Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = control nitrogen loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1459 KiB  
Article
Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses
by Bawatharani Raveendrakumaran, Miles Grafton, Paramsothy Jeyakumar, Peter Bishop and Clive Davies
Nitrogen 2025, 6(3), 63; https://doi.org/10.3390/nitrogen6030063 - 4 Aug 2025
Abstract
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N [...] Read more.
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N2O emissions using intact soil cores (diameter: 18.7 cm; depth: 25 cm) collected from a vegetable production system in Pukekohe, New Zealand. Soil cores from CTF beds, CTF tramlines, and RTF plots were analysed under fertilised (140 kg N/ha) and unfertilised conditions. N2O fluxes were monitored over 58 days using gas chambers. The fertilised RTF system significantly (p < 0.05) increased N2O emissions (5.4 kg N2O–N/ha) compared to the unfertilised RTF system (1.53 kg N2O–N/ha). The emission from fertilised RTF was 46% higher than the maximum N2O emissions (3.7 kg N2O–N/ha) reported under New Zealand pasture conditions. The fertilised CTF system showed a 31.6% reduction in N2O emissions compared to fertilised RTF and did not differ significantly from unfertilised CTF. In general, CTF has demonstrated some resilience against fertiliser-induced N2O emissions, indicating the need for further investigation into its role as a greenhouse gas mitigation strategy. Full article
Show Figures

Figure 1

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 289
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 320
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

15 pages, 1398 KiB  
Article
Hydrochar as a Potential Soil Conditioner for Mitigating H+ Production in the Nitrogen Cycle: A Comparative Study
by Weijia Yu, Qingyue Zhang, Shengchang Huai, Yuwen Jin and Changai Lu
Agronomy 2025, 15(8), 1777; https://doi.org/10.3390/agronomy15081777 - 24 Jul 2025
Viewed by 283
Abstract
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and [...] Read more.
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and a soil column experiment were conducted to study the effect of rice straw hydrochar application on nitrification and NO3-N leaching in acidic red soil. Compared to the control and pyrochar treatments, respectively, hydrochar addition mitigated the net nitrification rate by 3.75–48.75% and 57.92–78.19%, in the early stage of urea fertilization. This occurred mainly because a greater amount of dissolved organic carbon (DOC) was released from hydrochar than the other treatments, which stimulated microbial nitrogen immobilization. The abundances of ammonia-oxidizing archaea and ammonia-oxidizing bacteria were dramatically elevated by 25.62–153.19% and 12.38–22.39%, respectively, in the hydrochar treatments because of DOC-driven stimulation. The cumulative leaching loss of NO3-N in soils amended with hydrochar was markedly reduced by 43.78–59.91% and 61.70–72.82% compared with that in the control and pyrochar treatments, respectively, because hydrochar promoted the soil water holding capacity by 2.70–9.04% and reduced the residual NO3-N content. Hydrochar application can dramatically diminish total H+ production from soil nitrification and NO3-N leaching. Thus, it could be considered an economical soil amendment for ameliorating soil acidification. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Optimal Dark Tea Fertilization Enhances the Growth and Flower Quality of Tea Chrysanthemum by Improving the Soil Nutrient Availability in Simultaneous Precipitation and High-Temperature Regions
by Jiayi Hou, Jiayuan Yin, Lei Liu and Lu Xu
Agronomy 2025, 15(7), 1753; https://doi.org/10.3390/agronomy15071753 - 21 Jul 2025
Viewed by 307
Abstract
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, [...] Read more.
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, with sustainable biofertilizers being proposed as a potential solution. However, their effects under such constraints are underexplored. In this study, we compared different proportions of a sustainable dark tea biofertilizer, made with two commonly used fertilizers, by their contributions to the morphological, photosynthetic, and flowering traits of D. morifolium ‘Jinsi Huang’. The results showed that increasing the dark tea biofertilizer application to 4.5 kg·m−2 significantly enhanced the soil alkali hydrolyzed nitrogen (596.53% increase), available phosphorus (64.11%), and rapidly available potassium (75.56%) compared to the levels in yellow soil. This nutrient enrichment in soil caused D. morifolium ‘Jinsi Huang’ to produce more leaves (272.84% increase) and flower buds (1041.67%), along with a strengthened photosynthetic capacity (higher Fv/Fm values and light saturation point). These improvements alleviated the photoinhibition caused by SPH climate conditions, ultimately leading to significantly higher contents of chlorogenic acid (38.23% increase) and total flavonoids (80.28%) in the harvested flowers compared to the control group. Thus, dark tea biofertilizer is a cost-effective and efficient additive for growing tea chrysanthemum in SPH regions due to improving soil quality and causing nutritional and functional components to accumulate in harvest flowers, which greatly promotes the commercial value of rural revitalization industries centered around tea chrysanthemum. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 629 KiB  
Article
In Vitro Evaluation of Enhanced Efficiency Nitrogen Fertilizers Using Two Different Soils
by Samuel Okai, Xinhua Yin, Lori Allison Duncan, Daniel Yoder, Debasish Saha, Forbes Walker, Sydney Logwood, Jones Akuaku and Nutifafa Adotey
Soil Syst. 2025, 9(3), 80; https://doi.org/10.3390/soilsystems9030080 - 16 Jul 2025
Viewed by 231
Abstract
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have [...] Read more.
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have investigated the performance of urea- and urea ammonium nitrate (UAN)-based EENF on soils with contrasting properties. Controlled-environment incubation experiments were conducted on two soils with different properties to evaluate the efficacy of urea and UAN forms of EENF to minimize ammonia volatilization losses. The experiments were set up as a completely randomized design, with seven treatments replicated four times for 16 days. The N treatments, which were surface-applied at 134 kg N ha−1, included untreated urea, untreated UAN, urea+ANVOLTM (urease inhibitor product), UAN+ANVOLTM, environmentally smart nitrogen (ESN®), SUPERU® (urease and nitrification inhibitor product), and urea+Excelis® (urease and nitrification inhibitor product). In this study, urea was more susceptible to ammonia loss (24.12 and 26.49% of applied N) than UAN (5.24 and 16.17% of applied N), with lower ammonia volatility from soil with a pH of 5.8 when compared to 7.0. Urea-based EENF products performed better in soil with a pH of 5.8 compared to the soil with pH 7.0, except for ESN, which was not influenced by pH. In contrast, the UAN-based EENF was more effective in the high-pH soil (7.0). Across both soils, all EENFs reduced cumulative ammonia loss by 32–91% in urea and 27–70% in UAN, respectively, when compared to their untreated forms. The urea-based EENF formulations containing both nitrification and urease inhibitors were the least effective among the EENF types, performing particularly poorly in high-pH soil (pH 7.0). In conclusion, the efficacy of EENF is dependent on soil pH, N source, and the form of EENF. These findings underscore the importance of tailoring EENF applications to specific soil conditions and N sources to optimize N use efficiency (NUE), enhance economic returns for producers, and minimize environmental impacts. Full article
Show Figures

Figure 1

16 pages, 2439 KiB  
Article
Unraveling Carbon and Nitrogen Dynamics in Cattle Manure: New Insights from Litterbag Incubation
by Thierry Morvan, Françoise Watteau and Paul Robin
Nitrogen 2025, 6(3), 56; https://doi.org/10.3390/nitrogen6030056 - 11 Jul 2025
Viewed by 226
Abstract
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by [...] Read more.
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by methodological constraints, notably the drying process of organic products. While litterbag experiments allow in situ decomposition of OM to be monitored, they often focus only on mass loss on a dry matter basis, which may overestimate biodegradation rates. To address these limitations, we designed an experiment that combined the measurement of material fluxes with the characterization of OM using transmission electron microscopy. Raw and dried farmyard cattle manure were incorporated into the soil and incubated in litterbags (200 µm mesh) for 301 days. The results demonstrated that drying significantly altered the biochemical composition of the cattle manure and influenced its microbial dynamics at the beginning of the incubation. However, this alteration did not influence the C mineralization rate at the end of incubation. Biodegradation alone could not explain C losses from litterbags after day 112 of incubation, which supports the assertion that physical and biological processes transferred large amounts of matter from the litterbags to the soil. These results highlight the importance of conditioning samples before laboratory incubations. Full article
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Free-Range Chickens Reared Within an Olive Grove Influenced the Soil Microbial Community and Carbon Sequestration
by Luisa Massaccesi, Rosita Marabottini, Chiara Poesio, Simona Mattioli, Cesare Castellini and Alberto Agnelli
Soil Syst. 2025, 9(3), 69; https://doi.org/10.3390/soilsystems9030069 - 3 Jul 2025
Viewed by 275
Abstract
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in [...] Read more.
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in an olive grove on the soil chemical and biochemical properties, including the total organic carbon (TOC), total nitrogen (TN), microbial biomass (Cmic), basal respiration, and microbial community structure, as well as the soil’s capability to stock organic carbon and total nitrogen. A field experiment was conducted in an olive grove grazed by chickens for over 20 years, with the animal load decreasing with distance from the poultry houses. At 20 m, where the chicken density was highest, the soils showed reduced OC and TN contents and a decline in fungal biomass. This was mainly due to the loss of both aboveground vegetation and root biomass from intensive grazing. At 50 m, where grazing pressure was lower, the soil OC, TN, and microbial community size and activity were similar to those in a control, ungrazed area. These findings suggest that high chicken density can negatively affect soil health, while moderate grazing allows for the recovery of vegetation and soil organic matter. Rational management of free-range chicken grazing, particularly through the control of chicken density or managing grazing time and frequency, is therefore recommended to preserve soil functions and fertility. Full article
Show Figures

Figure 1

13 pages, 1121 KiB  
Article
Optimizing Nitrogen Use Efficiency and Reducing Nutrient Losses in Maize Using Controlled-Release Coated Fertilizers
by Jong-Hyeong Lee and Hyun-Hwoi Ku
Agrochemicals 2025, 4(3), 10; https://doi.org/10.3390/agrochemicals4030010 - 30 Jun 2025
Viewed by 384
Abstract
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining [...] Read more.
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining yield comparable to conventional fertilization practices. A two-year field experiment (2017–2018) was conducted to assess CRCF formulations composed of urea, MAP, and potassium sulfate encapsulated in LDPE/EVA coatings with talc, humic acid, and starch additives. Treatments included various nitrogen application rates (33–90 kg N ha−1) using CRCF and a conventional NPK fertilizer (150 kg N ha−1). Measurements included fresh ear yield, aboveground biomass, NUE, and concentrations of total N (TN), nitrate N (NO3–N), and total P (TP) in surface runoff. Statistical analyses were performed using linear and quadratic regression models to determine yield responses and agronomic optimal N rate. CRCF treatments produced yields comparable to or exceeding those of conventional fertilization while using less than half the recommended N input. The modeled agronomic optimum N rate was 88.4 kg N ha−1, which closely matched the maximum observed yield. CRCF application significantly reduced TN, NO3–N, and TP runoff in 2017 and improved NUE up to 71.2%. Subsurface placement and sigmoidal nutrient release contributed to reduced nutrient losses. CRCFs can maintain maize yield while reducing N input by approximately 40%, aligning with climate-smart agriculture principles. This strategy enhances NUE, reduces environmental risks, and offers economic benefits by enabling single basal application. Further multi-site studies are recommended to validate these findings under diverse agroecological conditions. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

15 pages, 668 KiB  
Article
Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions
by Violeta Mandić, Vesna Krnjaja, Zdenka Girek, Milan Brankov, Nenad Mićić, Miloš Marinković and Aleksandar Simić
Agriculture 2025, 15(13), 1387; https://doi.org/10.3390/agriculture15131387 - 27 Jun 2025
Viewed by 343
Abstract
Nitrogen (N) plays a decisive role in the growth and yield of crops. Hence, a high maize grain yield depends upon substantial N inputs. In the present study, morphological traits and yield components, grain yield, rain use efficiency (RUE), and N partial factor [...] Read more.
Nitrogen (N) plays a decisive role in the growth and yield of crops. Hence, a high maize grain yield depends upon substantial N inputs. In the present study, morphological traits and yield components, grain yield, rain use efficiency (RUE), and N partial factor productivity (NPFP) were analyzed in two maize hybrids (ZP666 and NS6030) for 2 yr using four N rates (0 (N0), 60 (N60), 120 (N120), and 180 (N180) kg N ha−1). In a climatically more favorable year (2022), the studied traits and NPFP were higher, while RUE was lower. Hybrid ZP666 had higher values of morphological traits and yield component traits, except 1000-grain weight, grain yield, RUE, and NPFP, than hybrid NS6030. The highest values for morphological traits, yield components, grain yield (9383 and 9456 kg ha−1), and RUE (27.1 and 27.2 kg ha−1 mm−1) were obtained at 120 and 180 kg N ha−1. The NPFP decreased significantly with increasing N input, from 137.6 (control) to 52.5 kg grain per kg fertilizer N (180 kg N ha−1). A suitable hybrid selection and the application of a moderate N fertilizer rate of 120 kg N ha−1 could contribute to high yields and lower nitrogen losses to the environment and promote sustainable agriculture. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

14 pages, 2965 KiB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 1 | Viewed by 352
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

19 pages, 17113 KiB  
Article
Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils
by Jing Wang, Qiao Huang, Debang Yu, Yuxuan Zhang, Yves Uwiragiye, Nyumah Fallah, Meiqi Chen and Yi Cheng
Agronomy 2025, 15(7), 1536; https://doi.org/10.3390/agronomy15071536 - 25 Jun 2025
Viewed by 394
Abstract
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely [...] Read more.
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely recognized to effectively mitigate N2O emissions by depressing the nitrification process. However, the effectiveness of NIs on N2O emissions reduction under different alkaline amendments remains largely unknown, hindering our knowledge of the optimal soil acidification mitigation strategies. In this study, the effects of NIs in combination with different alkaline amendments on N2O emissions were assessed on typical acid soils collected from four sites during a 28-day aerobic incubation experiment. Treatments included four alkaline amendments (quicklime, chicken manure, cow dung, biochar) and no amendment control, designated as CaO, CM, CD, BC, and CK, combined with a typical NI (3,4 dimethylpyrazole phosphate, DMPP) applied at 2 mg soil kg−1 or non-NI applied, respectively. Both individual amendments and their combination with DMPP significantly elevated the soil pH by 4.9–64.2% compared with the CK treatment, with the effectiveness ranking as CaO > CM ≈ CD > BC. Cumulative N2O emissions were stimulated by the individual application of CaO, CM, and CD but were reduced by BC application compared with the CK treatment. Changes in N2O emissions were positively correlated with the responses of the net N mineralization and nitrification rates to individual amendments, which were regulated by changes in the soil pH. The suppressive effects of NI combined with individual amendments on N2O emissions were significant in the CaO treatment with a reduction ranging from 3.3% to 60.2%, which was attributed to decreased abundances of ammonia-oxidizing bacteria (AOB). Therefore, we concluded that the combined application of CaO and DMPP could be considered as a suitable mitigation strategy for addressing soil acidification through optimized N management. Additionally, BC can serve as a supplementary practice to simultaneously improve soil fertility. These insights are crucial for developing integrated fertilization management strategies to mitigate soil acidification with low N loss risks. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

29 pages, 7261 KiB  
Review
Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies
by Zhiyong Lu, Liangmin Ning, Xiangnan Zhu and Hao Yu
Materials 2025, 18(13), 2987; https://doi.org/10.3390/ma18132987 - 24 Jun 2025
Viewed by 720
Abstract
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental [...] Read more.
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental risks (heavy metal pollution, electrolyte toxicity). This paper systematically reviews pyrometallurgical and hydrometallurgical recovery technologies, identifying bottlenecks: high energy/lithium loss in pyrometallurgy, and corrosion/cost/solvent regeneration issues in hydrometallurgy. To address these, an integrated recycling process is proposed: low-temperature physical separation (liquid nitrogen embrittlement grinding + froth flotation) for cathode–anode separation, mild roasting to convert lithium into water-soluble compounds for efficient metal oxide separation, stepwise alkaline precipitation for high-purity lithium salts, and co-precipitation synthesis of spherical hydroxide precursors followed by segmented sintering to regenerate LiNi1/3Co1/3Mn1/3O2 cathodes with morphology/electrochemical performance comparable to virgin materials. This low-temperature, precision-controlled methodology effectively addresses the energy-intensive, pollutive, and inefficient limitations inherent in conventional recycling processes. By offering an engineered solution for sustainable large-scale recycling and high-value regeneration of spent ternary lithium ion batteries (LIBs), this approach proves pivotal in advancing circular economy development within the renewable energy sector. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 1837 KiB  
Article
Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage
by Yingchao Sun, Yongcheng Chen, Zhiwei Huo, Guohong Liu, Xiaokai Zheng, Yayin Qi, Chunhui Ma and Fanfan Zhang
Microorganisms 2025, 13(7), 1437; https://doi.org/10.3390/microorganisms13071437 - 20 Jun 2025
Viewed by 378
Abstract
Lactic acid bacteria (LAB) and cellulase have been used as additives to improve the fermentation quality of mulberry silage. This study investigated the dynamics of fermentation characteristics and bacterial communities during 60-day ensiling through three established treatment groups: Control (no inoculation), Lactiplantibacillus plantarum [...] Read more.
Lactic acid bacteria (LAB) and cellulase have been used as additives to improve the fermentation quality of mulberry silage. This study investigated the dynamics of fermentation characteristics and bacterial communities during 60-day ensiling through three established treatment groups: Control (no inoculation), Lactiplantibacillus plantarum (LP) inoculation as well as combination of L. plantarum and cellulase inoculation group (LPC). The results showed that compared with the Control group, the LP and LPC treatments significantly reduced the loss of dry matter, soluble carbohydrates, and crude protein (p < 0.05), effectively promoted the accumulation of lactic acid and acetic acid (p < 0.05), but significantly elevated ammonia nitrogen (NH3-N) production. Inoculation was beneficial to the stability of the bacterial community in mulberry branch and leaf silage because it can maintain a high level of beneficial bacteria (Lactiplantibacillus) and inhibit the growth of harmful bacteria (Escherichia-Shigella). The combination of the inoculation of L. plantarum and cellulase may improve the quality of mulberry branch silage. Full article
(This article belongs to the Special Issue Molecular Studies of Microorganisms in Plant Growth and Utilization)
Show Figures

Figure 1

22 pages, 2787 KiB  
Article
SWAT-Based Characterization of and Control Measures for Composite Non-Point Source Pollution in Yapu Port Basin, China
by Lina Chen, Yimiao Sun, Junyi Tan and Wenshuo Zhang
Water 2025, 17(12), 1759; https://doi.org/10.3390/w17121759 - 12 Jun 2025
Viewed by 428
Abstract
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the [...] Read more.
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the effectiveness of different mitigation strategies, focusing on both agricultural and urban non-point source pollution control. The watershed was divided into 39 sub-watersheds and 106 hydrologic response units (HRUs). Model calibration and validation were conducted using the observed data on runoff, total phosphorus (TP), and total nitrogen (TN). The results demonstrate good model performance, with coefficients of determination (R2) ≥ 0.85 and Nash–Sutcliffe efficiencies (NSEs) ≥ 0.84, indicating its applicability to the study area. Temporally, pollutant loads exhibited a positive correlation with precipitation, with peak values observed during the annual flood season. Spatially, pollution intensity increased from upstream to downstream, with the western region of the watershed showing higher loss intensity. Pollution was predominantly concentrated in the downstream region. Based on the composite source analysis, a series of management measures were designed targeting both agricultural and urban non-point source pollution. Among individual measures, fertilizer reduction in agricultural fields and the establishment of vegetative buffer strips demonstrated the highest effectiveness. Combined management strategies significantly enhanced pollution control, with average TN and TP load reductions of 22.18% and 22.70%, respectively. The most effective scenario combined fertilizer reduction, improved urban stormwater utilization, vegetative buffer strips, and grassed swales in both farmland and orchards, resulting in TN and TP reductions of 67.2% and 56.2%, respectively. Full article
Show Figures

Figure 1

Back to TopTop