thickness, and the overall crystalline quality of the sample. If
MoSe2 is present in a sufficient quantity and is well crystallized, its characteristic peaks can
be distinguished in the XRD pattern. However, challenges may arise if MoSe2 is present
in low concentrations or if the film has poor crystallinity, leading to broader or weaker
diffraction peaks that might be harder to identify against the background of CZTSe peaks.
In Table 2 are summarized the most intense XRD peaks of the CZTSe phase and the related
recurrent secondary phases following their ICDD card number.
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indicated with “@”. Reproduced with permission [65].
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Table 1. CZTS and most frequent secondary phases XRD main peaks following their ICDD cards.
The most intense peak of each phase is bolded.

Compound Most Intense XRD Peaks (◦) ICDD Card Number

Cu2ZnSnS4
16.32, 18.24, 23.12, 28.44, 29.64, 32.93, 36.97, 37.90,
44.94, 47.31, 56.17, 58.85, 69.08, 69.21, 76.39, 78.71 01-080-8225

Cu2SnS3

28.44, 32.96, 47.31, 56.13, 58.86, 69.14, 76.38, 78.75
(cubic); 16.06, 18.02, 20.88, 28.40, 31.37, 32.89, 47.20,
56.07, 76.17 (monoclinic); 28.53, 33.07, 47.47; 56.32,

69.38, 76.68, 79.04 (tetragonal)

01-089-2877 (cubic);
04-010-5719 (monoclinic);
04-009-7947 (tetragonal)

CuS
10.80, 27.12, 27.68, 29.27, 31.78, 32.85, 38.83, 43.10,
44.30, 47.78, 47.94, 52.71, 56.25, 57.20, 58.68, 59.34,

63.53, 67.30, 69.34, 69.99, 73.99, 77.77, 79.07
00-006-0464

Cu2S 15.91, 22.58, 27.76, 32.11, 36.10, 39.64, 46.10, 51.92, 54.67 00-053-0522

SnS 22.01, 26.00, 27.47, 30.47, 31.53, 31.97, 39.04, 45.49,
48.50, 51.31, 53.14 00-039-0354

SnS2 15.02, 28.19, 30.26, 32.12, 41.88, 46.12, 49.96, 52.45 00-023-0677

Sn2S3
12.63, 16.10, 21.49, 23.77, 27.33, 27.68, 30.91, 32.53,

33.53, 33.79, 35.89, 36.49, 37.93, 39.85 00-014-0619

ZnS

28.42, 32.93, 47.27, 56.08, 58.81, 69.08, 76.32, 78.68
(cubic); 26.91, 28.50, 30.52, 39.61, 47.56, 51.77, 55.49,

56.39, 57.57, 59.00, 63.55, 66.00, 72.92, 76.03, 77.81, 79.05
(hexagonal)

01-071-5976 (cubic);
00-036-1450 (hexagonal)

MoS2

14.37, 29.02, 32.67, 33.50, 35.87, 39.53, 44.15, 49.78,
55.97, 58.33, 60.14, 62.81, 66.46, 68.47, 68.99, 70.14,

72.78, 75.98, 77.57, 78.11, 80.18, 85.16, 86.71
00-037-1492Energies 2024, 17, x FOR PEER REVIEW 12 of 30 
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Table 2. CZTSe and most frequent secondary phases main XRD peaks following their ICDD cards.
The most intense peak of each phase is bolded.

Compound Most Intense XRD Peaks (◦) ICDD Card Number

Cu2ZnSnSe4

15.61, 17.41, 22.06, 27.14, 28.31, 35.25, 36.12, 38.81,
42.78, 42.88, 45.00, 45.09, 48.60, 53.34, 53.51, 54.10,
60.90, 63.83, 65.53, 65.81, 68.59, 72.29, 72.43, 72.87,

72.93, 83.10, 83.29

04-019-1866

Cu2SnSe3

27.09, 31.38, 44.97, 53.29, 55.86, 65.49, 72.23, 74.42
(cubic); 15.33, 19.99, 27.08, 29.66, 29.98, 31.02, 37.45,

45.06, 53.28, 65.60, 72.30 (monoclinic)

03-065-7524 (cubic);
00-056-1111 (monoclinic)

CuSe 25.70, 26.29, 27.80, 30.15, 31.01, 40.73, 45.11, 45.47,
49.75, 53.34, 54.16, 56.10, 64.82, 66.06, 69.75, 73.39 00-027-0185

Cu2Se

27.10, 31.39, 44.99, 53.31, 55.89, 65.52, 72.26, 74.45,
83.01, 89.32 (cubic); 12.95, 25.25, 25.36, 26.07, 26.32,
26.44, 35.88, 37.04, 38.32, 38.49, 38.68, 38.82, 39.05,
39.20, 39.31, 39.42, 39.66, 40.04, 40.27, 40.42, 40.93,
41.24, 41.34, 41.64, 41.84, 42.37, 43.00, 43.20, 43.57,

43.88, 44.16, 44.34, 44.42, 44.95 47.92,48.88, 49.89, 51.23,
51.51, 51.71, 51.85, 52.01, 52.32, 52.64; (monoclinic)
12.96, 25.24, 25.35, 26.08, 26.46, 38.55, 38.71, 38.98,
39.59, 39.77, 39.85, 40.07, 40.68, 41.39, 41.66, 42.74,
43.49, 43.60, 43.87, 44.39, 44.98, 45.18, 45.46, 45.71,
45.99, 47.65, 50.52, 51.07, 51.42, 51.68, 52.10, 52.60,

53.21, 53.66, 53.93, 60.61

01-088-2043 (cubic)
00-058-0228 (monoclinic)

SnSe

15.40, 21.47, 25.31, 26.45, 29.42, 30.46, 31.08, 37.28,
37.78, 38.03, 40.58, 41.36, 43.34, 43.53, 44.32, 47.04,
47.25, 49.10, 49.71, 51.04, 51.95, 52.04, 52.43, 52.55,
54.47, 56.85, 57.66, 60.00, 61.05, 61.63, 62.22, 63.31,

63.90, 66.21, 67.07, 67.79, 69.10

00-048-1224

SnSe2

14.42, 26.99, 29.07, 30.73, 40.09, 44.23, 47.68, 50.08,
52.59, 55.65, 56.82, 57.81, 60.27, 64.01, 67.07, 67.23,

73.70, 76.26, 77.74, 78.11, 80.267
01-089-2939

ZnSe 27.13, 31.43, 45.05, 53.38, 55.96, 65.61, 72.37, 74.56, 83.14 01-071-5978

MoSe2

13.68, 27.57, 31.38, 32.15, 34.37, 37.83, 41.89, 42.25,
47.45, 53.26, 55.86, 56.93, 57.80, 59.61, 63.41, 65.48,
65.93, 66.46, 67.26, 69.45, 72.20, 72.46, 73.14, 73.82,
76.26, 80.83, 81.74, 83.87, 86.15, 90.31, 91.36, 91.36,

92.26, 92.99, 95.03, 97.90, 98.56, 99.22, 99.72

04-004-8782

Raman Spectroscopy

The detection of secondary phases in CZT(S/Se) films presents distinct challenges
when employing only XRD. This technique relies on the distinct patterns of diffraction
peaks to identify different phases based on their crystal structures. As shown, CZT(S/Se)
and certain secondary phases may exhibit similar XRD patterns due to comparable crystal
structures, making their differentiation challenging. On the other hand, Raman spec-
troscopy offers a complementary approach. It is highly sensitive to molecular vibrations
and provides detailed information about chemical composition. Raman spectra can reveal
unique vibrational modes for each phase, offering a more specific fingerprint for identifi-
cation. Despite the challenge of similar XRD patterns in CZT(S/Se), Raman spectroscopy
becomes a valuable tool in distinguishing secondary phases, providing a nuanced analysis
of the molecular composition and facilitating a more precise characterization of complex
CZT(S/Se) thin films. However, few signals of some secondary phases can also overlap
with the main CZTS or CZTSe phases, making it challenging to precisely identify sec-
ondary phases. Additionally, the laser power used in Raman spectroscopy may induce
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sample heating, potentially altering the material properties during analysis. Another no-
table disadvantage of micro-Raman spectroscopy in the context of CZT(S/Se) films is its
inherently localized analysis. The technique typically probes a small area of the sample,
which can be a limitation when dealing with heterogeneous films or when aiming for a
comprehensive understanding of the material across larger surfaces. This localized nature
may lead to a potential oversight of variations in secondary phase distribution throughout
the sample, for that reason, it is mandatory to perform several analyses on different areas
of the sample. In addition, one of the Raman spectroscopy aspects is its sensitivity to
the excitation wavelength. Different phases within CZT(S/Se) films may exhibit distinct
Raman signatures under specific excitation wavelengths. This wavelength dependence
can be advantageous for selectively probing certain phases, enhancing the specificity of
the analysis. However, it also introduces a challenge because optimal wavelengths for one
phase might not be suitable for others. Therefore, the choice of excitation wavelength in
Raman spectroscopy is an important consideration, and a comprehensive understanding of
the material may require experimentation with various wavelengths to ensure effective de-
tection and characterization of all relevant phases. Therefore, careful consideration of these
advantages and limitations is crucial when employing Raman spectroscopy for secondary
phase detection, necessitating complementary techniques to ensure comprehensive and
accurate characterization of these thin films.

Various wavelengths from UV to IR can be used to identify the CZTS phase in thin
films. Green or red excitation wavelengths (514, 532 and 633 nm) are commonly used to
observe the vibrational modes of the CZTS phase, and the main peaks are located at 287,
337, 266 and 374 cm−1. Demitrievska et al. [70], realized a complete analysis of all Raman
active modes by measuring CZTS films under six different excitations. Through their
work they discovered additional CZTS peaks accumulating a total of 18 peaks attributed
to 27 optical modes relative to the kesterite phase, as summarized Table 3. Regarding
secondary phases and in contrast to XRD, Raman spectroscopy proves advantageous in
the straightforward identification of secondary phases like ZnS and various structures
of CTS in CZTS films. While CZTS is commonly analyzed using green or red excitation
wavelengths, the detection of ZnS requires UV light (325 nm exclusively), due to its
resonance characteristics (typically 347–350 cm−1), and to the fact that ZnS has a bandgap
close to the 325 nm wavelength (3.8 eV) [71]. Furthermore, CTS crystalizes in three distinct
structures (cubic, monoclinic, and tetragonal) each characterized by unique Raman peaks.
In a previous work, we studied the polymorphic nature of CTS films prepared by magnetron
sputtering of two different stacks (SLG\SnS2\Cu and SLG\Cu\SnS2) annealed at different
temperatures and in different atmospheres. We have tried to compare Raman spectra of
the CTS films with the reported values in the literature (Figure 9a). It was found that the
literature regarding the assignment of Raman modes to the three Cu2SnS3 structures create
challenges. While agreement exists on the main Raman peaks for each structure, such
as 290 cm−1 for monoclinic CTS, 303 cm−1 for cubic CTS, and 337 cm−1 for tetragonal
CTS, contradictions arise in assigning other modes. The modes at 350–354 cm−1, the peaks
between 292–295 cm−1 and at 370–374 cm−1 are debated between different phases of the
Cu-Sn-S family. This complexity extends to the Raman modes in the region 314–318 cm−1,
which could belong to CuxSnySz or SnS2 according to different studies [72–75]. If the
analyzed samples contain zinc, some of the previously listed peaks can overlap with other
phases. For instance, the peaks at 315 and 353 cm−1, which are indicative of CZTS, may also
represent other phases (for instance SnS at 314 cm−1 and CTS at 353 cm−1, respectively).
Additionally, the peak at 350 cm−1, typically associated with the ZnS phase, further increase
the complexity of the identification process. Similarly, for the CuS secondary phase, the
primary mode is at 465–467 cm−1, accompanied by another smaller peak at 261–264 cm−1

(Figure 9b), which may lead to potential uncertainty with the 262 cm−1 CZTS mode. In the
case of SnS, the main peak appears at 190–192 cm−1, accompanied by a less intense peak at
160–164 cm−1, posing a possible misinterpretation as CZTS has a peak at 164 cm−1. The
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other frequently occurring secondary phases in the CZTS system, such as Cu2S, Sn2S3, and
MoS2, exhibit distinct Raman modes, making them easily detectable (Table 3).
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Figure 9. Raman spectra of (a) SLG\SnS2\Cu stacks annealed in S atmosphere at different temper-
atures and (b) Raman spectra of CuS secondary phase depicted in one of the SLG\SnS2\Cu films
annealed at 500 ◦C. Figures were reproduced with permission [20].

Table 3. Raman peaks of CZTS and most common secondary phases. The highest peak of each phase
is bolded.

Compound Raman Shift (cm−1) References

Cu2ZnSnS4
67, 81, 96, 139, 150, 164, 255, 262, 271, 287, 302,

315, 331, 337, 347, 353, 366, 374 [70]

Cu2SnS3

267, 299, 302, 302–303, 351, 354–356, 365 (cubic);
222–225, 249–250, 254–255, 258, 268, 287, 290–295,
314–317, 346–348, 349–354, 371–374 (monoclinic);

286, 289, 297, 300, 317, 330–331, 334–337, 343,
351–353, 356 (tetragonal)

[76]

CuS 261–264, 465–467 [77]

Cu2S 472–475 [78]

SnS 93–95, 160–164, 190–192, 218 [79,80]

SnS2 312–314 [81,82]

Sn2S3 232, 305–308 [81,82]

ZnS 350, 697, 1045 [83,84]

MoS2 385, 403–405 [85,86]

In contrast to XRD, where it is advised to depend on minor peaks for distinguishing
between secondary phases and the primary CZTS phase, in Raman spectroscopy, the most
intense modes of all phases are distinct, while the minor peaks can occasionally lead to
uncertainty.

In the same manner, Raman spectroscopy serves as a valuable tool for discerning
secondary phases in CZTSe compounds. This technique aids in the identification of various
phases through the analysis of their distinct Raman modes. However, the interpretation
of Raman spectra in CZTSe is not without challenges, and there may be discrepancies in
assigning specific modes to certain structural features. The most common Raman modes
relative to the CZTSe phase are 173, 195, 232, and 244 cm−1 as shown by Zaki et al. in a
study of Cu2ZnSnSe4 films synthesized from different stacks and shown in Figure 10 [87].
However, an investigation by Dimitrievska et al. [88] has facilitated the discovery and
identification of novel Raman modes associated with the CZTSe phase. In their study they
prepared CZTSe absorbers by annealing a Sn/Cu/Zn stack in a graphite box containing Sn
and Se powders. The resulted films were then extensively analyzed by Raman spectroscopy
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using nine different excitation wavelengths (325, 442, 457.9, 514.5, 532.1, 632.8, 784.6, 830
and 1064 nm). They stated that the exploration of Raman spectroscopy in CZTSe reveals
a capability to influence the intensities of intrinsic Raman peaks when using different
wavelengths. While this enhancement can reveal previously unreported Raman peaks
(55, 80, 135, 158, 171, 188, 213, 251 cm−1), caution is warranted as it might introduce
misinterpretations. Here as well, while the detection of secondary phases is facilitated by
their distinctive and intense Raman peaks, a challenge arises with the less intense peaks, as
they may overlap with CZTSe peaks. In fact, the Raman modes of cubic CTSe (236 cm−1),
monoclinic CTSe (230 cm−1), and CZTSe (232–234 cm−1) present a challenge due to the
closely similar relative peaks position. However, the CTSe phase in both structures can be
easily detected when relying on the other peaks presented in Table 4. Furthermore, the
overlapping of tiny peaks at 242 cm−1 between MoSe2 and CZTSe introduces complexity to
the identification process. It is noteworthy that the most intense peak of ZnSe at 250 cm−1 as
well poses potential confusion with the small peaks of cubic CTSe at 252 cm−1, monoclinic
CTSe at 248 cm−1 and CZTSe at 251 cm−1. A meticulous examination is imperative to
navigate through these complexities and ensure accurate interpretation. The distinctiveness
of the Raman peaks of other secondary phases such as Cu2-xSe, SnSe, and SnSe2 stands as
an advantage, facilitating their clear discrimination from those of CZTSe. In addition to the
nuanced analysis of Raman spectra, complementary analyses such as scanning electron
microscopy coupled with energy-dispersive X-ray spectroscopy provides valuable insights
into the morphology and composition of the materials under investigation, offering a
comprehensive understanding of their structural and elemental properties.
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Table 4. Raman peaks of CZTSe and most common secondary phases. The highest peak of each
phase is bolded.

Compound Raman Shift (cm−1) References

Cu2ZnSnSe4
55, 80, 135, 158, 171, 173–176, 181, 195–196, 213,

220, 232–234, 242–244, 251 [88]

Cu2SnSe3
68, 77, 180, 200, 236, 252 (cubic); 66, 76, 179, 203,

210, 230, 248 (monoclinic) [89,90]

Cu2-xSe 258–262 [91]

SnSe 33, 71, 108, 130, 150 [92]

SnSe2 119, 185, 314 [58]

ZnSe 206, 250 [93]

MoSe2 242, 285 [94]

3.2.2. Morphological and Compositional Analysis
SEM-EDX

While scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy
(EDS) are valuable techniques for examining the morphology and elemental composition of
materials, they may not be as effective in directly identifying secondary phases in CZTS and
CZTSe films compared to previous described techniques. SEM provides high-resolution
images of the surface, revealing details about the film structure, grain boundaries, and other
morphological features. EDS, on the other hand, detects the elemental composition. How-
ever, identifying secondary phases often requires information about the crystal structure,
which is more effectively obtained through techniques like XRD or Raman spectroscopy.

In spite of that, SEM and EDS and/or EDS mapping analyses can still provide valu-
able indirect indicators of the presence of secondary phases in CZTS and CZTSe films.
Differences in grain shapes and sizes observed through SEM images may suggest a het-
erogeneous composition, hinting the possible existence of multiple phases [95]. Moreover,
off-stoichiometric compositions, where certain elements are in excess, may raise suspi-
cions about the formation of secondary phases [96]. An elevated concentration of certain
elements not corresponding to the desired kesterite composition can signify the presence
of secondary phases. EDS mapping is particularly useful in this context, as it can reveal
spatial variations in elemental distribution. Regions with higher concentrations of specific
elements may correspond to secondary phases, and this can be visually represented by
denser and colored areas in the EDS maps [97].

For instance, the detection of Cu2S secondary phase in CZTS films can be achieved
through SEM analysis. By examining the surface morphology of the films, isolated large
grains can be observed, often distributed non-uniformly across the surface. These large
grains, are indicative of Cu2S crystallites [98,99]. Additionally, the use of EDS further
confirms the presence of Cu2S by analyzing the elemental composition of these large grains.
The combination of SEM and EDS provides an effective method for identifying and charac-
terizing Cu2S secondary phase in CZTS films, aiding in the comprehensive analysis of their
structural composition as reported in various studies [100,101]. Similarly, Buffiere et al.,
discovered particles measuring around 80 nm, situated at the base of the CZTSe film, which
when analyzed by EDS found to be rich in Cu and Se, meaning the presence of Cu2Se [102].
The same observations were reported by Fella et al., in another study [103]. Contrarily,
Zn(S/Se) particles are mainly located at bottom and may appear as small, distinct entities,
often distinguished by their morphology or contrast within the micrograph [104]. Bishop
et al., revealed that the presence of ZnSe can be distinctly highlighted through illuminated
charging regions in SEM images of their CZTSe films, particularly when employing in-lens
secondary electron detection [105]. The in-lens detector boasts enhanced efficiency in
capturing low-energy electrons, resulting in a superior signal-to-noise ratio. This improved
efficiency and signal quality contribute to heightened contrast, facilitating clearer visibility
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and differentiation of impurities. Similar conclusions were drawn in these studies on
CZTS films, where bright particles were observed and when analyzed by EDS showed
compositions rich in zinc and sulfur, aiding in the identification and confirmation of the
ZnS secondary phase in the CZTS films [106,107]. On the other hand, the identification of
SnS and SnS2 secondary phases in CZTS films is facilitated through various SEM and EDS
observations. Zaki et al., detected the presence of larger white particles, exceeding the size
of CZTS grains, corresponds to the SnS2 secondary phase, as confirmed by EDS mapping
and shown in Figure 11 [65]. In other studies, SEM images reveal sheet-like structures
identified as SnS2 on the surface of CZTS films, EDX mapping further substantiates the
presence of Sn and S elements in the identified sheet-like grains [108,109]. Additionally, the
SnS phase is discernible as flake-like features in CZTS films, evident in SEM images and
verified by EDX analysis in an investigation by Engberg et al. [110]. Similarly, the detection
of SnSex secondary phases in CZTSe films involves SEM imaging and EDS analysis. Lin
et al., observed distinct morphologies when analyzing CZTSe films, categorized as a rod-
like appearance and a round or semicircular shaped grains. By measuring EDS analysis on
these morphologies, they confirmed their predominantly comprising Sn and Se elements,
which is synonym of SnSe2 presence [111]. Temgoua et al., stated that the SnSe2 compounds
can be spotted as hexagonal structures on the surface of CZTSe [112]. Furthermore, the
SEM images of CZTSe absorbers realized by Becerril-Romero et al., revealed elongated
grains (SnSex), which consist of mainly Sn and Se elements after EDX measurements [113].
Additionally, cross-sectional SEM images can reveal the layered structure of thin films. In
the case of CZTS and CZTSe films, the presence of secondary phases like molybdenum
disulfide and molybdenum diselenide can be discerned through these images [114]. Specif-
ically, Mo(S/Se)2 tends to form a thin layer situated between the Mo substrate and the
CZTS or CZTSe layer. The distinct visual separation in the cross-sectional view helps in
identifying and confirming the presence of this secondary phases [115,116]. These observa-
tions from cross-sectional SEM provide valuable insights into the structural composition of
the films, aiding in a comprehensive understanding of their layered architecture and the
potential existence of additional phases.
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Figure 11. SEM images of the CZTS films from SLG\CTS\ZnS-150 stack annealed in Sn + S atmo-
sphere for (a) 30, (b) 45, and (c) 60 min, respectively; and the SLG\CTS\ZnS-200 stack sulfurized
for (d) 30, (e) 45, and (f) 60 min, respectively. The red circles represent grains of the SnS2 secondary
phase; the inset shows the SnS2 grains observed by EDS mapping. Reproduced with permission [65].

There is consensus among researchers regarding the distinctive features of certain
secondary phases in CZTS and CZTSe films. Large grains correspond to Cu2S and Cu2Se,
while smaller white spots, notably visible in contrast, are indicative of ZnS or ZnSe. Sim-
ilarly, SnS2 is identified as large grains at the surface of the film, and SnSe2 manifests
as round-shaped discs or hexagonal structures easily distinguishable as represented in
Figure 12. A thin layer of MoS2 or MoSe2 is typically observed between the molybdenum
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substrate and the CZTS or CZTSe layer, respectively. However, some secondary phases
elude detection through SEM or EDX, and their identification through these techniques
remains unreported. While the combination of SEM imaging and EDX mapping is valuable
for detecting and characterizing various secondary phases, it is essential to acknowledge
the limitations, as some of the secondary phases (such as CTS or CTSe) cannot be ob-
served through SEM or identified by EDX and their definitive identification may require
complementary methods such as XRD or Raman spectroscopy.
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Figure 12. Representation of the distribution and morphology of Cu2(S/Se), Sn(S/Se)2, Zn(S/Se) and
Mo(S/Se)2 secondary phases within the CZT(S/Se) film.

3.3. Strategies to Enhance Phase Control

Achieving single-phase CZTS and CZTSe absorber layers has posed challenges due
to the tendency for secondary phase formation. The abundance of studies reporting the
coexistence of these secondary phases has highlighted the complexities involved. However,
amidst these challenges, obtaining single-phase CZTS and CZTSe is achievable. Two main
strategies are employed to address and remove secondary phases, ensuring the attainment
of single-phase CZTS or CZTSe films. The first approach involves prevention through the
meticulous optimization of deposition parameters by fine-tuning the synthesis conditions
to avoid the formation of undesired secondary phases. The second strategy employs
etching techniques. When secondary phases are present on the surface, etching methods
can effectively remove them, leaving behind a purified CZTS or CZTSe structures.

Optimizing the growth conditions, such as deposition temperature, time, and rates,
influences crystal structure and minimizes secondary phase occurrence [117,118]. Stoi-
chiometry control during fabrication is also important, by ensuring accurate control over
the precursor ratios and compositions during deposition. Post-deposition annealing un-
der controlled atmospheres aids in achieving better phase purity by facilitating atomic
rearrangements. Improvements in sulfurization or selenization parameters such as tem-
perature, time, and atmosphere are essential to enhance the incorporation of sulfur or
selenium and reduce secondary phases. Besides optimizing the deposition parameters,
researchers have explored inventive approaches to improve this process. Comparison of
annealing atmospheres, temperatures, and annealing time across different studies reveals
variations in phase purity achieved, highlighting the importance of optimizing annealing
conditions for controlling secondary phase formation in CZT(S/Se) thin films [119–121].
For instance, the addition of Sn with sulfur or selenium during annealing has been found
effective in reducing Sn losses, contributing to improved stoichiometry and minimizing
secondary phases [122,123]. Additionally, the use of a graphite box during annealing offers
distinct advantages. The graphite box acts as a protective shield, preventing the loss of
volatile elements and maintaining the required sulfur or selenium content. This controlled
atmosphere during annealing facilitates better compositional stability and reduces the
likelihood of secondary phase formation [124,125].

In certain studies, researchers have employed a two-step deposition strategy, involving
the sequential deposition of Cu2SnS3 or Cu2SnSe3 followed by a layer of ZnS or ZnSe as
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presented if Figure 11a–c). Various techniques, including hydrothermal [126], spray pyrol-
ysis [127], chemical bath deposition [128], sonochemical reactions [129], and magnetron
sputtering [65,87], have effectively employed a two-step synthesis process. This innovative
approach is effective in mitigating secondary phases when the process is meticulously
optimized. The rationale behind this two-step deposition is to carefully control the pre-
cursor materials, and deposition parameters at each stage. Figure 13 is a schematic of the
two-step synthesis process, for both CZTS and CZTSe phases. In the first stage, the focus
is on achieving a single-phase CTS or CTSe film devoid of secondary phases. This initial
step requires meticulous control of precursor materials, concentrations, and deposition
parameters to ensure the desired phase purity. Once an optimized CTS or CTSe film is
obtained, the second stage involves the addition of a carefully optimized layer of ZnS or
ZnSe. This subsequent layer reacts with the existing CTS or CTSe film during the annealing
processes, fostering the formation of the desired CZTS or CZTSe phase. The controlled
interaction between the layers is a key aspect of this approach, aiming to enhance the crys-
tallinity and phase purity of the final CZTS or CZTSe film while mitigating the presence
of undesirable secondary phases. This nuanced two-step deposition process illustrates a
strategic methodology to achieve high-quality, single-phase CZTS and CZTSe absorber
layers for improved solar cell performance.
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On the other hand, chemical etching emerged as a tool for eliminating secondary
phases CZTS and CZTSe films. Various etching methods have been employed to selectively
remove specific secondary phases, contributing to the production of single-phase absorber
layers. For Cu(S/Se) secondary phases, a common solution is the use of KCN etching,
a method established through routine application in the processing of CIGSSe films and
effectively adaptable to kesterites as well [66,130]. ZnS, when present, can be successfully
eliminated by immersing the film in a 5–10% hot HCl solution at 75 ◦C [131]. The removal
of ZnSe often involves an oxidation route, where KMnO4/H2SO4 is applied followed by
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a Na2S solution rinse, proving to be an effective technique [132]. To address Sn(S,Se)2
secondary phases, (NH4)2S etching solution has been identified as a promising approach,
offering a potential possibility to mitigate the presence of these unwanted phases [133,134].
In a separate investigation conducted by Wang et al. [109], they demonstrated the successful
removal of the SnS2 secondary phase located on the surface of the CZTS thin film. This
was achieved through a method involving physical adhesion, utilizing a conductive tape
known for its resistance to debonding. These selective etching routes provide targeted
solutions for specific secondary phases, contributing to the enhancement of CZTS and
CZTSe film purity.

4. Influence of Secondary Phases on the Solar Device Efficiency

Although the exact impact of residual secondary phases on the performance of
kesterite-based solar cells remains poorly understood, recent research suggests that the pres-
ence of secondary phases in CZT(S/Se) thin-film solar cells can significantly impact their
efficiency and stability [135,136]. These secondary phases, such as CTS, CuxS, ZnS, SnxSy, in
the CZTS compound and similarly, CTSe, CuxSe, ZnSe, and SnxSey, for CZTSe, often act as
recombination centers for charge carriers, leading to increased non-radiative recombination
losses. This hinders the overall charge transport within the material, ultimately reducing
the solar cell performance. Moreover, the formation of secondary phases can introduce
defects and grain boundaries, causing additional electron-hole recombination sites and
reducing carrier lifetime. As a consequence, the device power conversion efficiency is
adversely affected. The presence of various secondary phases in CZTS-based solar cells
significantly impacts their performance. For instance, ZnS, characterized by a wide band
gap of 3.5 eV, acts as an insulator, reducing the effect sunlight-absorbing area available for
generating electron-hole pairs leading to a decrease in current collection [137]. On the other
hand, highly conductive Cu2S may create short circuits in solar cells, potentially compro-
mising their efficiency [138]. However, another investigation revealed that the presence of
the Cu2S secondary phase is not detrimental to the photovoltaic performance of CZTS [139].
On the contrary, it was found that the Cu2S phase might play a constructive role, potentially
contributing to the enhancement of the overall photovoltaic performance. SnS2, being an
n-type semiconductor with a band gap of approximately 2.2 eV, has the potential to form a
pn junction with the absorber layer, acting as a barrier to charge collection and leading to
increased photocarrier recombination [74]. The presence of Cu2SnS3 (CTS), observed in
Zn-poor CZTS cells, is noteworthy. While CTS is a p-type semiconductor with a band gap
similar to CZTS, recent studies suggest its lower efficiency compared to CZTS thin films,
highlighting the potential detrimental impact of this unwanted secondary phase on CZTS
solar cell performance [140].

In the context of CZTSe solar cells, the presence of secondary phases, notably ZnSe
and MoSe2, poses challenges related to increased series resistance, potentially impeding
the efficient flow of current [141,142]. SnSe2 adversely impacted solar cell performance
by diminishing shunt resistance [112]. Furthermore, the high conductivity inherent in
Cu–Se phases can potentially lead to shunting in CZTSe solar cells, further influencing their
photovoltaic performance [143]. Additionally, the emergence of Cu2SnSe3 phases in CZTSe
absorber layers may contribute to a decrease in the open-circuit voltage (Voc) [144]. This
effect is important, especially considering the energy bandgap variations (Eg = 0.84 eV).
For that reason, it is mandatory to understand and mitigate these specific influences of
secondary phases for optimizing CZTSe-based solar devices.

Figure 14 compares the highest efficiencies achieved in solar cells based on CZTS
and CZTSe absorber layers deposited by various methods, considering the presence or
absence of secondary phases. Among the electrodeposition techniques, CZTS devices
reached a peak efficiency of 7.30% in the absence of secondary phases [145], while CZTSe
solar cells achieved 8.20% [146]. However, when secondary phases were present, the
efficiency slightly decreased to 7.10% for CZTS [118] and 7% for CZTSe [114]. Sol-gel
deposition yielded 8.84% efficiency for solar devices based on single-phase CZTS films [147],
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but only 5.10% when secondary phases were present [148]. In spray pyrolysis, CZTS
achieved 6.40% efficiency without secondary phases [149], whereas the CZTSe-based device
reached 6.80% [150]. Evaporation techniques resulted in the good efficiencies, with CZTS
absorbers reaching 9.20% without secondary phases [151] and CZTSe absorbers achieving
11.70% [152]. However, the presence of secondary phases slightly reduced the efficiency to
8.90% for CZTSe [153]. The CZTS absorber layer deposited by PLD resulted in a device
achieving an efficiency of 6.62% [154]. The highest efficiencies were recorded on the devices
obtained by magnetron sputtering, particularly for CZTSe films, with efficiencies of 12.50%
for single-phase films [155] and 11.40% for films with secondary phases [156]. While for
the CZTS material, the efficiency is a bit lower with 11.01% for the single phase-based
device [157] and 9.70% in the presence of secondary phases [158].
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Table 5 summarizes the performance of CZTS and CZTSe devices fabricated by using
some of the described deposition techniques. Solar devices with a single-phase CZTS or
CZTSe exhibit higher efficiencies compared to those with the presence of secondary phases.
Furthermore, we found that CZTSe consistently outperforms CZTS in terms of efficiency,
regardless of the deposition technique employed. This superior performance of CZTSe
can be attributed to its optimal bandgap alignment, offering improved light absorption
and electron-hole pair generation, ultimately enhancing the overall efficiency of the solar
device. However, the highest recorded efficiency in solar devices was achieved with a
CZTSSe-based solar cell (13.6%) [159], when combining the advantages of both CZTS and
CZTSe materials. By understanding and effectively controlling the formation of these
unwanted phases, through careful optimization of deposition methods, post-deposition
annealing treatments, and compositional engineering, researchers can pave the way for
the development of high-performance CZT(S/Se) thin-film solar cells, contributing to the
advancement of renewable energy technologies.
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Table 5. Comparison of efficiencies in different CZTS and CZTSe single phases cells and the influence
of the of secondary phases, depending on the depositions method.

Deposition Method

PCE (%)

Single Phase CZTS Secondary Phases
CZTS Single Phase CZTSe Secondary Phases

CZTSe

Electrodeposition 7.30 [145] 7.10 [118] 8.20 [146] 7 [114]
Sol-gel 8.84 [147] 5.10 [148] - -

Spray pyrolysis 6.40 [149] 5.80 [160] 6.80 [150] -
Evaporation 9.20 [151] - 11.70 [152] 8.90 [153]

PLD 6.62 [154] - - -
Magnetron sputtering 11.01 [157] 9.70 [158] 12.50 [155] 11.40 [156]

5. Conclusions

In summary, this review has explored the field of kesterite materials, with a partic-
ular focus on the formation and controlling of secondary properties in CZTS and CZTSe
films. By describing a range of deposition techniques, spanning from solution-based
methods like electrodeposition, sol-gel and spray pyrolysis to vacuum methods such as
evaporation, pulsed laser deposition, and magnetron sputtering, we have highlighted
the diverse approaches employed in single phase CZTS and CZTSe synthesis. Moreover,
the details associated with secondary phases formation, such as Cux(S/Se), Snx(S/Se)y,
Zn(S/Se), CT(S/Se), and Mo(S/Se)x, has been examined in detail, demonstrating the com-
plexity of these materials. We have emphasized the significant role of characterization
techniques like X-ray diffraction, Raman spectroscopy, and scanning electron microscopy
with energy-dispersive X-ray spectroscopy in accurately identifying these phases. Further-
more, strategies aimed at mitigating or removing secondary phases have been explored,
signaling a pathway toward achieving single-phase CZTS or CZTSe films. Lastly, insights
into the implications of secondary phases on solar device performance have been provided,
emphasizing the need for an in-depth understanding and precise control of material com-
position for optimal photovoltaic efficiency. Future research could explore the investigation
of novel approaches to suppress secondary phase formation and enhance phase purity,
leading to the development of more efficient and stable CZTS and CZTSe thin-film solar
cells. Additionally, the integration of advanced characterization techniques, could provide
deeper insights into the morphology and composition of kesterite thin films, facilitating
further identification of subtle secondary phases. This comprehensive exploration could
serve as a foundational resource to guide future research endeavors and advancements in
the synthesis and utilization of CZT(S/Se) materials in solar energy conversion.
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