Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Meteorological Conditions
2.3. Soil Properties
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Variations in Parameters
3.2. Morphological Plant Traits
3.3. Grain Yield and Yield Component Traits
3.4. Rain Use Efficiency (RUE) and N Partial Factor Productivity (NPFP)
3.5. Principal Component Analysis and AMMI Analysis for Measured and Calculated Parameters
3.6. Correlation Among Parameters
4. Discussion
4.1. Year Impact on Morphological and Yield Component Traits, Yield, Rain Use Efficiency, and N Partial Factor Productivity
4.2. Hybrid Impact on Morphological and Yield Components Traits, Yield, Rain Use Efficiency, and N Partial Factor Productivity
4.3. N Rate Impact on Morphological and Yield Components Traits, Yield, Rain Use Efficiency, and N Partial Factor Productivity
4.4. Interaction of Factors Affected Studied Parameters
4.5. PCA and Correlation Among Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAO Statistical Yearbook; Food and Agriculture Organisation of the United Nations. Available online: http://www.fao.org/faostat/en/#data (accessed on 11 March 2025).
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Tokatlidis, I.S. Adapting maize crop to climate change. Agron. Sustain. Dev. 2013, 33, 63–79. [Google Scholar] [CrossRef]
- Smith, W.; Grant, B.; Qi, Z.; He, W.; Qian, B.; Jing, Q.; VanderZaag, A.; Drury, C.F.; St. Luce, M.; Wagner-Riddle, C. Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci. Total Environ. 2020, 728, 138845. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Ahmad, S.; Ahmad, I.; Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 2020, 8, e10291. [Google Scholar] [CrossRef]
- Bhat, S.A.; Qadri, S.A.A.; Dubbey, V.; Sofi, I.B.; Huang, N. Impact of crop management practices on maize yield: Insights from farming in tropical regions and predictive modeling using machine learning. J. Agric. Food Res. 2024, 18, 101392. [Google Scholar] [CrossRef]
- Rizzo, G.; Monzon, J.P.; Tenorio, F.A.; Howard, R.; Cassman, K.G.; Grassini, P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc. Natl. Acad. Sci. USA 2022, 119, e2113629119. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Rejek, D. Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model. J. Appl. Genet. 2024, 65, 653–664. [Google Scholar] [CrossRef]
- Egli, D.B. Is there a role for sink size in understanding maize population-yield relationships? Crop Sci. 2015, 55, 2453–2462. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.K.; Alves, C.J.; Megda, M.M.; Nogueira, T.A.R.; Andreotti, M.; Arf, O. Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agron. J. 2019, 111, 1985–1997. [Google Scholar] [CrossRef]
- Woodley, A.L.; Drury, C.F.; Yang, X.Y.; Phillips, L.A.; Reynolds, D.W.; Calder, W.; Oloya, T.O. Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
- Dawar, K.; Dawar, A.; Tariq, M.; Mian, I.A.; Muhammad, A.; Farid, L.; Khan, S.; Khan, K.; Fahad, S.; Danish, S.; et al. Enhancing nitrogen use efficiency and yield of maize (Zea mays L.) through ammonia volatilization mitigation and nitrogen management approaches. BMC Plant Biol. 2024, 24, 74. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Bhandari, S.; Aryal, K.; Mahato, M.; Shrestha, J. Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. J. Agric. Res. Nat. Res. 2021, 4, 48–62. [Google Scholar] [CrossRef]
- Delibaltova, V. Response of maize hybrids to different nitrogen applications under climatic conditions of Plovdiv region. Int. J. Farming Allied Sci. 2014, 3, 408–412. [Google Scholar]
- Marković, M.; Josipović, M.; Šoštarić, J.; Jambrović, A.; Brkić, A. Response of maize (Zea mays L.) grain yield and yield components to irrigation and nitrogen fertilization. J. Cent. Eur. Agric. 2017, 18, 55–72. [Google Scholar] [CrossRef]
- Gheith, E.M.S.; El-Badry, O.Z.; Lamlom, S.F.; Ali, H.M.; Siddiqui, M.H.; Ghareeb, R.Y.; El-Sheikh, M.H.; Jebril, J.; Abdelsalam, N.R.; Kandil, E.E. Maize (Zea mays L.) productivity and nitrogen use efficiency in response to nitrogen application levels and time. Front. Plant Sci. 2022, 13, 941343. [Google Scholar] [CrossRef]
- Kacar, B. Toprak Analizleri; Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti.: Ankara, Turkey, 2012. [Google Scholar]
- Jakovljević, M.; Pantović, M.; Blagojević, S. Laboratory Manual of Soil and Water Chemistry; Faculty of Agriculture, University of Belgrade: Belgrade, Serbia, 1995. (In Serbian) [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 1–33. [Google Scholar] [CrossRef]
- Ure, A.M. Heavy Metals in Soils, 2nd ed.; Alloway, B.J., Ed.; Blackie Academic and Professional: Glasgow, UK, 1995; p. 58. [Google Scholar]
- Cheng, Y.; Zhao, J.; Liu, Z.X.; Huo, Z.J.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B. Modified fertilization management of summer maize (Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use. J. Integr. Agric. 2015, 14, 1644–1657. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992; pp. 1–278. [Google Scholar]
- Purchase, J.L.; Hatting, H. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. S. Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F. Curso de Estatística Experimental, 15th ed.; FEALQ: Piracicaba, Brazil, 2009; p. 451. [Google Scholar]
- Aakash; Thakur, N.S.; Singh, M.K.; Bhayal, L.; Meena, K.; Choudhary, S.K.; Kumawat, N.; Singh, R.K.; Singh, U.P.; Singh, S.K.; et al. Sustainability in rainfed maize (Zea mays L.) production using choice of corn variety and nitrogen scheduling. Sustainability 2022, 14, 3116. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, B.-M. Effects of climate change and drought tolerance on maize growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Mandić, V.; Bijelić, Z.; Krnjaja, V.; Simić, A.; Simić, M.; Brankov, M.; Đorđević, S. Sowing and fertilization strategies to improve maize productivity. Maydica 2017, 65, 1–9. [Google Scholar]
- Wang, Y.; Huang, Y.; Fu, W.; Guo, W.; Ren, N.; Zhao, Y.; Ye, Y. Efficient physiological and nutrient use efficiency responses of maize leaves to drought stress under different field nitrogen conditions. Agronomy 2020, 10, 523. [Google Scholar] [CrossRef]
- Madić, M.; Bokan, N.; Živić, M.; Đurović, D.; Paunović, A.; Tomić, D. Grain yield of maize hybrids at different plant densities. Acta Agric. Serbica 2017, 22, 157–167. [Google Scholar] [CrossRef]
- Buhiniček, I.; Kaučić, D.; Kozić, Z.; Jukić, M.; Gunjača, J.; Šarčević, H.; Stepinac, D.; Šimić, D. Trends in maize grain yields across five maturity groups in a long-term experiment with changing genotypes. Agriculture 2021, 11, 887. [Google Scholar] [CrossRef]
- Filipović, M.; Jovanović, Ž.; Tolimir, M. New ZP hybrid selection trends. In Proceedings of the XX Conference on Biotechnology, Čačak, Serbia, 13–14 March 2015; pp. 7–13. [Google Scholar]
- Liu, J.; Yuan, J.; Cai, H.; Ren, J.; Liang, Y.; Hou, W.; Chen, G. Accumulation and partition of dry mass and nitrogen in three maize (Zea mays L.) hybrids grown under five planting densities. Appl. Ecol. Environ. Res. 2020, 18, 5683–5699. [Google Scholar] [CrossRef]
- Jakelaitis, A.; Silva, A.A.; Ferreira, L.R. Efeitos do nitrogênio sobre o milho cultivado em consórcio com Brachiaria brizantha. Acta Sci. Agron. 2005, 27, 39–46. [Google Scholar] [CrossRef]
- Adeoluwa, O.O.; Mutengwa, C.S.; Chiduza, C.; Tandzi, N.L. Nitrogen use efficiency of quality protein maize (Zea mays L.) Genotypes. Agronomy 2022, 12, 1118. [Google Scholar] [CrossRef]
- Adzawla, W.; Setsoafia, E.D.; Amoabeng-Nimako, S.; Atakora, W.K.; Camara, O.; Jemo, M.; Bindraban, P.S. Fertilizer use efficiency and economic viability in maize production in the savannah and transitional zones of Ghana. Front. Sustain. Food Syst. 2024, 8, 1340927. [Google Scholar] [CrossRef]
- Wang, Y.N.; Mi, G.H. Fertilizer application in maize production in northern China: Current status and fertilization optimal potential. J. Maize Sci. 2021, 29, 151. [Google Scholar] [CrossRef]
- Majerowicz, N.; Pereira, J.M.S.; Medici, L.O.; Bison, O.; Pereira, M.B.; Santos, J.U.M. Estudo da eficiência de uso do nitrogênio em variedades locais e melhoradas de milho. Rev. Bras. Bot. 2002, 25, 129–136. [Google Scholar] [CrossRef]
- Peng, Y.F.; Li, C.; Fritschi, F.B. Diurnal dynamics of maize leaf photosynthesis and carbohydrate concentrations in response to differential N availability. Environ. Exp. Bot. 2014, 99, 18–27. [Google Scholar] [CrossRef]
- Castro, P.R.C.; Kluge, R.A.; Sestari, I. Manual of Plant Physiology: Crop Physiology; Agronômica Ceres: São Paulo, Brazil, 2008; p. 864. [Google Scholar]
- Safari, A.R.; Hemayati, S.S.; Salighedar, F.; Barimavandi, A.R. Yield and quality of forage corn (Zea mays L.) cultivar Single Cross 704 in response to nitrogen fertilization and plant density. Int. J. Biosci. 2014, 4, 146–153. [Google Scholar] [CrossRef]
- Amin, M.E.H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2011, 10, 17–23. [Google Scholar] [CrossRef]
- Mello, T.Y.; Buzetti, S.; Teixeira Filho, M.C.M.; Galindo, F.S.; Nogueira, L.M. Residual effects of nitrogen fertilizer with polymer-coated urea in a maize crop. Rev. Caatinga 2017, 30, 586–594. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. Macronutrient management effects on nutrient accumulation, partitioning, remobilization, and yield of hybrid maize cultivars. Front. Plant Sci. 2020, 11, 1307. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Lei, W.; Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 2021, 11, 358. [Google Scholar] [CrossRef]
- Rawal, N.; Vista, S.P.; Khadka, D.; Paneru, P. Grain yield, nitrogen accumulation, and its use efficiency of maize (Zea mays L.) as influenced by varying nitrogen rates. Int. J. Agron. 2024, 2024, 4104123. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Santini, J.M.K.; Alves, C.J.; Nogueira, L.M.; Ludkiewicz, M.G.Z.; Andreotti, M.; Bellotte, J.L.M. Maize yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Rev. Bras. Cienc. Solo 2016, 40, e015036. [Google Scholar] [CrossRef]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS ONE 2020, 15, e0233674. [Google Scholar] [CrossRef]
- Worku, A.; Derebe, B.; Bitew, Y.; Chakelie, G.; Andualem, M. Response of maize (Zea mays L.) to nitrogen and planting density in Jabitahinan district, Western Amhara region. Cogent Food Agric. 2020, 6, 1770405. [Google Scholar] [CrossRef]
- Imran, S.; Arif, M.; Khan, A.; Khan, M.A.; Shah, W.; Latif, A. Effect of nitrogen levels and plant population on yield and yield components of maize. Adv. Crop Sci. Technol. 2015, 3, 170. [Google Scholar] [CrossRef]
- Biswas, D.K.; Ma, B.L. Effect of nitrogen rate and fertilizer nitrogen source on physiology, yield, grain quality, and nitrogen use efficiency in corn. Can. J. Plant Sci. 2016, 96, 392–403. [Google Scholar] [CrossRef]
- Karki, M.; Panth, B.P.; Subedi, P.; Aarty, G.C.; Regmi, R. Effect of Different Doses of Nitrogen on Production of Spring Maize (Zea mays) in Gulmi, Nepal. Sustain. Food Agric. 2020, 1, 01–05. [Google Scholar] [CrossRef]
- Donovan, T.C.; Comas, L.H.; Schneekloth, J.; Schipanski, M. Nitrogen and water availability affect soil nitrogen mineralization and maize nitrogen uptake dynamics. Nutr. Cycl. Agroecosyst. 2025, 130, 387–405. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Rufty, T.W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Sec. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Bello, O.B.; Olawuyi, O.J.; Lawal, M.; Ige, S.A.; Mahamood, J.; Afolabi, M.S.; Azeez, M.A.; Abdulmaliq, S.Y. Genetic gains in three breeding eras of maize hybrids under low and optimum nitrogen fertilization. J. Agric. Sci. 2014, 59, 227–242. [Google Scholar] [CrossRef]
- Amanullah; Iqbal, A.; Ali, A.; Fahad, S.; Parmar, B. Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front. Plant Sci. 2016, 7, 1773. [Google Scholar] [CrossRef]
- Dragičević, V.; Kresović, B.; Videnović, Z.; Spasojević, I.; Simić, M. Fitting cropping technology in a changing climate. Agric. Forestry 2015, 61, 171–180. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Z.; Wu, X.; Gan, Y.; Chen, X.; Xia, H.; Kamran, M.; Jia, Z.; Han, Q.; Shayakhmetova, A.; et al. Matching fertilization with water availability enhances maize productivity and water use efficiency in a semi-arid area: Mechanisms and solutions. Soil Tillage Res. 2021, 214, 105164. [Google Scholar] [CrossRef]
- Ali, F.; Ahsan, M.; Ali, Q.; Kanwal, N. Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Front. Plant Sci. 2017, 8, 1397. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.N.; Nagy, J. Evaluation of plant characteristics related to grain yield of FAO410 and FAO340 hybrids using regression models. Cereal Res. Commun. 2021, 49, 161–169. [Google Scholar] [CrossRef]
Parameters | Mean | Minimum | Maximum | SD | CV, % |
---|---|---|---|---|---|
Plant height (cm) | 244.7 | 220.0 | 285.0 | 12.7 | 5.2 |
Eer height (cm) | 97.1 | 60.5 | 118.8 | 13.9 | 14.3 |
Number of leaves per plant | 12.8 | 11.0 | 14.5 | 1.0 | 7.8 |
Ear length (cm) | 20.3 | 16.4 | 27.1 | 2.3 | 11.3 |
Number of rows per ear | 14.1 | 12.0 | 16.7 | 1.1 | 7.8 |
Number of grains per ear | 581.9 | 407.1 | 816.1 | 98.1 | 16.9 |
Grain weight per ear (g) | 184.5 | 118.5 | 245.1 | 26.6 | 19.8 |
1000-grain weight (g) | 278.3 | 197.5 | 396.0 | 53.9 | 19.4 |
Grain yield (kg ha−1) | 8634.7 | 4315.5 | 12,561.5 | 1734.5 | 20.1 |
Rain use efficiency(kg ha−1 mm−1) | 24.8 | 15.8 | 46.1 | 5.6 | 22.6 |
N partial factor productivity(kg grain kg fertilizer N−1) | 89.4 | 39.0 | 161.2 | 38.6 | 43.2 |
Trait | Year (Y) | Hybrid (H) | N Rate, kg ha−1 | |||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | NS6030 | ZP666 | 0 | 60 | 120 | 180 | |
PH (cm) | 241.5 b | 247.9 a | 238.0 b | 251.3 a | 236.5 b | 243.1 ab | 247.8 a | 251.2 a |
EH (cm) | 86.2 b | 107.9 a | 97.9 a | 96.2 a | 92.0 b | 95.7 ab | 98.5 ab | 102.1 a |
NLP | 11.9 b | 13.7 a | 12.8 a | 12.8 a | 12.5 b | 12.7 ab | 13.0 a | 13.0 a |
F test | Y | H | N | Y × H | Y × N | H × N | Y × H × N | |
PH | ** | ** | ** | ns | ns | ns | ns | |
EH | ** | ns | * | ns | ns | ns | ns | |
NLP | ** | ns | ** | ns | ns | ns | ns |
Trait | Year (Y) | Hybrid (H) | N Rate, kg ha−1 | |||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | NS6030 | ZP666 | 0 | 60 | 120 | 180 | |
EL | 18.8 b | 21.7 a | 19.4 b | 21.2 a | 19.2 b | 20.3 ab | 20.6 a | 21.0 a |
NRE | 13.5 b | 14.7 a | 13.9 b | 14.3 a | 13.4 b | 13.6 b | 14.4 a | 14.9 a |
NGE | 518.0 b | 645.9 a | 556.4 b | 607.5 a | 529.0 b | 585.5 a | 624.8 a | 588.4 a |
GWE | 168.8 b | 202.2 a | 180.1 b | 188.9 a | 167.4 b | 178.7 b | 195.9 a | 196.1 a |
TGW | 239.2 b | 317.4 a | 275.6 | 281.0 | 247.4 b | 280.4 a | 285.6 a | 299.8 a |
GY | 7631 b | 9639 a | 8324 b | 8945 a | 7446 b | 8255 b | 9383 a | 9456 a |
RUE | 28.0 a | 21.6 b | 23.7 b | 25.9 a | 21.0 b | 23.9 ab | 27.1 a | 27.2 a |
NPFP | 81.0 b | 97.8 a | 85.7 b | 93.2 a | — | 137.6 a | 78.2 b | 52.5 c |
F test | Y | H | N | Y × H | Y × N | H × N | Y × H × N | |
EL | ** | ** | ** | ns | * | * | * | |
NRE | ** | ** | ** | * | ** | ns | * | |
NGE | ** | ** | ** | * | * | * | ns | |
GWE | ** | * | ** | * | ns | ns | ns | |
TGW | ** | ns | ** | * | ** | * | ns | |
GY | ** | * | ** | * | ns | ns | ns | |
RUE | ** | * | ** | * | * | ns | ns | |
NPFP | ** | * | ** | * | ns | ns | ns |
Trait | Hybrid + Year | N Rate, kg ha−1 (N) | ||||||
---|---|---|---|---|---|---|---|---|
ZP666—21 | ZP666—22 | NS6030—21 | NS6030—22 | 0 | 60 | 120 | 180 | |
PH | 2.66 | 1.50 | 4.35 | 2.44 | 3.54 | 0.71 | 4.14 | 2.02 |
EH | 4.10 | 7.54 | 11.17 | 7.39 | 8.58 | 5.55 | 2.78 | 11.87 |
NL | 4.68 | 3.14 | 0.46 | 1.15 | 4.78 | 0.49 | 2.67 | 1.76 |
EL | 1.58 | 2.81 | 2.49 | 6.56 | 1.79 | 3.97 | 0.94 | 6.31 |
NRE | 2.04 | 0.84 | 2.26 | 4.71 | 2.37 | 2.71 | 4.24 | 1.08 |
NGE | 26.01 | 138.48 | 83.28 | 29.73 | 106.99 | 106.93 | 48.99 | 48.89 |
GWE | 8.41 | 6.19 | 3.18 | 10.88 | 8.40 | 3.29 | 12.19 | 2.74 |
TGW | 11.37 | 5.73 | 10.78 | 24.83 | 12.03 | 5.95 | 9.33 | 25.05 |
GY | 64.59 | 47.28 | 25.13 | 81.72 | 61.42 | 25.63 | 93.00 | 25.31 |
RUE | 6.40 | 1.42 | 1.28 | 5.96 | 6.66 | 1.19 | 5.77 | 1.01 |
NPFP | 0.77 | 5.06 | 12.61 | 8.30 | 10.59 | 10.94 | 3.78 | 2.81 |
EH | NL | EL | NRE | NGE | GWE | TGW | GY | RUE | NPFP | |
---|---|---|---|---|---|---|---|---|---|---|
PH | 0.40 ** | 0.39 ** | 0.41 ** | 0.45 ** | 0.40 ** | 0.41 * | 0.38 * | 0.42 ** | −0.12 ns | 0.19 ns |
EH | 0.85 ** | 0.53 ** | 0.54 ** | 0.58 ** | 0.52 ** | 0.62 ** | 0.52 ** | −0.38 ** | 0.14 ns | |
NL | 0.61 ** | 0.61 ** | 0.66 ** | 0.67 ** | 0.74 ** | 0.66 ** | −0.39 ** | 0.18 ns | ||
EL | 0.59 ** | 0.77 ** | 0.54 ** | 0.65 ** | 0.55 ** | −0.18 ns | 0.24 ns | |||
NRE | 0.64 ** | 0.56 ** | 0.67 ** | 0.58 ** | −0.09 ns | 0.10 ns | ||||
NGE | 0.59 ** | 0.63 ** | 0.59 ** | −0.18 ns | 0.33 ** | |||||
GWE | 0.66 ** | 0.91 ** | 0.30 * | 0.29 * | ||||||
TGW | 0.67 ** | −0.22 ns | 0.29 * | |||||||
GY | 0.31* | 0.30 * | ||||||||
RUE | 0.17 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić, V.; Krnjaja, V.; Girek, Z.; Brankov, M.; Mićić, N.; Marinković, M.; Simić, A. Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions. Agriculture 2025, 15, 1387. https://doi.org/10.3390/agriculture15131387
Mandić V, Krnjaja V, Girek Z, Brankov M, Mićić N, Marinković M, Simić A. Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions. Agriculture. 2025; 15(13):1387. https://doi.org/10.3390/agriculture15131387
Chicago/Turabian StyleMandić, Violeta, Vesna Krnjaja, Zdenka Girek, Milan Brankov, Nenad Mićić, Miloš Marinković, and Aleksandar Simić. 2025. "Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions" Agriculture 15, no. 13: 1387. https://doi.org/10.3390/agriculture15131387
APA StyleMandić, V., Krnjaja, V., Girek, Z., Brankov, M., Mićić, N., Marinković, M., & Simić, A. (2025). Nitrogen Responsiveness of Maize Hybrids Under Dryland Conditions. Agriculture, 15(13), 1387. https://doi.org/10.3390/agriculture15131387