Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = conventional heat extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1621 KiB  
Article
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
by David Sango-Parco, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López and Frank Alexis
Bioengineering 2025, 12(8), 838; https://doi.org/10.3390/bioengineering12080838 (registering DOI) - 1 Aug 2025
Abstract
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences [...] Read more.
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences in their chemical components, making them equivalent for compression into tablets containing ibuprofen. TGA measurements indicate that the RC is slightly better for multilayer formulations due to its favorable degradation profile. This is corroborated by an XRD analysis that reveals its higher crystalline fraction (~55%). The use of a heat press at combined high pressures and temperatures allows the layer-by-layer tablet formulation of ibuprofen, taken as a model drug. Additionally, this study compares the release profile of three types of tablets compressed with cellulose: mixed (MIX), two-layer (BL), and three-layer (TL). The MIX tablet shows a profile like that of conventional ibuprofen tablets. Although both BL and TL tablets significantly reduce their release percentage in the first hours, the TL ones have proven to be better in the long run. In fact, formulations made of extracted cellulose sandwiching ibuprofen display a zero-order release profile and prolonged release since the drug release amounts to ~70% after 120 h. This makes the TL formulations ideal for maintaining the therapeutic effect of the drug and improving patients’ wellbeing and compliance while reducing adverse effects. Full article
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 281
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 311
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

23 pages, 3187 KiB  
Article
Elastocaloric Performance of Natural Rubber: The Role of Nanoclay Addition
by Marica Bianchi, Luca Fambri, Mauro Bortolotti, Alessandro Pegoretti and Andrea Dorigato
Molecules 2025, 30(14), 3035; https://doi.org/10.3390/molecules30143035 - 19 Jul 2025
Viewed by 304
Abstract
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under [...] Read more.
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under moderate stress (~a few MPa). Despite these advantages, the cooling efficiency of NR remains lower than that of conventional vapor-compression systems. Therefore, improving the cooling capacity of NR is essential for the development of solid-state cooling technologies competitive with existing ones. To address this, two series of NR-based nanocomposites, containing 1, 3, and 5 phr nanofiller, were prepared by melt compounding and hot pressing and characterized in terms of morphology, thermal, mechanical, and elastocaloric properties. The results highlighted that the better dispersion of the organoclays within the rubber matrix promoted not only a better mechanical behavior (in terms of stiffness and strength), but also a significantly enhanced cooling performance compared to MMT nanofilled systems. Moreover, NR/O-MMT samples demonstrated up to a ~45% increase in heat extracted per refrigeration cycle compared to the unfilled NR, with a coefficient of performance (COP) up to 3, approaching the COP of conventional vapor-compression systems, typically ranging between 3 and 6. The heat extracted per refrigeration cycle of NR/O-MMT systems resulted in approx. 16 J/cm3, higher with respect to the values reported in the literature for NR-based systems (ranging between 5 and 12 J/cm3). These findings emphasize the potential of organoclays in enhancing the refrigeration potential of NR for novel state cooling applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 228
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach
by Jing Luo, Guangxin Tian, Chen Xu, Shijie Zhang and Zhen Liu
Fire 2025, 8(7), 280; https://doi.org/10.3390/fire8070280 - 16 Jul 2025
Viewed by 505
Abstract
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties [...] Read more.
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties of wood and temperature-dependent material behavior, validated against experimental data with strong agreement. To enable large-scale parametric studies, an automated Abaqus model modification and data processing system was implemented, improving computational efficiency through the batch processing of geometric and material parameters. The extracted temperature field data was used to train a DeepONet neural network, which achieved accurate temperature predictions (with a L2 relative error of 1.5689% and an R2 score of 0.9991) while operating faster than conventional finite element analysis. This research establishes a complete workflow from fundamental heat transfer analysis to efficient data generation and machine learning prediction, providing structural engineers with practical tools for the performance-based fire safety design of timber connections. The framework’s computational efficiency enables comprehensive parametric studies and design optimizations that were previously impractical, offering significant advancements for structural fire engineering applications. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
by Milica Vidić, Nevena Grujić-Letić, Branislava Teofilović and Emilia Gligorić
Sustainability 2025, 17(14), 6347; https://doi.org/10.3390/su17146347 - 10 Jul 2025
Viewed by 303
Abstract
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract [...] Read more.
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract bioactive compounds from the underexplored leaves and bark of Salix amplexicaulis Bory & Chaub. Additionally, the potential of NADES as sustainable alternatives to conventional solvents was assessed through a comparative evaluation of MAE-NADES with MAE–water and traditional ethanol maceration. NADES based on lactic acid–glycerol, lactic acid–glucose, glycerol–glucose, and glycerol–urea were synthesized by heating and stirring. Willow extracts were characterized by HPLC-DAD, resulting in the identification and quantification of seven phenolic acids and four flavonoids. Lactic acid–glucose (5:1)-based NADES extracted the highest number of phenolics in the greatest amount from the bark and leaves of S. amplexicaulis. MAE-NADES offers a fast, cost-effective preparation, high extraction efficiency, and environmentally friendly properties, opening new perspectives on the valorization of S. amplexicaulis in the pharmaceutical field. Furthermore, NADES provide a promising alternative to water and toxic organic solvents for extracting bioactives. Full article
Show Figures

Figure 1

18 pages, 1091 KiB  
Article
Experimental Validation and Optimization of a Hydrogen–Gasoline Dual-Fuel Combustion Model in a Spark Ignition Engine with a Moderate Hydrogen Ratio
by Attila Kiss, Bálint Szabó, Krisztián Kun, Barna Hanula and Zoltán Weltsch
Energies 2025, 18(13), 3501; https://doi.org/10.3390/en18133501 - 2 Jul 2025
Viewed by 795
Abstract
Hydrogen–gasoline dual-fuel spark ignition (SI) engines represent a promising transitional solution toward cleaner combustion and reduced carbon emissions. In a previous study, a predictive engine model was developed to simulate the performance and combustion characteristics of such systems; however, its accuracy was constrained [...] Read more.
Hydrogen–gasoline dual-fuel spark ignition (SI) engines represent a promising transitional solution toward cleaner combustion and reduced carbon emissions. In a previous study, a predictive engine model was developed to simulate the performance and combustion characteristics of such systems; however, its accuracy was constrained by the use of estimated combustion parameters. This study presents an experimental validation based on high-resolution in-cylinder pressure measurements performed on a naturally aspirated SI engine operating with a 20% hydrogen energy share. The objectives are twofold: (1) to refine the combustion model using empirically derived combustion metrics, and (2) to evaluate the feasibility of moderate hydrogen enrichment in a stock engine configuration. To facilitate a more accurate understanding of how key combustion parameters evolve under different operating conditions, Vibe function was fitted to the ensemble-averaged heat release rate curves computed from 100 consecutive engine cycles at each static full-load operating point. This approach enabled the extraction of stable and representative metrics, including the mass fraction burned at 50% (MFB50) and combustion duration, which were then used to recalibrate the predictive combustion model. In addition, cycle-to-cycle variation and combustion duration were also investigated in the dual-fuel mode. The combustion duration exhibited a consistent and substantial reduction across all of the examined operating points when compared to pure gasoline operation. Furthermore, the cycle-to-cycle variation difference remained statistically insignificant, indicating that the introduction of 20% hydrogen did not adversely affect combustion stability. In addition to improving model accuracy, this work investigates the occurrence of abnormal combustion phenomena—including backfiring, auto-ignition, and knock—under enriched conditions. The results confirm that 20% hydrogen blends can be safely utilized in standard engine architectures, yielding faster combustion and reduced burn durations. The validated model offers a reliable foundation for further dual-fuel optimization and supports the broader integration of hydrogen into conventional internal combustion platforms. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 265
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

25 pages, 4187 KiB  
Article
The Development and Performance Assessment of Palm Kernel Nut Oil as a Cutting Fluid for the Turning of AA6061
by Omolayo M. Ikumapayi, Opeyeolu T. Laseinde, Rasaq A. Kazeem, Peter Onu and Tin T. Ting
Lubricants 2025, 13(7), 279; https://doi.org/10.3390/lubricants13070279 - 21 Jun 2025
Cited by 1 | Viewed by 1114
Abstract
This study focuses on investigating the manufacturing, characterization, and assessment of palm kernel nut oil as a cutting fluid (CF) in the machining of aluminium 6061 alloy. Cutting fluids are vital in machining operations as they reduce friction, dissipate heat, and prolong the [...] Read more.
This study focuses on investigating the manufacturing, characterization, and assessment of palm kernel nut oil as a cutting fluid (CF) in the machining of aluminium 6061 alloy. Cutting fluids are vital in machining operations as they reduce friction, dissipate heat, and prolong the lifespan of tools. Palm kernel nut oil, derived from the fruit of a palm kernel, has attracted attention due to its environmentally friendly and readily biodegradable characteristics. This study involved the extraction, refinement, and characterization of palm kernel nut oil for its potential application as a cutting fluid. An experimental investigation was conducted to evaluate the performance of palm kernel nut oil (PKNO) as a CF through turning operations on aluminium 6061 alloy. The experimental parameters included the cutting speed, feed rate, and depth of cut, while the effectiveness of the CF was assessed based on key performance indicators such as surface roughness and cutting temperature. The findings demonstrated that the PKNO-CF exhibited favourable physical properties, including optimal viscosity, density, and pH levels. Furthermore, a detailed chemical analysis confirmed the absence of hazardous components, establishing palm kernel nut oil as a safer and more environmentally friendly alternative to conventional cutting fluids. This study aligns with United Nations Sustainable Development Goal (SDG) 12: Responsible Consumption and Production as it promotes the use of an environmentally friendly and biodegradable cutting fluid, reducing reliance on conventional, potentially hazardous cutting fluids and reducing environmental pollution. By utilizing palm kernel nut oil as a sustainable alternative, this research supports eco-friendly manufacturing practices and minimizes environmental impact in machining operations Full article
(This article belongs to the Special Issue Recent Advances in Green Lubricants)
Show Figures

Figure 1

20 pages, 3811 KiB  
Article
A Multi-Scale Time–Frequency Complementary Load Forecasting Method for Integrated Energy Systems
by Enci Jiang, Ziyi Wang and Shanshan Jiang
Energies 2025, 18(12), 3103; https://doi.org/10.3390/en18123103 - 12 Jun 2025
Viewed by 417
Abstract
With the growing demand for global energy transition, integrated energy systems (IESs) have emerged as a key pathway for sustainable development due to their deep coupling of multi-energy flows. Accurate load forecasting is crucial for IES optimization and scheduling, yet conventional methods struggle [...] Read more.
With the growing demand for global energy transition, integrated energy systems (IESs) have emerged as a key pathway for sustainable development due to their deep coupling of multi-energy flows. Accurate load forecasting is crucial for IES optimization and scheduling, yet conventional methods struggle with complex spatio-temporal correlations and long-term dependencies. This study proposes ST-ScaleFusion, a multi-scale time–frequency complementary hybrid model to enhance comprehensive energy load forecasting accuracy. The model features three core modules: a multi-scale decomposition hybrid module for fine-grained extraction of multi-time-scale features via hierarchical down-sampling and seasonal-trend decoupling; a frequency domain interpolation forecasting (FI) module using complex linear projection for amplitude-phase joint modeling to capture long-term patterns and suppress noise; and an FI sub-module extending series length via frequency domain interpolation to adapt to non-stationary loads. Experiments on 2021–2023 multi-energy load and meteorological data from the Arizona State University Tempe campus show that ST-ScaleFusion achieves 24 h forecasting MAE values of 667.67 kW for electric load, 1073.93 kW/h for cooling load, and 85.73 kW for heating load, outperforming models like TimesNet and TSMixer. Robust in long-step (96 h) forecasting, it reduces MAE by 30% compared to conventional methods, offering an efficient tool for real-time IES scheduling and risk decision-making. Full article
(This article belongs to the Special Issue Computational Intelligence in Electrical Systems: 2nd Edition)
Show Figures

Figure 1

23 pages, 4593 KiB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 456
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

19 pages, 2560 KiB  
Article
Investigation of the Combustion Products of Ionic Liquid-Based Green Propellants Using Infrared Spectroscopy
by Jacob Oberndorfer, Philipp Teuffel, Sophie C. Stölzle, Dominic Freudenmann and Christoph U. Kirchberger
Aerospace 2025, 12(6), 507; https://doi.org/10.3390/aerospace12060507 - 3 Jun 2025
Viewed by 357
Abstract
In rocketry today, conventional hypergolic propellant combinations typically use hydrazine-derived fuels and oxidizers based on nitrogen tetroxide. Due to their high toxicity and consequently expensive handling, safer alternatives, so-called “green hypergolics”, are currently being developed. The ionic liquid-based fuels [EMIM][SCN], HIP_11 and HIM_30, [...] Read more.
In rocketry today, conventional hypergolic propellant combinations typically use hydrazine-derived fuels and oxidizers based on nitrogen tetroxide. Due to their high toxicity and consequently expensive handling, safer alternatives, so-called “green hypergolics”, are currently being developed. The ionic liquid-based fuels [EMIM][SCN], HIP_11 and HIM_30, paired with highly concentrated hydrogen peroxide as an oxidizer, are three candidates for such green hypergolics, which are currently under research at the German Aerospace Center (DLR). These combinations have been shown to exhibit reliable hypergolic ignition. For a better understanding of the reaction process and to assess the risks in working with these propellants, it is desirable to determine their combustion products. A test setup was designed to extract the gaseous combustion products from hypergolic drop tests. The gas samples were analyzed using Fourier-transform infrared spectroscopy and the gaseous combustion products were determined from the infrared spectra. Additional tests with varied oxidizer concentration or alternative fuels were conducted to further investigate detailed aspects of the findings. It was concluded that [EMIM][SCN], HIP_11 and HIM_30 produce very similar sets of combustion products with hydrogen peroxide, including water vapor, carbon dioxide, carbon monoxide, hydrogen cyanide and sulfur dioxide. Finally, the combustion products were compared to the substances produced when thermally decomposing the fuels. This confirmed that the previously detected substances were caused by a reaction between hydrogen peroxide and the fuels, rather than by their thermal decomposition due to heating. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 4510 KiB  
Article
Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking
by Fengying Ren, Fanxing Meng, Hao Liu, Haiyan Yu, Li Xu and Xiaohan Ren
Energies 2025, 18(10), 2522; https://doi.org/10.3390/en18102522 - 13 May 2025
Viewed by 426
Abstract
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high [...] Read more.
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high operational costs. In this context, molten-salt thermal energy storage (TES) has emerged as a promising solution due to its high specific heat capacity and thermal stability. By enabling the storage of surplus energy and its regulated release during peak demand periods, molten salt TES contributes to improved grid stability, reduced start-up frequency, and minimized operational disturbances. This study employs comprehensive thermodynamic simulations to investigate three representative schemes for heat storage and release. The results indicate that the dual steam extraction configuration (Scheme 3) offers the highest thermal storage capacity and peak-load regulation potential, albeit at the cost of increased heat consumption. Conversely, the single steam extraction configurations (Scheme 1 and 2) demonstrate improved thermal efficiency and reduced system complexity. Furthermore, Scheme 3, which involves extracting feedwater from the condenser outlet, provides enhanced operational flexibility but necessitates a higher initial investment. These findings offer critical insights into the optimal integration of molten-salt thermal-storage systems with conventional thermal power units. The outcomes not only highlight the trade-offs among different design strategies but also support the broader objective of enhancing the efficiency and adaptability of thermal power generation in a renewable-dominated energy landscape. Full article
Show Figures

Figure 1

14 pages, 3342 KiB  
Article
Controlling Crystallization of Aqueous-Processed Planar Perovskite Films via Sodium Dodecyl Sulfonate Surfactant Modulation
by Na Zheng, Cunyun Xu, Xiaofeng He, Gaobo Xu, Jiancheng You, Zhongjun Dai, Han Jiang, Qianqian Zhang and Qunliang Song
Molecules 2025, 30(10), 2146; https://doi.org/10.3390/molecules30102146 - 13 May 2025
Cited by 1 | Viewed by 396
Abstract
Solution processing represents a widely adopted methodology for perovskite solar cell (PSC) fabrication. Nevertheless, the prevalent use of toxic solvents and anti-solvents in conventional approaches presents significant challenges for PSC commercialization. Water, as an environmentally benign solvent with exceptional Pb(NO3)2 [...] Read more.
Solution processing represents a widely adopted methodology for perovskite solar cell (PSC) fabrication. Nevertheless, the prevalent use of toxic solvents and anti-solvents in conventional approaches presents significant challenges for PSC commercialization. Water, as an environmentally benign solvent with exceptional Pb(NO3)2 solubility, offers a promising alternative for perovskite film preparation. However, the sluggish conversion kinetics of Pb(NO3)2 to perovskite often results in morphological imperfections and incomplete conversion, particularly detrimental to planar inverted PSCs derived from aqueous solutions, which currently exhibit limited power conversion efficiencies (PCE) of approximately 6%. To mitigate the Ostwald ripening effect induced by slow reaction kinetics and enhance the conversion efficiency of deep-layer Pb(NO3)2 and PbI2, this study proposes a strategy of increasing the pore size in porous Pb(NO3)2 structures. Through the incorporation of sodium dodecyl sulfonate (SDS) surfactant into the Pb(NO3)2 precursor solution, we successfully fabricated high-quality perovskite films. Comprehensive characterization revealed that SDS doping effectively modified the surface properties of Pb(NO3)2 films, accelerating their conversion to perovskite. The optimized PSCs based on SDS-modified perovskite films demonstrated improved energy level alignment, enhanced charge carrier extraction, and suppressed non-radiative recombination. Consequently, the PCE of planar inverted aqueous PSCs increased significantly from 12.27% (control devices) to 14.82% following surfactant modification. After being stored in a nitrogen glove box for 800 h, the performance of the device still remained above 90% of its original level. It can still maintain 60% of its original performance after a 100 h heating aging test at 80 degrees. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Figure 1

Back to TopTop